* Makefile.in (ALLDEPFILES): Add m68hc11-tdep.c.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41
42 #include "opcode/mips.h"
43 #include "elf/mips.h"
44 #include "elf-bfd.h"
45 #include "symcat.h"
46
47 /* The sizes of floating point registers. */
48
49 enum
50 {
51 MIPS_FPU_SINGLE_REGSIZE = 4,
52 MIPS_FPU_DOUBLE_REGSIZE = 8
53 };
54
55 /* All the possible MIPS ABIs. */
56
57 enum mips_abi
58 {
59 MIPS_ABI_UNKNOWN,
60 MIPS_ABI_N32,
61 MIPS_ABI_O32,
62 MIPS_ABI_O64,
63 MIPS_ABI_EABI32,
64 MIPS_ABI_EABI64
65 };
66
67 struct frame_extra_info
68 {
69 mips_extra_func_info_t proc_desc;
70 int num_args;
71 };
72
73 /* Various MIPS ISA options (related to stack analysis) can be
74 overridden dynamically. Establish an enum/array for managing
75 them. */
76
77 static const char size_auto[] = "auto";
78 static const char size_32[] = "32";
79 static const char size_64[] = "64";
80
81 static const char *size_enums[] = {
82 size_auto,
83 size_32,
84 size_64,
85 0
86 };
87
88 /* Some MIPS boards don't support floating point while others only
89 support single-precision floating-point operations. See also
90 FP_REGISTER_DOUBLE. */
91
92 enum mips_fpu_type
93 {
94 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
95 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
96 MIPS_FPU_NONE /* No floating point. */
97 };
98
99 #ifndef MIPS_DEFAULT_FPU_TYPE
100 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
101 #endif
102 static int mips_fpu_type_auto = 1;
103 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
104 #define MIPS_FPU_TYPE mips_fpu_type
105
106 /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
107 #ifndef FP_REGISTER_DOUBLE
108 #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
109 #endif
110
111 static int mips_debug = 0;
112
113 /* MIPS specific per-architecture information */
114 struct gdbarch_tdep
115 {
116 /* from the elf header */
117 int elf_flags;
118 /* mips options */
119 enum mips_abi mips_abi;
120 const char *mips_abi_string;
121 enum mips_fpu_type mips_fpu_type;
122 int mips_last_arg_regnum;
123 int mips_last_fp_arg_regnum;
124 int mips_default_saved_regsize;
125 int mips_fp_register_double;
126 int mips_regs_have_home_p;
127 int mips_default_stack_argsize;
128 int gdb_target_is_mips64;
129 int default_mask_address_p;
130 };
131
132 #if GDB_MULTI_ARCH
133 #undef MIPS_EABI
134 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
136 #endif
137
138 #if GDB_MULTI_ARCH
139 #undef MIPS_LAST_FP_ARG_REGNUM
140 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
141 #endif
142
143 #if GDB_MULTI_ARCH
144 #undef MIPS_LAST_ARG_REGNUM
145 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
146 #endif
147
148 #if GDB_MULTI_ARCH
149 #undef MIPS_FPU_TYPE
150 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
151 #endif
152
153 /* Return the currently configured (or set) saved register size. */
154
155 #if GDB_MULTI_ARCH
156 #undef MIPS_DEFAULT_SAVED_REGSIZE
157 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
158 #elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
159 #define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
160 #endif
161
162 static const char *mips_saved_regsize_string = size_auto;
163
164 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
165
166 static unsigned int
167 mips_saved_regsize (void)
168 {
169 if (mips_saved_regsize_string == size_auto)
170 return MIPS_DEFAULT_SAVED_REGSIZE;
171 else if (mips_saved_regsize_string == size_64)
172 return 8;
173 else /* if (mips_saved_regsize_string == size_32) */
174 return 4;
175 }
176
177 /* Indicate that the ABI makes use of double-precision registers
178 provided by the FPU (rather than combining pairs of registers to
179 form double-precision values). Do not use "TARGET_IS_MIPS64" to
180 determine if the ABI is using double-precision registers. See also
181 MIPS_FPU_TYPE. */
182 #if GDB_MULTI_ARCH
183 #undef FP_REGISTER_DOUBLE
184 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
185 #endif
186
187 /* Does the caller allocate a ``home'' for each register used in the
188 function call? The N32 ABI and MIPS_EABI do not, the others do. */
189
190 #if GDB_MULTI_ARCH
191 #undef MIPS_REGS_HAVE_HOME_P
192 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
193 #elif !defined (MIPS_REGS_HAVE_HOME_P)
194 #define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
195 #endif
196
197 /* The amount of space reserved on the stack for registers. This is
198 different to MIPS_SAVED_REGSIZE as it determines the alignment of
199 data allocated after the registers have run out. */
200
201 #if GDB_MULTI_ARCH
202 #undef MIPS_DEFAULT_STACK_ARGSIZE
203 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
204 #elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
205 #define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
206 #endif
207
208 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
209
210 static const char *mips_stack_argsize_string = size_auto;
211
212 static unsigned int
213 mips_stack_argsize (void)
214 {
215 if (mips_stack_argsize_string == size_auto)
216 return MIPS_DEFAULT_STACK_ARGSIZE;
217 else if (mips_stack_argsize_string == size_64)
218 return 8;
219 else /* if (mips_stack_argsize_string == size_32) */
220 return 4;
221 }
222
223 #if GDB_MULTI_ARCH
224 #undef GDB_TARGET_IS_MIPS64
225 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
226 #endif
227
228 #if GDB_MULTI_ARCH
229 #undef MIPS_DEFAULT_MASK_ADDRESS_P
230 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
231 #elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
232 #define MIPS_DEFAULT_MASK_ADDRESS_P (0)
233 #endif
234
235 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
236
237 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
238
239 static void mips_print_register (int, int);
240
241 static mips_extra_func_info_t
242 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
243
244 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
245
246 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
247
248 int mips_set_processor_type (char *);
249
250 static void mips_show_processor_type_command (char *, int);
251
252 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
253
254 static mips_extra_func_info_t
255 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
256
257 static CORE_ADDR after_prologue (CORE_ADDR pc,
258 mips_extra_func_info_t proc_desc);
259
260 /* This value is the model of MIPS in use. It is derived from the value
261 of the PrID register. */
262
263 char *mips_processor_type;
264
265 char *tmp_mips_processor_type;
266
267 /* The list of available "set mips " and "show mips " commands */
268
269 static struct cmd_list_element *setmipscmdlist = NULL;
270 static struct cmd_list_element *showmipscmdlist = NULL;
271
272 /* A set of original names, to be used when restoring back to generic
273 registers from a specific set. */
274
275 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
276 char **mips_processor_reg_names = mips_generic_reg_names;
277
278 char *
279 mips_register_name (int i)
280 {
281 return mips_processor_reg_names[i];
282 }
283 /* *INDENT-OFF* */
284 /* Names of IDT R3041 registers. */
285
286 char *mips_r3041_reg_names[] = {
287 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
288 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
289 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
290 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
291 "sr", "lo", "hi", "bad", "cause","pc",
292 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
293 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
294 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
295 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
296 "fsr", "fir", "fp", "",
297 "", "", "bus", "ccfg", "", "", "", "",
298 "", "", "port", "cmp", "", "", "epc", "prid",
299 };
300
301 /* Names of IDT R3051 registers. */
302
303 char *mips_r3051_reg_names[] = {
304 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
305 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
306 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
307 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
308 "sr", "lo", "hi", "bad", "cause","pc",
309 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
310 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
311 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
312 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
313 "fsr", "fir", "fp", "",
314 "inx", "rand", "elo", "", "ctxt", "", "", "",
315 "", "", "ehi", "", "", "", "epc", "prid",
316 };
317
318 /* Names of IDT R3081 registers. */
319
320 char *mips_r3081_reg_names[] = {
321 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
322 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
323 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
324 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
325 "sr", "lo", "hi", "bad", "cause","pc",
326 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
327 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
328 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
329 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
330 "fsr", "fir", "fp", "",
331 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
332 "", "", "ehi", "", "", "", "epc", "prid",
333 };
334
335 /* Names of LSI 33k registers. */
336
337 char *mips_lsi33k_reg_names[] = {
338 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
339 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
340 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
341 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
342 "epc", "hi", "lo", "sr", "cause","badvaddr",
343 "dcic", "bpc", "bda", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "", "", "", "", "",
347 "", "", "", "",
348 "", "", "", "", "", "", "", "",
349 "", "", "", "", "", "", "", "",
350 };
351
352 struct {
353 char *name;
354 char **regnames;
355 } mips_processor_type_table[] = {
356 { "generic", mips_generic_reg_names },
357 { "r3041", mips_r3041_reg_names },
358 { "r3051", mips_r3051_reg_names },
359 { "r3071", mips_r3081_reg_names },
360 { "r3081", mips_r3081_reg_names },
361 { "lsi33k", mips_lsi33k_reg_names },
362 { NULL, NULL }
363 };
364 /* *INDENT-ON* */
365
366
367
368
369 /* Table to translate MIPS16 register field to actual register number. */
370 static int mips16_to_32_reg[8] =
371 {16, 17, 2, 3, 4, 5, 6, 7};
372
373 /* Heuristic_proc_start may hunt through the text section for a long
374 time across a 2400 baud serial line. Allows the user to limit this
375 search. */
376
377 static unsigned int heuristic_fence_post = 0;
378
379 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
380 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
381 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
382 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
383 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
384 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
385 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
386 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
387 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
388 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
389 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
390 #define _PROC_MAGIC_ 0x0F0F0F0F
391 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
392 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
393
394 struct linked_proc_info
395 {
396 struct mips_extra_func_info info;
397 struct linked_proc_info *next;
398 }
399 *linked_proc_desc_table = NULL;
400
401 void
402 mips_print_extra_frame_info (struct frame_info *fi)
403 {
404 if (fi
405 && fi->extra_info
406 && fi->extra_info->proc_desc
407 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
408 printf_filtered (" frame pointer is at %s+%s\n",
409 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
410 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
411 }
412
413 /* Convert between RAW and VIRTUAL registers. The RAW register size
414 defines the remote-gdb packet. */
415
416 static int mips64_transfers_32bit_regs_p = 0;
417
418 int
419 mips_register_raw_size (int reg_nr)
420 {
421 if (mips64_transfers_32bit_regs_p)
422 return REGISTER_VIRTUAL_SIZE (reg_nr);
423 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
424 && FP_REGISTER_DOUBLE)
425 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
426 registers. */
427 return 8;
428 else
429 return MIPS_REGSIZE;
430 }
431
432 int
433 mips_register_convertible (int reg_nr)
434 {
435 if (mips64_transfers_32bit_regs_p)
436 return 0;
437 else
438 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
439 }
440
441 void
442 mips_register_convert_to_virtual (int n, struct type *virtual_type,
443 char *raw_buf, char *virt_buf)
444 {
445 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
446 memcpy (virt_buf,
447 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
448 TYPE_LENGTH (virtual_type));
449 else
450 memcpy (virt_buf,
451 raw_buf,
452 TYPE_LENGTH (virtual_type));
453 }
454
455 void
456 mips_register_convert_to_raw (struct type *virtual_type, int n,
457 char *virt_buf, char *raw_buf)
458 {
459 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
460 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
461 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
462 virt_buf,
463 TYPE_LENGTH (virtual_type));
464 else
465 memcpy (raw_buf,
466 virt_buf,
467 TYPE_LENGTH (virtual_type));
468 }
469
470 /* Should the upper word of 64-bit addresses be zeroed? */
471 enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
472
473 static int
474 mips_mask_address_p (void)
475 {
476 switch (mask_address_var)
477 {
478 case CMD_AUTO_BOOLEAN_TRUE:
479 return 1;
480 case CMD_AUTO_BOOLEAN_FALSE:
481 return 0;
482 break;
483 case CMD_AUTO_BOOLEAN_AUTO:
484 return MIPS_DEFAULT_MASK_ADDRESS_P;
485 default:
486 internal_error (__FILE__, __LINE__,
487 "mips_mask_address_p: bad switch");
488 return -1;
489 }
490 }
491
492 static void
493 show_mask_address (char *cmd, int from_tty)
494 {
495 switch (mask_address_var)
496 {
497 case CMD_AUTO_BOOLEAN_TRUE:
498 printf_filtered ("The 32 bit mips address mask is enabled\n");
499 break;
500 case CMD_AUTO_BOOLEAN_FALSE:
501 printf_filtered ("The 32 bit mips address mask is disabled\n");
502 break;
503 case CMD_AUTO_BOOLEAN_AUTO:
504 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
505 mips_mask_address_p () ? "enabled" : "disabled");
506 break;
507 default:
508 internal_error (__FILE__, __LINE__,
509 "show_mask_address: bad switch");
510 break;
511 }
512 }
513
514 /* Should call_function allocate stack space for a struct return? */
515 int
516 mips_use_struct_convention (int gcc_p, struct type *type)
517 {
518 if (MIPS_EABI)
519 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
520 else
521 return 1; /* Structures are returned by ref in extra arg0 */
522 }
523
524 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
525
526 static int
527 pc_is_mips16 (bfd_vma memaddr)
528 {
529 struct minimal_symbol *sym;
530
531 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
532 if (IS_MIPS16_ADDR (memaddr))
533 return 1;
534
535 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
536 the high bit of the info field. Use this to decide if the function is
537 MIPS16 or normal MIPS. */
538 sym = lookup_minimal_symbol_by_pc (memaddr);
539 if (sym)
540 return MSYMBOL_IS_SPECIAL (sym);
541 else
542 return 0;
543 }
544
545 /* MIPS believes that the PC has a sign extended value. Perhaphs the
546 all registers should be sign extended for simplicity? */
547
548 static CORE_ADDR
549 mips_read_pc (ptid_t ptid)
550 {
551 return read_signed_register_pid (PC_REGNUM, ptid);
552 }
553
554 /* This returns the PC of the first inst after the prologue. If we can't
555 find the prologue, then return 0. */
556
557 static CORE_ADDR
558 after_prologue (CORE_ADDR pc,
559 mips_extra_func_info_t proc_desc)
560 {
561 struct symtab_and_line sal;
562 CORE_ADDR func_addr, func_end;
563
564 if (!proc_desc)
565 proc_desc = find_proc_desc (pc, NULL);
566
567 if (proc_desc)
568 {
569 /* If function is frameless, then we need to do it the hard way. I
570 strongly suspect that frameless always means prologueless... */
571 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
572 && PROC_FRAME_OFFSET (proc_desc) == 0)
573 return 0;
574 }
575
576 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
577 return 0; /* Unknown */
578
579 sal = find_pc_line (func_addr, 0);
580
581 if (sal.end < func_end)
582 return sal.end;
583
584 /* The line after the prologue is after the end of the function. In this
585 case, tell the caller to find the prologue the hard way. */
586
587 return 0;
588 }
589
590 /* Decode a MIPS32 instruction that saves a register in the stack, and
591 set the appropriate bit in the general register mask or float register mask
592 to indicate which register is saved. This is a helper function
593 for mips_find_saved_regs. */
594
595 static void
596 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
597 unsigned long *float_mask)
598 {
599 int reg;
600
601 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
602 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
603 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
604 {
605 /* It might be possible to use the instruction to
606 find the offset, rather than the code below which
607 is based on things being in a certain order in the
608 frame, but figuring out what the instruction's offset
609 is relative to might be a little tricky. */
610 reg = (inst & 0x001f0000) >> 16;
611 *gen_mask |= (1 << reg);
612 }
613 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
614 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
615 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
616
617 {
618 reg = ((inst & 0x001f0000) >> 16);
619 *float_mask |= (1 << reg);
620 }
621 }
622
623 /* Decode a MIPS16 instruction that saves a register in the stack, and
624 set the appropriate bit in the general register or float register mask
625 to indicate which register is saved. This is a helper function
626 for mips_find_saved_regs. */
627
628 static void
629 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
630 {
631 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
632 {
633 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
634 *gen_mask |= (1 << reg);
635 }
636 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
637 {
638 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
639 *gen_mask |= (1 << reg);
640 }
641 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
642 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
643 *gen_mask |= (1 << RA_REGNUM);
644 }
645
646
647 /* Fetch and return instruction from the specified location. If the PC
648 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
649
650 static t_inst
651 mips_fetch_instruction (CORE_ADDR addr)
652 {
653 char buf[MIPS_INSTLEN];
654 int instlen;
655 int status;
656
657 if (pc_is_mips16 (addr))
658 {
659 instlen = MIPS16_INSTLEN;
660 addr = UNMAKE_MIPS16_ADDR (addr);
661 }
662 else
663 instlen = MIPS_INSTLEN;
664 status = read_memory_nobpt (addr, buf, instlen);
665 if (status)
666 memory_error (status, addr);
667 return extract_unsigned_integer (buf, instlen);
668 }
669
670
671 /* These the fields of 32 bit mips instructions */
672 #define mips32_op(x) (x >> 26)
673 #define itype_op(x) (x >> 26)
674 #define itype_rs(x) ((x >> 21) & 0x1f)
675 #define itype_rt(x) ((x >> 16) & 0x1f)
676 #define itype_immediate(x) (x & 0xffff)
677
678 #define jtype_op(x) (x >> 26)
679 #define jtype_target(x) (x & 0x03ffffff)
680
681 #define rtype_op(x) (x >> 26)
682 #define rtype_rs(x) ((x >> 21) & 0x1f)
683 #define rtype_rt(x) ((x >> 16) & 0x1f)
684 #define rtype_rd(x) ((x >> 11) & 0x1f)
685 #define rtype_shamt(x) ((x >> 6) & 0x1f)
686 #define rtype_funct(x) (x & 0x3f)
687
688 static CORE_ADDR
689 mips32_relative_offset (unsigned long inst)
690 {
691 long x;
692 x = itype_immediate (inst);
693 if (x & 0x8000) /* sign bit set */
694 {
695 x |= 0xffff0000; /* sign extension */
696 }
697 x = x << 2;
698 return x;
699 }
700
701 /* Determine whate to set a single step breakpoint while considering
702 branch prediction */
703 CORE_ADDR
704 mips32_next_pc (CORE_ADDR pc)
705 {
706 unsigned long inst;
707 int op;
708 inst = mips_fetch_instruction (pc);
709 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
710 {
711 if (itype_op (inst) >> 2 == 5)
712 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
713 {
714 op = (itype_op (inst) & 0x03);
715 switch (op)
716 {
717 case 0: /* BEQL */
718 goto equal_branch;
719 case 1: /* BNEL */
720 goto neq_branch;
721 case 2: /* BLEZL */
722 goto less_branch;
723 case 3: /* BGTZ */
724 goto greater_branch;
725 default:
726 pc += 4;
727 }
728 }
729 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
730 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
731 {
732 int tf = itype_rt (inst) & 0x01;
733 int cnum = itype_rt (inst) >> 2;
734 int fcrcs = read_signed_register (FCRCS_REGNUM);
735 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
736
737 if (((cond >> cnum) & 0x01) == tf)
738 pc += mips32_relative_offset (inst) + 4;
739 else
740 pc += 8;
741 }
742 else
743 pc += 4; /* Not a branch, next instruction is easy */
744 }
745 else
746 { /* This gets way messy */
747
748 /* Further subdivide into SPECIAL, REGIMM and other */
749 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
750 {
751 case 0: /* SPECIAL */
752 op = rtype_funct (inst);
753 switch (op)
754 {
755 case 8: /* JR */
756 case 9: /* JALR */
757 /* Set PC to that address */
758 pc = read_signed_register (rtype_rs (inst));
759 break;
760 default:
761 pc += 4;
762 }
763
764 break; /* end SPECIAL */
765 case 1: /* REGIMM */
766 {
767 op = itype_rt (inst); /* branch condition */
768 switch (op)
769 {
770 case 0: /* BLTZ */
771 case 2: /* BLTZL */
772 case 16: /* BLTZAL */
773 case 18: /* BLTZALL */
774 less_branch:
775 if (read_signed_register (itype_rs (inst)) < 0)
776 pc += mips32_relative_offset (inst) + 4;
777 else
778 pc += 8; /* after the delay slot */
779 break;
780 case 1: /* BGEZ */
781 case 3: /* BGEZL */
782 case 17: /* BGEZAL */
783 case 19: /* BGEZALL */
784 greater_equal_branch:
785 if (read_signed_register (itype_rs (inst)) >= 0)
786 pc += mips32_relative_offset (inst) + 4;
787 else
788 pc += 8; /* after the delay slot */
789 break;
790 /* All of the other instructions in the REGIMM category */
791 default:
792 pc += 4;
793 }
794 }
795 break; /* end REGIMM */
796 case 2: /* J */
797 case 3: /* JAL */
798 {
799 unsigned long reg;
800 reg = jtype_target (inst) << 2;
801 /* Upper four bits get never changed... */
802 pc = reg + ((pc + 4) & 0xf0000000);
803 }
804 break;
805 /* FIXME case JALX : */
806 {
807 unsigned long reg;
808 reg = jtype_target (inst) << 2;
809 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
810 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
811 }
812 break; /* The new PC will be alternate mode */
813 case 4: /* BEQ, BEQL */
814 equal_branch:
815 if (read_signed_register (itype_rs (inst)) ==
816 read_signed_register (itype_rt (inst)))
817 pc += mips32_relative_offset (inst) + 4;
818 else
819 pc += 8;
820 break;
821 case 5: /* BNE, BNEL */
822 neq_branch:
823 if (read_signed_register (itype_rs (inst)) !=
824 read_signed_register (itype_rt (inst)))
825 pc += mips32_relative_offset (inst) + 4;
826 else
827 pc += 8;
828 break;
829 case 6: /* BLEZ, BLEZL */
830 less_zero_branch:
831 if (read_signed_register (itype_rs (inst) <= 0))
832 pc += mips32_relative_offset (inst) + 4;
833 else
834 pc += 8;
835 break;
836 case 7:
837 default:
838 greater_branch: /* BGTZ, BGTZL */
839 if (read_signed_register (itype_rs (inst) > 0))
840 pc += mips32_relative_offset (inst) + 4;
841 else
842 pc += 8;
843 break;
844 } /* switch */
845 } /* else */
846 return pc;
847 } /* mips32_next_pc */
848
849 /* Decoding the next place to set a breakpoint is irregular for the
850 mips 16 variant, but fortunately, there fewer instructions. We have to cope
851 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
852 We dont want to set a single step instruction on the extend instruction
853 either.
854 */
855
856 /* Lots of mips16 instruction formats */
857 /* Predicting jumps requires itype,ritype,i8type
858 and their extensions extItype,extritype,extI8type
859 */
860 enum mips16_inst_fmts
861 {
862 itype, /* 0 immediate 5,10 */
863 ritype, /* 1 5,3,8 */
864 rrtype, /* 2 5,3,3,5 */
865 rritype, /* 3 5,3,3,5 */
866 rrrtype, /* 4 5,3,3,3,2 */
867 rriatype, /* 5 5,3,3,1,4 */
868 shifttype, /* 6 5,3,3,3,2 */
869 i8type, /* 7 5,3,8 */
870 i8movtype, /* 8 5,3,3,5 */
871 i8mov32rtype, /* 9 5,3,5,3 */
872 i64type, /* 10 5,3,8 */
873 ri64type, /* 11 5,3,3,5 */
874 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
875 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
876 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
877 extRRItype, /* 15 5,5,5,5,3,3,5 */
878 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
879 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
880 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
881 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
882 extRi64type, /* 20 5,6,5,5,3,3,5 */
883 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
884 };
885 /* I am heaping all the fields of the formats into one structure and
886 then, only the fields which are involved in instruction extension */
887 struct upk_mips16
888 {
889 CORE_ADDR offset;
890 unsigned int regx; /* Function in i8 type */
891 unsigned int regy;
892 };
893
894
895 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
896 for the bits which make up the immediatate extension. */
897
898 static CORE_ADDR
899 extended_offset (unsigned int extension)
900 {
901 CORE_ADDR value;
902 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
903 value = value << 6;
904 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
905 value = value << 5;
906 value |= extension & 0x01f; /* extract 4:0 */
907 return value;
908 }
909
910 /* Only call this function if you know that this is an extendable
911 instruction, It wont malfunction, but why make excess remote memory references?
912 If the immediate operands get sign extended or somthing, do it after
913 the extension is performed.
914 */
915 /* FIXME: Every one of these cases needs to worry about sign extension
916 when the offset is to be used in relative addressing */
917
918
919 static unsigned int
920 fetch_mips_16 (CORE_ADDR pc)
921 {
922 char buf[8];
923 pc &= 0xfffffffe; /* clear the low order bit */
924 target_read_memory (pc, buf, 2);
925 return extract_unsigned_integer (buf, 2);
926 }
927
928 static void
929 unpack_mips16 (CORE_ADDR pc,
930 unsigned int extension,
931 unsigned int inst,
932 enum mips16_inst_fmts insn_format,
933 struct upk_mips16 *upk)
934 {
935 CORE_ADDR offset;
936 int regx;
937 int regy;
938 switch (insn_format)
939 {
940 case itype:
941 {
942 CORE_ADDR value;
943 if (extension)
944 {
945 value = extended_offset (extension);
946 value = value << 11; /* rom for the original value */
947 value |= inst & 0x7ff; /* eleven bits from instruction */
948 }
949 else
950 {
951 value = inst & 0x7ff;
952 /* FIXME : Consider sign extension */
953 }
954 offset = value;
955 regx = -1;
956 regy = -1;
957 }
958 break;
959 case ritype:
960 case i8type:
961 { /* A register identifier and an offset */
962 /* Most of the fields are the same as I type but the
963 immediate value is of a different length */
964 CORE_ADDR value;
965 if (extension)
966 {
967 value = extended_offset (extension);
968 value = value << 8; /* from the original instruction */
969 value |= inst & 0xff; /* eleven bits from instruction */
970 regx = (extension >> 8) & 0x07; /* or i8 funct */
971 if (value & 0x4000) /* test the sign bit , bit 26 */
972 {
973 value &= ~0x3fff; /* remove the sign bit */
974 value = -value;
975 }
976 }
977 else
978 {
979 value = inst & 0xff; /* 8 bits */
980 regx = (inst >> 8) & 0x07; /* or i8 funct */
981 /* FIXME: Do sign extension , this format needs it */
982 if (value & 0x80) /* THIS CONFUSES ME */
983 {
984 value &= 0xef; /* remove the sign bit */
985 value = -value;
986 }
987 }
988 offset = value;
989 regy = -1;
990 break;
991 }
992 case jalxtype:
993 {
994 unsigned long value;
995 unsigned int nexthalf;
996 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
997 value = value << 16;
998 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
999 value |= nexthalf;
1000 offset = value;
1001 regx = -1;
1002 regy = -1;
1003 break;
1004 }
1005 default:
1006 internal_error (__FILE__, __LINE__,
1007 "bad switch");
1008 }
1009 upk->offset = offset;
1010 upk->regx = regx;
1011 upk->regy = regy;
1012 }
1013
1014
1015 static CORE_ADDR
1016 add_offset_16 (CORE_ADDR pc, int offset)
1017 {
1018 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1019
1020 }
1021
1022 static CORE_ADDR
1023 extended_mips16_next_pc (CORE_ADDR pc,
1024 unsigned int extension,
1025 unsigned int insn)
1026 {
1027 int op = (insn >> 11);
1028 switch (op)
1029 {
1030 case 2: /* Branch */
1031 {
1032 CORE_ADDR offset;
1033 struct upk_mips16 upk;
1034 unpack_mips16 (pc, extension, insn, itype, &upk);
1035 offset = upk.offset;
1036 if (offset & 0x800)
1037 {
1038 offset &= 0xeff;
1039 offset = -offset;
1040 }
1041 pc += (offset << 1) + 2;
1042 break;
1043 }
1044 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1045 {
1046 struct upk_mips16 upk;
1047 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1048 pc = add_offset_16 (pc, upk.offset);
1049 if ((insn >> 10) & 0x01) /* Exchange mode */
1050 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1051 else
1052 pc |= 0x01;
1053 break;
1054 }
1055 case 4: /* beqz */
1056 {
1057 struct upk_mips16 upk;
1058 int reg;
1059 unpack_mips16 (pc, extension, insn, ritype, &upk);
1060 reg = read_signed_register (upk.regx);
1061 if (reg == 0)
1062 pc += (upk.offset << 1) + 2;
1063 else
1064 pc += 2;
1065 break;
1066 }
1067 case 5: /* bnez */
1068 {
1069 struct upk_mips16 upk;
1070 int reg;
1071 unpack_mips16 (pc, extension, insn, ritype, &upk);
1072 reg = read_signed_register (upk.regx);
1073 if (reg != 0)
1074 pc += (upk.offset << 1) + 2;
1075 else
1076 pc += 2;
1077 break;
1078 }
1079 case 12: /* I8 Formats btez btnez */
1080 {
1081 struct upk_mips16 upk;
1082 int reg;
1083 unpack_mips16 (pc, extension, insn, i8type, &upk);
1084 /* upk.regx contains the opcode */
1085 reg = read_signed_register (24); /* Test register is 24 */
1086 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1087 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1088 /* pc = add_offset_16(pc,upk.offset) ; */
1089 pc += (upk.offset << 1) + 2;
1090 else
1091 pc += 2;
1092 break;
1093 }
1094 case 29: /* RR Formats JR, JALR, JALR-RA */
1095 {
1096 struct upk_mips16 upk;
1097 /* upk.fmt = rrtype; */
1098 op = insn & 0x1f;
1099 if (op == 0)
1100 {
1101 int reg;
1102 upk.regx = (insn >> 8) & 0x07;
1103 upk.regy = (insn >> 5) & 0x07;
1104 switch (upk.regy)
1105 {
1106 case 0:
1107 reg = upk.regx;
1108 break;
1109 case 1:
1110 reg = 31;
1111 break; /* Function return instruction */
1112 case 2:
1113 reg = upk.regx;
1114 break;
1115 default:
1116 reg = 31;
1117 break; /* BOGUS Guess */
1118 }
1119 pc = read_signed_register (reg);
1120 }
1121 else
1122 pc += 2;
1123 break;
1124 }
1125 case 30:
1126 /* This is an instruction extension. Fetch the real instruction
1127 (which follows the extension) and decode things based on
1128 that. */
1129 {
1130 pc += 2;
1131 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1132 break;
1133 }
1134 default:
1135 {
1136 pc += 2;
1137 break;
1138 }
1139 }
1140 return pc;
1141 }
1142
1143 CORE_ADDR
1144 mips16_next_pc (CORE_ADDR pc)
1145 {
1146 unsigned int insn = fetch_mips_16 (pc);
1147 return extended_mips16_next_pc (pc, 0, insn);
1148 }
1149
1150 /* The mips_next_pc function supports single_step when the remote
1151 target monitor or stub is not developed enough to do a single_step.
1152 It works by decoding the current instruction and predicting where a
1153 branch will go. This isnt hard because all the data is available.
1154 The MIPS32 and MIPS16 variants are quite different */
1155 CORE_ADDR
1156 mips_next_pc (CORE_ADDR pc)
1157 {
1158 if (pc & 0x01)
1159 return mips16_next_pc (pc);
1160 else
1161 return mips32_next_pc (pc);
1162 }
1163
1164 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1165 NULL). */
1166
1167 void
1168 mips_find_saved_regs (struct frame_info *fci)
1169 {
1170 int ireg;
1171 CORE_ADDR reg_position;
1172 /* r0 bit means kernel trap */
1173 int kernel_trap;
1174 /* What registers have been saved? Bitmasks. */
1175 unsigned long gen_mask, float_mask;
1176 mips_extra_func_info_t proc_desc;
1177 t_inst inst;
1178
1179 frame_saved_regs_zalloc (fci);
1180
1181 /* If it is the frame for sigtramp, the saved registers are located
1182 in a sigcontext structure somewhere on the stack.
1183 If the stack layout for sigtramp changes we might have to change these
1184 constants and the companion fixup_sigtramp in mdebugread.c */
1185 #ifndef SIGFRAME_BASE
1186 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1187 above the sigtramp frame. */
1188 #define SIGFRAME_BASE MIPS_REGSIZE
1189 /* FIXME! Are these correct?? */
1190 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1191 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1192 #define SIGFRAME_FPREGSAVE_OFF \
1193 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1194 #endif
1195 #ifndef SIGFRAME_REG_SIZE
1196 /* FIXME! Is this correct?? */
1197 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1198 #endif
1199 if (fci->signal_handler_caller)
1200 {
1201 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1202 {
1203 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1204 + ireg * SIGFRAME_REG_SIZE;
1205 fci->saved_regs[ireg] = reg_position;
1206 }
1207 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1208 {
1209 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1210 + ireg * SIGFRAME_REG_SIZE;
1211 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1212 }
1213 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1214 return;
1215 }
1216
1217 proc_desc = fci->extra_info->proc_desc;
1218 if (proc_desc == NULL)
1219 /* I'm not sure how/whether this can happen. Normally when we can't
1220 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1221 and set the saved_regs right away. */
1222 return;
1223
1224 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1225 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1226 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1227
1228 if ( /* In any frame other than the innermost or a frame interrupted by
1229 a signal, we assume that all registers have been saved.
1230 This assumes that all register saves in a function happen before
1231 the first function call. */
1232 (fci->next == NULL || fci->next->signal_handler_caller)
1233
1234 /* In a dummy frame we know exactly where things are saved. */
1235 && !PROC_DESC_IS_DUMMY (proc_desc)
1236
1237 /* Don't bother unless we are inside a function prologue. Outside the
1238 prologue, we know where everything is. */
1239
1240 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1241
1242 /* Not sure exactly what kernel_trap means, but if it means
1243 the kernel saves the registers without a prologue doing it,
1244 we better not examine the prologue to see whether registers
1245 have been saved yet. */
1246 && !kernel_trap)
1247 {
1248 /* We need to figure out whether the registers that the proc_desc
1249 claims are saved have been saved yet. */
1250
1251 CORE_ADDR addr;
1252
1253 /* Bitmasks; set if we have found a save for the register. */
1254 unsigned long gen_save_found = 0;
1255 unsigned long float_save_found = 0;
1256 int instlen;
1257
1258 /* If the address is odd, assume this is MIPS16 code. */
1259 addr = PROC_LOW_ADDR (proc_desc);
1260 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1261
1262 /* Scan through this function's instructions preceding the current
1263 PC, and look for those that save registers. */
1264 while (addr < fci->pc)
1265 {
1266 inst = mips_fetch_instruction (addr);
1267 if (pc_is_mips16 (addr))
1268 mips16_decode_reg_save (inst, &gen_save_found);
1269 else
1270 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1271 addr += instlen;
1272 }
1273 gen_mask = gen_save_found;
1274 float_mask = float_save_found;
1275 }
1276
1277 /* Fill in the offsets for the registers which gen_mask says
1278 were saved. */
1279 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1280 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1281 if (gen_mask & 0x80000000)
1282 {
1283 fci->saved_regs[ireg] = reg_position;
1284 reg_position -= MIPS_SAVED_REGSIZE;
1285 }
1286
1287 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1288 of that normally used by gcc. Therefore, we have to fetch the first
1289 instruction of the function, and if it's an entry instruction that
1290 saves $s0 or $s1, correct their saved addresses. */
1291 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1292 {
1293 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1294 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1295 {
1296 int reg;
1297 int sreg_count = (inst >> 6) & 3;
1298
1299 /* Check if the ra register was pushed on the stack. */
1300 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1301 if (inst & 0x20)
1302 reg_position -= MIPS_SAVED_REGSIZE;
1303
1304 /* Check if the s0 and s1 registers were pushed on the stack. */
1305 for (reg = 16; reg < sreg_count + 16; reg++)
1306 {
1307 fci->saved_regs[reg] = reg_position;
1308 reg_position -= MIPS_SAVED_REGSIZE;
1309 }
1310 }
1311 }
1312
1313 /* Fill in the offsets for the registers which float_mask says
1314 were saved. */
1315 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1316
1317 /* The freg_offset points to where the first *double* register
1318 is saved. So skip to the high-order word. */
1319 if (!GDB_TARGET_IS_MIPS64)
1320 reg_position += MIPS_SAVED_REGSIZE;
1321
1322 /* Fill in the offsets for the float registers which float_mask says
1323 were saved. */
1324 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1325 if (float_mask & 0x80000000)
1326 {
1327 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1328 reg_position -= MIPS_SAVED_REGSIZE;
1329 }
1330
1331 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1332 }
1333
1334 static CORE_ADDR
1335 read_next_frame_reg (struct frame_info *fi, int regno)
1336 {
1337 for (; fi; fi = fi->next)
1338 {
1339 /* We have to get the saved sp from the sigcontext
1340 if it is a signal handler frame. */
1341 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1342 return fi->frame;
1343 else
1344 {
1345 if (fi->saved_regs == NULL)
1346 mips_find_saved_regs (fi);
1347 if (fi->saved_regs[regno])
1348 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1349 }
1350 }
1351 return read_signed_register (regno);
1352 }
1353
1354 /* mips_addr_bits_remove - remove useless address bits */
1355
1356 static CORE_ADDR
1357 mips_addr_bits_remove (CORE_ADDR addr)
1358 {
1359 if (GDB_TARGET_IS_MIPS64)
1360 {
1361 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1362 {
1363 /* This hack is a work-around for existing boards using
1364 PMON, the simulator, and any other 64-bit targets that
1365 doesn't have true 64-bit addressing. On these targets,
1366 the upper 32 bits of addresses are ignored by the
1367 hardware. Thus, the PC or SP are likely to have been
1368 sign extended to all 1s by instruction sequences that
1369 load 32-bit addresses. For example, a typical piece of
1370 code that loads an address is this:
1371 lui $r2, <upper 16 bits>
1372 ori $r2, <lower 16 bits>
1373 But the lui sign-extends the value such that the upper 32
1374 bits may be all 1s. The workaround is simply to mask off
1375 these bits. In the future, gcc may be changed to support
1376 true 64-bit addressing, and this masking will have to be
1377 disabled. */
1378 addr &= (CORE_ADDR) 0xffffffff;
1379 }
1380 }
1381 else if (mips_mask_address_p ())
1382 {
1383 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1384 masking off bits, instead, the actual target should be asking
1385 for the address to be converted to a valid pointer. */
1386 /* Even when GDB is configured for some 32-bit targets
1387 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1388 so CORE_ADDR is 64 bits. So we still have to mask off
1389 useless bits from addresses. */
1390 addr &= (CORE_ADDR) 0xffffffff;
1391 }
1392 return addr;
1393 }
1394
1395 /* mips_software_single_step() is called just before we want to resume
1396 the inferior, if we want to single-step it but there is no hardware
1397 or kernel single-step support (MIPS on Linux for example). We find
1398 the target of the coming instruction and breakpoint it.
1399
1400 single_step is also called just after the inferior stops. If we had
1401 set up a simulated single-step, we undo our damage. */
1402
1403 void
1404 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1405 {
1406 static CORE_ADDR next_pc;
1407 typedef char binsn_quantum[BREAKPOINT_MAX];
1408 static binsn_quantum break_mem;
1409 CORE_ADDR pc;
1410
1411 if (insert_breakpoints_p)
1412 {
1413 pc = read_register (PC_REGNUM);
1414 next_pc = mips_next_pc (pc);
1415
1416 target_insert_breakpoint (next_pc, break_mem);
1417 }
1418 else
1419 target_remove_breakpoint (next_pc, break_mem);
1420 }
1421
1422 static void
1423 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1424 {
1425 CORE_ADDR pc, tmp;
1426
1427 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1428 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1429 tmp = mips_skip_stub (pc);
1430 prev->pc = tmp ? tmp : pc;
1431 }
1432
1433
1434 CORE_ADDR
1435 mips_frame_saved_pc (struct frame_info *frame)
1436 {
1437 CORE_ADDR saved_pc;
1438 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1439 /* We have to get the saved pc from the sigcontext
1440 if it is a signal handler frame. */
1441 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1442 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1443
1444 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1445 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1446 else
1447 saved_pc = read_next_frame_reg (frame, pcreg);
1448
1449 return ADDR_BITS_REMOVE (saved_pc);
1450 }
1451
1452 static struct mips_extra_func_info temp_proc_desc;
1453 static CORE_ADDR temp_saved_regs[NUM_REGS];
1454
1455 /* Set a register's saved stack address in temp_saved_regs. If an address
1456 has already been set for this register, do nothing; this way we will
1457 only recognize the first save of a given register in a function prologue.
1458 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1459
1460 static void
1461 set_reg_offset (int regno, CORE_ADDR offset)
1462 {
1463 if (temp_saved_regs[regno] == 0)
1464 temp_saved_regs[regno] = offset;
1465 }
1466
1467
1468 /* Test whether the PC points to the return instruction at the
1469 end of a function. */
1470
1471 static int
1472 mips_about_to_return (CORE_ADDR pc)
1473 {
1474 if (pc_is_mips16 (pc))
1475 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1476 generates a "jr $ra"; other times it generates code to load
1477 the return address from the stack to an accessible register (such
1478 as $a3), then a "jr" using that register. This second case
1479 is almost impossible to distinguish from an indirect jump
1480 used for switch statements, so we don't even try. */
1481 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1482 else
1483 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1484 }
1485
1486
1487 /* This fencepost looks highly suspicious to me. Removing it also
1488 seems suspicious as it could affect remote debugging across serial
1489 lines. */
1490
1491 static CORE_ADDR
1492 heuristic_proc_start (CORE_ADDR pc)
1493 {
1494 CORE_ADDR start_pc;
1495 CORE_ADDR fence;
1496 int instlen;
1497 int seen_adjsp = 0;
1498
1499 pc = ADDR_BITS_REMOVE (pc);
1500 start_pc = pc;
1501 fence = start_pc - heuristic_fence_post;
1502 if (start_pc == 0)
1503 return 0;
1504
1505 if (heuristic_fence_post == UINT_MAX
1506 || fence < VM_MIN_ADDRESS)
1507 fence = VM_MIN_ADDRESS;
1508
1509 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1510
1511 /* search back for previous return */
1512 for (start_pc -= instlen;; start_pc -= instlen)
1513 if (start_pc < fence)
1514 {
1515 /* It's not clear to me why we reach this point when
1516 stop_soon_quietly, but with this test, at least we
1517 don't print out warnings for every child forked (eg, on
1518 decstation). 22apr93 rich@cygnus.com. */
1519 if (!stop_soon_quietly)
1520 {
1521 static int blurb_printed = 0;
1522
1523 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1524 paddr_nz (pc));
1525
1526 if (!blurb_printed)
1527 {
1528 /* This actually happens frequently in embedded
1529 development, when you first connect to a board
1530 and your stack pointer and pc are nowhere in
1531 particular. This message needs to give people
1532 in that situation enough information to
1533 determine that it's no big deal. */
1534 printf_filtered ("\n\
1535 GDB is unable to find the start of the function at 0x%s\n\
1536 and thus can't determine the size of that function's stack frame.\n\
1537 This means that GDB may be unable to access that stack frame, or\n\
1538 the frames below it.\n\
1539 This problem is most likely caused by an invalid program counter or\n\
1540 stack pointer.\n\
1541 However, if you think GDB should simply search farther back\n\
1542 from 0x%s for code which looks like the beginning of a\n\
1543 function, you can increase the range of the search using the `set\n\
1544 heuristic-fence-post' command.\n",
1545 paddr_nz (pc), paddr_nz (pc));
1546 blurb_printed = 1;
1547 }
1548 }
1549
1550 return 0;
1551 }
1552 else if (pc_is_mips16 (start_pc))
1553 {
1554 unsigned short inst;
1555
1556 /* On MIPS16, any one of the following is likely to be the
1557 start of a function:
1558 entry
1559 addiu sp,-n
1560 daddiu sp,-n
1561 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1562 inst = mips_fetch_instruction (start_pc);
1563 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1564 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1565 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1566 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1567 break;
1568 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1569 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1570 seen_adjsp = 1;
1571 else
1572 seen_adjsp = 0;
1573 }
1574 else if (mips_about_to_return (start_pc))
1575 {
1576 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1577 break;
1578 }
1579
1580 return start_pc;
1581 }
1582
1583 /* Fetch the immediate value from a MIPS16 instruction.
1584 If the previous instruction was an EXTEND, use it to extend
1585 the upper bits of the immediate value. This is a helper function
1586 for mips16_heuristic_proc_desc. */
1587
1588 static int
1589 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1590 unsigned short inst, /* current instruction */
1591 int nbits, /* number of bits in imm field */
1592 int scale, /* scale factor to be applied to imm */
1593 int is_signed) /* is the imm field signed? */
1594 {
1595 int offset;
1596
1597 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1598 {
1599 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1600 if (offset & 0x8000) /* check for negative extend */
1601 offset = 0 - (0x10000 - (offset & 0xffff));
1602 return offset | (inst & 0x1f);
1603 }
1604 else
1605 {
1606 int max_imm = 1 << nbits;
1607 int mask = max_imm - 1;
1608 int sign_bit = max_imm >> 1;
1609
1610 offset = inst & mask;
1611 if (is_signed && (offset & sign_bit))
1612 offset = 0 - (max_imm - offset);
1613 return offset * scale;
1614 }
1615 }
1616
1617
1618 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1619 stream from start_pc to limit_pc. */
1620
1621 static void
1622 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1623 struct frame_info *next_frame, CORE_ADDR sp)
1624 {
1625 CORE_ADDR cur_pc;
1626 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1627 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1628 unsigned inst = 0; /* current instruction */
1629 unsigned entry_inst = 0; /* the entry instruction */
1630 int reg, offset;
1631
1632 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1633 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1634
1635 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1636 {
1637 /* Save the previous instruction. If it's an EXTEND, we'll extract
1638 the immediate offset extension from it in mips16_get_imm. */
1639 prev_inst = inst;
1640
1641 /* Fetch and decode the instruction. */
1642 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1643 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1644 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1645 {
1646 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1647 if (offset < 0) /* negative stack adjustment? */
1648 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1649 else
1650 /* Exit loop if a positive stack adjustment is found, which
1651 usually means that the stack cleanup code in the function
1652 epilogue is reached. */
1653 break;
1654 }
1655 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1656 {
1657 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1658 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1659 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1660 set_reg_offset (reg, sp + offset);
1661 }
1662 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1663 {
1664 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1665 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1666 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1667 set_reg_offset (reg, sp + offset);
1668 }
1669 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1670 {
1671 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1672 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1673 set_reg_offset (RA_REGNUM, sp + offset);
1674 }
1675 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1676 {
1677 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1678 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1679 set_reg_offset (RA_REGNUM, sp + offset);
1680 }
1681 else if (inst == 0x673d) /* move $s1, $sp */
1682 {
1683 frame_addr = sp;
1684 PROC_FRAME_REG (&temp_proc_desc) = 17;
1685 }
1686 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1687 {
1688 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1689 frame_addr = sp + offset;
1690 PROC_FRAME_REG (&temp_proc_desc) = 17;
1691 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1692 }
1693 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1694 {
1695 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1696 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1697 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1698 set_reg_offset (reg, frame_addr + offset);
1699 }
1700 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1701 {
1702 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1703 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1704 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1705 set_reg_offset (reg, frame_addr + offset);
1706 }
1707 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1708 entry_inst = inst; /* save for later processing */
1709 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1710 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1711 }
1712
1713 /* The entry instruction is typically the first instruction in a function,
1714 and it stores registers at offsets relative to the value of the old SP
1715 (before the prologue). But the value of the sp parameter to this
1716 function is the new SP (after the prologue has been executed). So we
1717 can't calculate those offsets until we've seen the entire prologue,
1718 and can calculate what the old SP must have been. */
1719 if (entry_inst != 0)
1720 {
1721 int areg_count = (entry_inst >> 8) & 7;
1722 int sreg_count = (entry_inst >> 6) & 3;
1723
1724 /* The entry instruction always subtracts 32 from the SP. */
1725 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1726
1727 /* Now we can calculate what the SP must have been at the
1728 start of the function prologue. */
1729 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1730
1731 /* Check if a0-a3 were saved in the caller's argument save area. */
1732 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1733 {
1734 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1735 set_reg_offset (reg, sp + offset);
1736 offset += MIPS_SAVED_REGSIZE;
1737 }
1738
1739 /* Check if the ra register was pushed on the stack. */
1740 offset = -4;
1741 if (entry_inst & 0x20)
1742 {
1743 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1744 set_reg_offset (RA_REGNUM, sp + offset);
1745 offset -= MIPS_SAVED_REGSIZE;
1746 }
1747
1748 /* Check if the s0 and s1 registers were pushed on the stack. */
1749 for (reg = 16; reg < sreg_count + 16; reg++)
1750 {
1751 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1752 set_reg_offset (reg, sp + offset);
1753 offset -= MIPS_SAVED_REGSIZE;
1754 }
1755 }
1756 }
1757
1758 static void
1759 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1760 struct frame_info *next_frame, CORE_ADDR sp)
1761 {
1762 CORE_ADDR cur_pc;
1763 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1764 restart:
1765 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1766 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1767 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1768 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1769 {
1770 unsigned long inst, high_word, low_word;
1771 int reg;
1772
1773 /* Fetch the instruction. */
1774 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1775
1776 /* Save some code by pre-extracting some useful fields. */
1777 high_word = (inst >> 16) & 0xffff;
1778 low_word = inst & 0xffff;
1779 reg = high_word & 0x1f;
1780
1781 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1782 || high_word == 0x23bd /* addi $sp,$sp,-i */
1783 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1784 {
1785 if (low_word & 0x8000) /* negative stack adjustment? */
1786 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1787 else
1788 /* Exit loop if a positive stack adjustment is found, which
1789 usually means that the stack cleanup code in the function
1790 epilogue is reached. */
1791 break;
1792 }
1793 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1794 {
1795 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1796 set_reg_offset (reg, sp + low_word);
1797 }
1798 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1799 {
1800 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1801 but the register size used is only 32 bits. Make the address
1802 for the saved register point to the lower 32 bits. */
1803 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1804 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1805 }
1806 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1807 {
1808 /* Old gcc frame, r30 is virtual frame pointer. */
1809 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1810 frame_addr = sp + low_word;
1811 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1812 {
1813 unsigned alloca_adjust;
1814 PROC_FRAME_REG (&temp_proc_desc) = 30;
1815 frame_addr = read_next_frame_reg (next_frame, 30);
1816 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1817 if (alloca_adjust > 0)
1818 {
1819 /* FP > SP + frame_size. This may be because
1820 * of an alloca or somethings similar.
1821 * Fix sp to "pre-alloca" value, and try again.
1822 */
1823 sp += alloca_adjust;
1824 goto restart;
1825 }
1826 }
1827 }
1828 /* move $30,$sp. With different versions of gas this will be either
1829 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1830 Accept any one of these. */
1831 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1832 {
1833 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1834 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1835 {
1836 unsigned alloca_adjust;
1837 PROC_FRAME_REG (&temp_proc_desc) = 30;
1838 frame_addr = read_next_frame_reg (next_frame, 30);
1839 alloca_adjust = (unsigned) (frame_addr - sp);
1840 if (alloca_adjust > 0)
1841 {
1842 /* FP > SP + frame_size. This may be because
1843 * of an alloca or somethings similar.
1844 * Fix sp to "pre-alloca" value, and try again.
1845 */
1846 sp += alloca_adjust;
1847 goto restart;
1848 }
1849 }
1850 }
1851 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1852 {
1853 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1854 set_reg_offset (reg, frame_addr + low_word);
1855 }
1856 }
1857 }
1858
1859 static mips_extra_func_info_t
1860 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1861 struct frame_info *next_frame)
1862 {
1863 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1864
1865 if (start_pc == 0)
1866 return NULL;
1867 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1868 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1869 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1870 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1871 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1872
1873 if (start_pc + 200 < limit_pc)
1874 limit_pc = start_pc + 200;
1875 if (pc_is_mips16 (start_pc))
1876 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1877 else
1878 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1879 return &temp_proc_desc;
1880 }
1881
1882 static mips_extra_func_info_t
1883 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
1884 {
1885 CORE_ADDR startaddr;
1886 mips_extra_func_info_t proc_desc;
1887 struct block *b = block_for_pc (pc);
1888 struct symbol *sym;
1889
1890 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1891 if (addrptr)
1892 *addrptr = startaddr;
1893 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1894 sym = NULL;
1895 else
1896 {
1897 if (startaddr > BLOCK_START (b))
1898 /* This is the "pathological" case referred to in a comment in
1899 print_frame_info. It might be better to move this check into
1900 symbol reading. */
1901 sym = NULL;
1902 else
1903 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1904 }
1905
1906 /* If we never found a PDR for this function in symbol reading, then
1907 examine prologues to find the information. */
1908 if (sym)
1909 {
1910 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1911 if (PROC_FRAME_REG (proc_desc) == -1)
1912 return NULL;
1913 else
1914 return proc_desc;
1915 }
1916 else
1917 return NULL;
1918 }
1919
1920
1921 static mips_extra_func_info_t
1922 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
1923 {
1924 mips_extra_func_info_t proc_desc;
1925 CORE_ADDR startaddr;
1926
1927 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1928
1929 if (proc_desc)
1930 {
1931 /* IF this is the topmost frame AND
1932 * (this proc does not have debugging information OR
1933 * the PC is in the procedure prologue)
1934 * THEN create a "heuristic" proc_desc (by analyzing
1935 * the actual code) to replace the "official" proc_desc.
1936 */
1937 if (next_frame == NULL)
1938 {
1939 struct symtab_and_line val;
1940 struct symbol *proc_symbol =
1941 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
1942
1943 if (proc_symbol)
1944 {
1945 val = find_pc_line (BLOCK_START
1946 (SYMBOL_BLOCK_VALUE (proc_symbol)),
1947 0);
1948 val.pc = val.end ? val.end : pc;
1949 }
1950 if (!proc_symbol || pc < val.pc)
1951 {
1952 mips_extra_func_info_t found_heuristic =
1953 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1954 pc, next_frame);
1955 if (found_heuristic)
1956 proc_desc = found_heuristic;
1957 }
1958 }
1959 }
1960 else
1961 {
1962 /* Is linked_proc_desc_table really necessary? It only seems to be used
1963 by procedure call dummys. However, the procedures being called ought
1964 to have their own proc_descs, and even if they don't,
1965 heuristic_proc_desc knows how to create them! */
1966
1967 register struct linked_proc_info *link;
1968
1969 for (link = linked_proc_desc_table; link; link = link->next)
1970 if (PROC_LOW_ADDR (&link->info) <= pc
1971 && PROC_HIGH_ADDR (&link->info) > pc)
1972 return &link->info;
1973
1974 if (startaddr == 0)
1975 startaddr = heuristic_proc_start (pc);
1976
1977 proc_desc =
1978 heuristic_proc_desc (startaddr, pc, next_frame);
1979 }
1980 return proc_desc;
1981 }
1982
1983 static CORE_ADDR
1984 get_frame_pointer (struct frame_info *frame,
1985 mips_extra_func_info_t proc_desc)
1986 {
1987 return ADDR_BITS_REMOVE (
1988 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1989 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1990 }
1991
1992 mips_extra_func_info_t cached_proc_desc;
1993
1994 CORE_ADDR
1995 mips_frame_chain (struct frame_info *frame)
1996 {
1997 mips_extra_func_info_t proc_desc;
1998 CORE_ADDR tmp;
1999 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2000
2001 if (saved_pc == 0 || inside_entry_file (saved_pc))
2002 return 0;
2003
2004 /* Check if the PC is inside a call stub. If it is, fetch the
2005 PC of the caller of that stub. */
2006 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2007 saved_pc = tmp;
2008
2009 /* Look up the procedure descriptor for this PC. */
2010 proc_desc = find_proc_desc (saved_pc, frame);
2011 if (!proc_desc)
2012 return 0;
2013
2014 cached_proc_desc = proc_desc;
2015
2016 /* If no frame pointer and frame size is zero, we must be at end
2017 of stack (or otherwise hosed). If we don't check frame size,
2018 we loop forever if we see a zero size frame. */
2019 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2020 && PROC_FRAME_OFFSET (proc_desc) == 0
2021 /* The previous frame from a sigtramp frame might be frameless
2022 and have frame size zero. */
2023 && !frame->signal_handler_caller)
2024 return 0;
2025 else
2026 return get_frame_pointer (frame, proc_desc);
2027 }
2028
2029 void
2030 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2031 {
2032 int regnum;
2033
2034 /* Use proc_desc calculated in frame_chain */
2035 mips_extra_func_info_t proc_desc =
2036 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
2037
2038 fci->extra_info = (struct frame_extra_info *)
2039 frame_obstack_alloc (sizeof (struct frame_extra_info));
2040
2041 fci->saved_regs = NULL;
2042 fci->extra_info->proc_desc =
2043 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2044 if (proc_desc)
2045 {
2046 /* Fixup frame-pointer - only needed for top frame */
2047 /* This may not be quite right, if proc has a real frame register.
2048 Get the value of the frame relative sp, procedure might have been
2049 interrupted by a signal at it's very start. */
2050 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2051 && !PROC_DESC_IS_DUMMY (proc_desc))
2052 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2053 else
2054 fci->frame = get_frame_pointer (fci->next, proc_desc);
2055
2056 if (proc_desc == &temp_proc_desc)
2057 {
2058 char *name;
2059
2060 /* Do not set the saved registers for a sigtramp frame,
2061 mips_find_saved_registers will do that for us.
2062 We can't use fci->signal_handler_caller, it is not yet set. */
2063 find_pc_partial_function (fci->pc, &name,
2064 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2065 if (!IN_SIGTRAMP (fci->pc, name))
2066 {
2067 frame_saved_regs_zalloc (fci);
2068 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2069 fci->saved_regs[PC_REGNUM]
2070 = fci->saved_regs[RA_REGNUM];
2071 }
2072 }
2073
2074 /* hack: if argument regs are saved, guess these contain args */
2075 /* assume we can't tell how many args for now */
2076 fci->extra_info->num_args = -1;
2077 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2078 {
2079 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2080 {
2081 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2082 break;
2083 }
2084 }
2085 }
2086 }
2087
2088 /* MIPS stack frames are almost impenetrable. When execution stops,
2089 we basically have to look at symbol information for the function
2090 that we stopped in, which tells us *which* register (if any) is
2091 the base of the frame pointer, and what offset from that register
2092 the frame itself is at.
2093
2094 This presents a problem when trying to examine a stack in memory
2095 (that isn't executing at the moment), using the "frame" command. We
2096 don't have a PC, nor do we have any registers except SP.
2097
2098 This routine takes two arguments, SP and PC, and tries to make the
2099 cached frames look as if these two arguments defined a frame on the
2100 cache. This allows the rest of info frame to extract the important
2101 arguments without difficulty. */
2102
2103 struct frame_info *
2104 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2105 {
2106 if (argc != 2)
2107 error ("MIPS frame specifications require two arguments: sp and pc");
2108
2109 return create_new_frame (argv[0], argv[1]);
2110 }
2111
2112 /* According to the current ABI, should the type be passed in a
2113 floating-point register (assuming that there is space)? When there
2114 is no FPU, FP are not even considered as possibile candidates for
2115 FP registers and, consequently this returns false - forces FP
2116 arguments into integer registers. */
2117
2118 static int
2119 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2120 {
2121 return ((typecode == TYPE_CODE_FLT
2122 || (MIPS_EABI
2123 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2124 && TYPE_NFIELDS (arg_type) == 1
2125 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2126 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2127 }
2128
2129 /* On o32, argument passing in GPRs depends on the alignment of the type being
2130 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2131
2132 static int
2133 mips_type_needs_double_align (struct type *type)
2134 {
2135 enum type_code typecode = TYPE_CODE (type);
2136
2137 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2138 return 1;
2139 else if (typecode == TYPE_CODE_STRUCT)
2140 {
2141 if (TYPE_NFIELDS (type) < 1)
2142 return 0;
2143 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2144 }
2145 else if (typecode == TYPE_CODE_UNION)
2146 {
2147 int i, n;
2148
2149 n = TYPE_NFIELDS (type);
2150 for (i = 0; i < n; i++)
2151 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2152 return 1;
2153 return 0;
2154 }
2155 return 0;
2156 }
2157
2158 CORE_ADDR
2159 mips_push_arguments (int nargs,
2160 struct value **args,
2161 CORE_ADDR sp,
2162 int struct_return,
2163 CORE_ADDR struct_addr)
2164 {
2165 int argreg;
2166 int float_argreg;
2167 int argnum;
2168 int len = 0;
2169 int stack_offset = 0;
2170
2171 /* Macros to round N up or down to the next A boundary; A must be
2172 a power of two. */
2173 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2174 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2175
2176 /* First ensure that the stack and structure return address (if any)
2177 are properly aligned. The stack has to be at least 64-bit aligned
2178 even on 32-bit machines, because doubles must be 64-bit aligned.
2179 On at least one MIPS variant, stack frames need to be 128-bit
2180 aligned, so we round to this widest known alignment. */
2181 sp = ROUND_DOWN (sp, 16);
2182 struct_addr = ROUND_DOWN (struct_addr, 16);
2183
2184 /* Now make space on the stack for the args. We allocate more
2185 than necessary for EABI, because the first few arguments are
2186 passed in registers, but that's OK. */
2187 for (argnum = 0; argnum < nargs; argnum++)
2188 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
2189 sp -= ROUND_UP (len, 16);
2190
2191 if (mips_debug)
2192 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2193 (long) sp, ROUND_UP (len, 16));
2194
2195 /* Initialize the integer and float register pointers. */
2196 argreg = A0_REGNUM;
2197 float_argreg = FPA0_REGNUM;
2198
2199 /* the struct_return pointer occupies the first parameter-passing reg */
2200 if (struct_return)
2201 {
2202 if (mips_debug)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
2205 argreg, (long) struct_addr);
2206 write_register (argreg++, struct_addr);
2207 if (MIPS_REGS_HAVE_HOME_P)
2208 stack_offset += MIPS_STACK_ARGSIZE;
2209 }
2210
2211 /* Now load as many as possible of the first arguments into
2212 registers, and push the rest onto the stack. Loop thru args
2213 from first to last. */
2214 for (argnum = 0; argnum < nargs; argnum++)
2215 {
2216 char *val;
2217 char valbuf[MAX_REGISTER_RAW_SIZE];
2218 struct value *arg = args[argnum];
2219 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2220 int len = TYPE_LENGTH (arg_type);
2221 enum type_code typecode = TYPE_CODE (arg_type);
2222
2223 if (mips_debug)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "mips_push_arguments: %d len=%d type=%d",
2226 argnum + 1, len, (int) typecode);
2227
2228 /* The EABI passes structures that do not fit in a register by
2229 reference. In all other cases, pass the structure by value. */
2230 if (MIPS_EABI
2231 && len > MIPS_SAVED_REGSIZE
2232 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2233 {
2234 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2235 typecode = TYPE_CODE_PTR;
2236 len = MIPS_SAVED_REGSIZE;
2237 val = valbuf;
2238 if (mips_debug)
2239 fprintf_unfiltered (gdb_stdlog, " push");
2240 }
2241 else
2242 val = (char *) VALUE_CONTENTS (arg);
2243
2244 /* 32-bit ABIs always start floating point arguments in an
2245 even-numbered floating point register. Round the FP register
2246 up before the check to see if there are any FP registers
2247 left. Non MIPS_EABI targets also pass the FP in the integer
2248 registers so also round up normal registers. */
2249 if (!FP_REGISTER_DOUBLE
2250 && fp_register_arg_p (typecode, arg_type))
2251 {
2252 if ((float_argreg & 1))
2253 float_argreg++;
2254 }
2255
2256 /* Floating point arguments passed in registers have to be
2257 treated specially. On 32-bit architectures, doubles
2258 are passed in register pairs; the even register gets
2259 the low word, and the odd register gets the high word.
2260 On non-EABI processors, the first two floating point arguments are
2261 also copied to general registers, because MIPS16 functions
2262 don't use float registers for arguments. This duplication of
2263 arguments in general registers can't hurt non-MIPS16 functions
2264 because those registers are normally skipped. */
2265 /* MIPS_EABI squeezes a struct that contains a single floating
2266 point value into an FP register instead of pushing it onto the
2267 stack. */
2268 if (fp_register_arg_p (typecode, arg_type)
2269 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2270 {
2271 if (!FP_REGISTER_DOUBLE && len == 8)
2272 {
2273 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2274 unsigned long regval;
2275
2276 /* Write the low word of the double to the even register(s). */
2277 regval = extract_unsigned_integer (val + low_offset, 4);
2278 if (mips_debug)
2279 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2280 float_argreg, phex (regval, 4));
2281 write_register (float_argreg++, regval);
2282 if (!MIPS_EABI)
2283 {
2284 if (mips_debug)
2285 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2286 argreg, phex (regval, 4));
2287 write_register (argreg++, regval);
2288 }
2289
2290 /* Write the high word of the double to the odd register(s). */
2291 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2292 if (mips_debug)
2293 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2294 float_argreg, phex (regval, 4));
2295 write_register (float_argreg++, regval);
2296 if (!MIPS_EABI)
2297 {
2298 if (mips_debug)
2299 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2300 argreg, phex (regval, 4));
2301 write_register (argreg++, regval);
2302 }
2303
2304 }
2305 else
2306 {
2307 /* This is a floating point value that fits entirely
2308 in a single register. */
2309 /* On 32 bit ABI's the float_argreg is further adjusted
2310 above to ensure that it is even register aligned. */
2311 LONGEST regval = extract_unsigned_integer (val, len);
2312 if (mips_debug)
2313 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2314 float_argreg, phex (regval, len));
2315 write_register (float_argreg++, regval);
2316 if (!MIPS_EABI)
2317 {
2318 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2319 registers for each argument. The below is (my
2320 guess) to ensure that the corresponding integer
2321 register has reserved the same space. */
2322 if (mips_debug)
2323 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2324 argreg, phex (regval, len));
2325 write_register (argreg, regval);
2326 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2327 }
2328 }
2329 /* Reserve space for the FP register. */
2330 if (MIPS_REGS_HAVE_HOME_P)
2331 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
2332 }
2333 else
2334 {
2335 /* Copy the argument to general registers or the stack in
2336 register-sized pieces. Large arguments are split between
2337 registers and stack. */
2338 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2339 are treated specially: Irix cc passes them in registers
2340 where gcc sometimes puts them on the stack. For maximum
2341 compatibility, we will put them in both places. */
2342 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2343 (len % MIPS_SAVED_REGSIZE != 0));
2344 /* Structures should be aligned to eight bytes (even arg registers)
2345 on MIPS_ABI_O32 if their first member has double precision. */
2346 if (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_O32
2347 && mips_type_needs_double_align (arg_type))
2348 {
2349 if ((argreg & 1))
2350 argreg++;
2351 }
2352 /* Note: Floating-point values that didn't fit into an FP
2353 register are only written to memory. */
2354 while (len > 0)
2355 {
2356 /* Rememer if the argument was written to the stack. */
2357 int stack_used_p = 0;
2358 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2359
2360 if (mips_debug)
2361 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2362 partial_len);
2363
2364 /* Write this portion of the argument to the stack. */
2365 if (argreg > MIPS_LAST_ARG_REGNUM
2366 || odd_sized_struct
2367 || fp_register_arg_p (typecode, arg_type))
2368 {
2369 /* Should shorter than int integer values be
2370 promoted to int before being stored? */
2371 int longword_offset = 0;
2372 CORE_ADDR addr;
2373 stack_used_p = 1;
2374 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2375 {
2376 if (MIPS_STACK_ARGSIZE == 8 &&
2377 (typecode == TYPE_CODE_INT ||
2378 typecode == TYPE_CODE_PTR ||
2379 typecode == TYPE_CODE_FLT) && len <= 4)
2380 longword_offset = MIPS_STACK_ARGSIZE - len;
2381 else if ((typecode == TYPE_CODE_STRUCT ||
2382 typecode == TYPE_CODE_UNION) &&
2383 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2384 longword_offset = MIPS_STACK_ARGSIZE - len;
2385 }
2386
2387 if (mips_debug)
2388 {
2389 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
2390 (long) stack_offset);
2391 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2392 (long) longword_offset);
2393 }
2394
2395 addr = sp + stack_offset + longword_offset;
2396
2397 if (mips_debug)
2398 {
2399 int i;
2400 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2401 for (i = 0; i < partial_len; i++)
2402 {
2403 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2404 }
2405 }
2406 write_memory (addr, val, partial_len);
2407 }
2408
2409 /* Note!!! This is NOT an else clause. Odd sized
2410 structs may go thru BOTH paths. Floating point
2411 arguments will not. */
2412 /* Write this portion of the argument to a general
2413 purpose register. */
2414 if (argreg <= MIPS_LAST_ARG_REGNUM
2415 && !fp_register_arg_p (typecode, arg_type))
2416 {
2417 LONGEST regval = extract_unsigned_integer (val, partial_len);
2418
2419 /* A non-floating-point argument being passed in a
2420 general register. If a struct or union, and if
2421 the remaining length is smaller than the register
2422 size, we have to adjust the register value on
2423 big endian targets.
2424
2425 It does not seem to be necessary to do the
2426 same for integral types.
2427
2428 Also don't do this adjustment on EABI and O64
2429 binaries. */
2430
2431 if (!MIPS_EABI
2432 && MIPS_SAVED_REGSIZE < 8
2433 && TARGET_BYTE_ORDER == BIG_ENDIAN
2434 && partial_len < MIPS_SAVED_REGSIZE
2435 && (typecode == TYPE_CODE_STRUCT ||
2436 typecode == TYPE_CODE_UNION))
2437 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2438 TARGET_CHAR_BIT);
2439
2440 if (mips_debug)
2441 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2442 argreg,
2443 phex (regval, MIPS_SAVED_REGSIZE));
2444 write_register (argreg, regval);
2445 argreg++;
2446
2447 /* If this is the old ABI, prevent subsequent floating
2448 point arguments from being passed in floating point
2449 registers. */
2450 if (!MIPS_EABI)
2451 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2452 }
2453
2454 len -= partial_len;
2455 val += partial_len;
2456
2457 /* Compute the the offset into the stack at which we
2458 will copy the next parameter.
2459
2460 In older ABIs, the caller reserved space for
2461 registers that contained arguments. This was loosely
2462 refered to as their "home". Consequently, space is
2463 always allocated.
2464
2465 In the new EABI (and the NABI32), the stack_offset
2466 only needs to be adjusted when it has been used.. */
2467
2468 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
2469 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2470 }
2471 }
2472 if (mips_debug)
2473 fprintf_unfiltered (gdb_stdlog, "\n");
2474 }
2475
2476 /* Return adjusted stack pointer. */
2477 return sp;
2478 }
2479
2480 CORE_ADDR
2481 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2482 {
2483 /* Set the return address register to point to the entry
2484 point of the program, where a breakpoint lies in wait. */
2485 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2486 return sp;
2487 }
2488
2489 static void
2490 mips_push_register (CORE_ADDR * sp, int regno)
2491 {
2492 char buffer[MAX_REGISTER_RAW_SIZE];
2493 int regsize;
2494 int offset;
2495 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2496 {
2497 regsize = MIPS_SAVED_REGSIZE;
2498 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2499 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2500 : 0);
2501 }
2502 else
2503 {
2504 regsize = REGISTER_RAW_SIZE (regno);
2505 offset = 0;
2506 }
2507 *sp -= regsize;
2508 read_register_gen (regno, buffer);
2509 write_memory (*sp, buffer + offset, regsize);
2510 }
2511
2512 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2513 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2514
2515 void
2516 mips_push_dummy_frame (void)
2517 {
2518 int ireg;
2519 struct linked_proc_info *link = (struct linked_proc_info *)
2520 xmalloc (sizeof (struct linked_proc_info));
2521 mips_extra_func_info_t proc_desc = &link->info;
2522 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
2523 CORE_ADDR old_sp = sp;
2524 link->next = linked_proc_desc_table;
2525 linked_proc_desc_table = link;
2526
2527 /* FIXME! are these correct ? */
2528 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2529 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2530 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2531 #define FLOAT_SINGLE_REG_SAVE_MASK \
2532 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2533 /*
2534 * The registers we must save are all those not preserved across
2535 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2536 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2537 * and FP Control/Status registers.
2538 *
2539 *
2540 * Dummy frame layout:
2541 * (high memory)
2542 * Saved PC
2543 * Saved MMHI, MMLO, FPC_CSR
2544 * Saved R31
2545 * Saved R28
2546 * ...
2547 * Saved R1
2548 * Saved D18 (i.e. F19, F18)
2549 * ...
2550 * Saved D0 (i.e. F1, F0)
2551 * Argument build area and stack arguments written via mips_push_arguments
2552 * (low memory)
2553 */
2554
2555 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2556 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2557 PROC_FRAME_OFFSET (proc_desc) = 0;
2558 PROC_FRAME_ADJUST (proc_desc) = 0;
2559 mips_push_register (&sp, PC_REGNUM);
2560 mips_push_register (&sp, HI_REGNUM);
2561 mips_push_register (&sp, LO_REGNUM);
2562 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2563
2564 /* Save general CPU registers */
2565 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2566 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2567 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2568 for (ireg = 32; --ireg >= 0;)
2569 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2570 mips_push_register (&sp, ireg);
2571
2572 /* Save floating point registers starting with high order word */
2573 PROC_FREG_MASK (proc_desc) =
2574 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2575 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2576 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2577 from FP. */
2578 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2579 for (ireg = 32; --ireg >= 0;)
2580 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2581 mips_push_register (&sp, ireg + FP0_REGNUM);
2582
2583 /* Update the frame pointer for the call dummy and the stack pointer.
2584 Set the procedure's starting and ending addresses to point to the
2585 call dummy address at the entry point. */
2586 write_register (PUSH_FP_REGNUM, old_sp);
2587 write_register (SP_REGNUM, sp);
2588 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2589 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2590 SET_PROC_DESC_IS_DUMMY (proc_desc);
2591 PROC_PC_REG (proc_desc) = RA_REGNUM;
2592 }
2593
2594 void
2595 mips_pop_frame (void)
2596 {
2597 register int regnum;
2598 struct frame_info *frame = get_current_frame ();
2599 CORE_ADDR new_sp = FRAME_FP (frame);
2600
2601 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2602
2603 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2604 if (frame->saved_regs == NULL)
2605 mips_find_saved_regs (frame);
2606 for (regnum = 0; regnum < NUM_REGS; regnum++)
2607 {
2608 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2609 && frame->saved_regs[regnum])
2610 write_register (regnum,
2611 read_memory_integer (frame->saved_regs[regnum],
2612 MIPS_SAVED_REGSIZE));
2613 }
2614 write_register (SP_REGNUM, new_sp);
2615 flush_cached_frames ();
2616
2617 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2618 {
2619 struct linked_proc_info *pi_ptr, *prev_ptr;
2620
2621 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2622 pi_ptr != NULL;
2623 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2624 {
2625 if (&pi_ptr->info == proc_desc)
2626 break;
2627 }
2628
2629 if (pi_ptr == NULL)
2630 error ("Can't locate dummy extra frame info\n");
2631
2632 if (prev_ptr != NULL)
2633 prev_ptr->next = pi_ptr->next;
2634 else
2635 linked_proc_desc_table = pi_ptr->next;
2636
2637 xfree (pi_ptr);
2638
2639 write_register (HI_REGNUM,
2640 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2641 MIPS_SAVED_REGSIZE));
2642 write_register (LO_REGNUM,
2643 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2644 MIPS_SAVED_REGSIZE));
2645 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2646 write_register (FCRCS_REGNUM,
2647 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2648 MIPS_SAVED_REGSIZE));
2649 }
2650 }
2651
2652 static void
2653 mips_print_register (int regnum, int all)
2654 {
2655 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2656
2657 /* Get the data in raw format. */
2658 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2659 {
2660 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2661 return;
2662 }
2663
2664 /* If an even floating point register, also print as double. */
2665 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2666 && !((regnum - FP0_REGNUM) & 1))
2667 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
2668 {
2669 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2670
2671 read_relative_register_raw_bytes (regnum, dbuffer);
2672 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
2673 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2674
2675 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2676 val_print (builtin_type_double, dbuffer, 0, 0,
2677 gdb_stdout, 0, 1, 0, Val_pretty_default);
2678 printf_filtered ("); ");
2679 }
2680 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2681
2682 /* The problem with printing numeric register names (r26, etc.) is that
2683 the user can't use them on input. Probably the best solution is to
2684 fix it so that either the numeric or the funky (a2, etc.) names
2685 are accepted on input. */
2686 if (regnum < MIPS_NUMREGS)
2687 printf_filtered ("(r%d): ", regnum);
2688 else
2689 printf_filtered (": ");
2690
2691 /* If virtual format is floating, print it that way. */
2692 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2693 if (FP_REGISTER_DOUBLE)
2694 { /* show 8-byte floats as float AND double: */
2695 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2696
2697 printf_filtered (" (float) ");
2698 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2699 gdb_stdout, 0, 1, 0, Val_pretty_default);
2700 printf_filtered (", (double) ");
2701 val_print (builtin_type_double, raw_buffer, 0, 0,
2702 gdb_stdout, 0, 1, 0, Val_pretty_default);
2703 }
2704 else
2705 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2706 gdb_stdout, 0, 1, 0, Val_pretty_default);
2707 /* Else print as integer in hex. */
2708 else
2709 {
2710 int offset;
2711
2712 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2713 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2714 else
2715 offset = 0;
2716
2717 print_scalar_formatted (raw_buffer + offset,
2718 REGISTER_VIRTUAL_TYPE (regnum),
2719 'x', 0, gdb_stdout);
2720 }
2721 }
2722
2723 /* Replacement for generic do_registers_info.
2724 Print regs in pretty columns. */
2725
2726 static int
2727 do_fp_register_row (int regnum)
2728 { /* do values for FP (float) regs */
2729 char *raw_buffer[2];
2730 char *dbl_buffer;
2731 /* use HI and LO to control the order of combining two flt regs */
2732 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2733 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2734 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2735 int inv1, inv2, inv3;
2736
2737 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2738 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2739 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2740
2741 /* Get the data in raw format. */
2742 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2743 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2744 if (REGISTER_RAW_SIZE (regnum) == 4)
2745 {
2746 /* 4-byte registers: we can fit two registers per row. */
2747 /* Also print every pair of 4-byte regs as an 8-byte double. */
2748 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
2749 error ("can't read register %d (%s)",
2750 regnum + 1, REGISTER_NAME (regnum + 1));
2751
2752 /* copy the two floats into one double, and unpack both */
2753 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2754 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2755 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2756 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2757
2758 printf_filtered (" %-5s", REGISTER_NAME (regnum));
2759 if (inv1)
2760 printf_filtered (": <invalid float>");
2761 else
2762 printf_filtered ("%-17.9g", flt1);
2763
2764 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
2765 if (inv2)
2766 printf_filtered (": <invalid float>");
2767 else
2768 printf_filtered ("%-17.9g", flt2);
2769
2770 printf_filtered (" dbl: ");
2771 if (inv3)
2772 printf_filtered ("<invalid double>");
2773 else
2774 printf_filtered ("%-24.17g", doub);
2775 printf_filtered ("\n");
2776
2777 /* may want to do hex display here (future enhancement) */
2778 regnum += 2;
2779 }
2780 else
2781 { /* eight byte registers: print each one as float AND as double. */
2782 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2783
2784 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2785 flt1 = unpack_double (builtin_type_float,
2786 &raw_buffer[HI][offset], &inv1);
2787 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2788
2789 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
2790 if (inv1)
2791 printf_filtered ("<invalid float>");
2792 else
2793 printf_filtered ("flt: %-17.9g", flt1);
2794
2795 printf_filtered (" dbl: ");
2796 if (inv3)
2797 printf_filtered ("<invalid double>");
2798 else
2799 printf_filtered ("%-24.17g", doub);
2800
2801 printf_filtered ("\n");
2802 /* may want to do hex display here (future enhancement) */
2803 regnum++;
2804 }
2805 return regnum;
2806 }
2807
2808 /* Print a row's worth of GP (int) registers, with name labels above */
2809
2810 static int
2811 do_gp_register_row (int regnum)
2812 {
2813 /* do values for GP (int) regs */
2814 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2815 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2816 int col, byte;
2817 int start_regnum = regnum;
2818 int numregs = NUM_REGS;
2819
2820
2821 /* For GP registers, we print a separate row of names above the vals */
2822 printf_filtered (" ");
2823 for (col = 0; col < ncols && regnum < numregs; regnum++)
2824 {
2825 if (*REGISTER_NAME (regnum) == '\0')
2826 continue; /* unused register */
2827 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2828 break; /* end the row: reached FP register */
2829 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
2830 REGISTER_NAME (regnum));
2831 col++;
2832 }
2833 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
2834 start_regnum); /* print the R0 to R31 names */
2835
2836 regnum = start_regnum; /* go back to start of row */
2837 /* now print the values in hex, 4 or 8 to the row */
2838 for (col = 0; col < ncols && regnum < numregs; regnum++)
2839 {
2840 if (*REGISTER_NAME (regnum) == '\0')
2841 continue; /* unused register */
2842 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2843 break; /* end row: reached FP register */
2844 /* OK: get the data in raw format. */
2845 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2846 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2847 /* pad small registers */
2848 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
2849 printf_filtered (" ");
2850 /* Now print the register value in hex, endian order. */
2851 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2852 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2853 byte < REGISTER_RAW_SIZE (regnum);
2854 byte++)
2855 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2856 else
2857 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2858 byte >= 0;
2859 byte--)
2860 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2861 printf_filtered (" ");
2862 col++;
2863 }
2864 if (col > 0) /* ie. if we actually printed anything... */
2865 printf_filtered ("\n");
2866
2867 return regnum;
2868 }
2869
2870 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2871
2872 void
2873 mips_do_registers_info (int regnum, int fpregs)
2874 {
2875 if (regnum != -1) /* do one specified register */
2876 {
2877 if (*(REGISTER_NAME (regnum)) == '\0')
2878 error ("Not a valid register for the current processor type");
2879
2880 mips_print_register (regnum, 0);
2881 printf_filtered ("\n");
2882 }
2883 else
2884 /* do all (or most) registers */
2885 {
2886 regnum = 0;
2887 while (regnum < NUM_REGS)
2888 {
2889 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2890 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
2891 regnum = do_fp_register_row (regnum); /* FP regs */
2892 else
2893 regnum += MIPS_NUMREGS; /* skip floating point regs */
2894 else
2895 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2896 }
2897 }
2898 }
2899
2900 /* Return number of args passed to a frame. described by FIP.
2901 Can return -1, meaning no way to tell. */
2902
2903 int
2904 mips_frame_num_args (struct frame_info *frame)
2905 {
2906 return -1;
2907 }
2908
2909 /* Is this a branch with a delay slot? */
2910
2911 static int is_delayed (unsigned long);
2912
2913 static int
2914 is_delayed (unsigned long insn)
2915 {
2916 int i;
2917 for (i = 0; i < NUMOPCODES; ++i)
2918 if (mips_opcodes[i].pinfo != INSN_MACRO
2919 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2920 break;
2921 return (i < NUMOPCODES
2922 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2923 | INSN_COND_BRANCH_DELAY
2924 | INSN_COND_BRANCH_LIKELY)));
2925 }
2926
2927 int
2928 mips_step_skips_delay (CORE_ADDR pc)
2929 {
2930 char buf[MIPS_INSTLEN];
2931
2932 /* There is no branch delay slot on MIPS16. */
2933 if (pc_is_mips16 (pc))
2934 return 0;
2935
2936 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2937 /* If error reading memory, guess that it is not a delayed branch. */
2938 return 0;
2939 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
2940 }
2941
2942
2943 /* Skip the PC past function prologue instructions (32-bit version).
2944 This is a helper function for mips_skip_prologue. */
2945
2946 static CORE_ADDR
2947 mips32_skip_prologue (CORE_ADDR pc)
2948 {
2949 t_inst inst;
2950 CORE_ADDR end_pc;
2951 int seen_sp_adjust = 0;
2952 int load_immediate_bytes = 0;
2953
2954 /* Skip the typical prologue instructions. These are the stack adjustment
2955 instruction and the instructions that save registers on the stack
2956 or in the gcc frame. */
2957 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2958 {
2959 unsigned long high_word;
2960
2961 inst = mips_fetch_instruction (pc);
2962 high_word = (inst >> 16) & 0xffff;
2963
2964 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2965 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2966 seen_sp_adjust = 1;
2967 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2968 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2969 seen_sp_adjust = 1;
2970 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2971 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2972 && (inst & 0x001F0000)) /* reg != $zero */
2973 continue;
2974
2975 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2976 continue;
2977 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2978 /* sx reg,n($s8) */
2979 continue; /* reg != $zero */
2980
2981 /* move $s8,$sp. With different versions of gas this will be either
2982 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2983 Accept any one of these. */
2984 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2985 continue;
2986
2987 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2988 continue;
2989 else if (high_word == 0x3c1c) /* lui $gp,n */
2990 continue;
2991 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2992 continue;
2993 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2994 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2995 continue;
2996 /* The following instructions load $at or $t0 with an immediate
2997 value in preparation for a stack adjustment via
2998 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2999 a local variable, so we accept them only before a stack adjustment
3000 instruction was seen. */
3001 else if (!seen_sp_adjust)
3002 {
3003 if (high_word == 0x3c01 || /* lui $at,n */
3004 high_word == 0x3c08) /* lui $t0,n */
3005 {
3006 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3007 continue;
3008 }
3009 else if (high_word == 0x3421 || /* ori $at,$at,n */
3010 high_word == 0x3508 || /* ori $t0,$t0,n */
3011 high_word == 0x3401 || /* ori $at,$zero,n */
3012 high_word == 0x3408) /* ori $t0,$zero,n */
3013 {
3014 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3015 continue;
3016 }
3017 else
3018 break;
3019 }
3020 else
3021 break;
3022 }
3023
3024 /* In a frameless function, we might have incorrectly
3025 skipped some load immediate instructions. Undo the skipping
3026 if the load immediate was not followed by a stack adjustment. */
3027 if (load_immediate_bytes && !seen_sp_adjust)
3028 pc -= load_immediate_bytes;
3029 return pc;
3030 }
3031
3032 /* Skip the PC past function prologue instructions (16-bit version).
3033 This is a helper function for mips_skip_prologue. */
3034
3035 static CORE_ADDR
3036 mips16_skip_prologue (CORE_ADDR pc)
3037 {
3038 CORE_ADDR end_pc;
3039 int extend_bytes = 0;
3040 int prev_extend_bytes;
3041
3042 /* Table of instructions likely to be found in a function prologue. */
3043 static struct
3044 {
3045 unsigned short inst;
3046 unsigned short mask;
3047 }
3048 table[] =
3049 {
3050 {
3051 0x6300, 0xff00
3052 }
3053 , /* addiu $sp,offset */
3054 {
3055 0xfb00, 0xff00
3056 }
3057 , /* daddiu $sp,offset */
3058 {
3059 0xd000, 0xf800
3060 }
3061 , /* sw reg,n($sp) */
3062 {
3063 0xf900, 0xff00
3064 }
3065 , /* sd reg,n($sp) */
3066 {
3067 0x6200, 0xff00
3068 }
3069 , /* sw $ra,n($sp) */
3070 {
3071 0xfa00, 0xff00
3072 }
3073 , /* sd $ra,n($sp) */
3074 {
3075 0x673d, 0xffff
3076 }
3077 , /* move $s1,sp */
3078 {
3079 0xd980, 0xff80
3080 }
3081 , /* sw $a0-$a3,n($s1) */
3082 {
3083 0x6704, 0xff1c
3084 }
3085 , /* move reg,$a0-$a3 */
3086 {
3087 0xe809, 0xf81f
3088 }
3089 , /* entry pseudo-op */
3090 {
3091 0x0100, 0xff00
3092 }
3093 , /* addiu $s1,$sp,n */
3094 {
3095 0, 0
3096 } /* end of table marker */
3097 };
3098
3099 /* Skip the typical prologue instructions. These are the stack adjustment
3100 instruction and the instructions that save registers on the stack
3101 or in the gcc frame. */
3102 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3103 {
3104 unsigned short inst;
3105 int i;
3106
3107 inst = mips_fetch_instruction (pc);
3108
3109 /* Normally we ignore an extend instruction. However, if it is
3110 not followed by a valid prologue instruction, we must adjust
3111 the pc back over the extend so that it won't be considered
3112 part of the prologue. */
3113 if ((inst & 0xf800) == 0xf000) /* extend */
3114 {
3115 extend_bytes = MIPS16_INSTLEN;
3116 continue;
3117 }
3118 prev_extend_bytes = extend_bytes;
3119 extend_bytes = 0;
3120
3121 /* Check for other valid prologue instructions besides extend. */
3122 for (i = 0; table[i].mask != 0; i++)
3123 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3124 break;
3125 if (table[i].mask != 0) /* it was in table? */
3126 continue; /* ignore it */
3127 else
3128 /* non-prologue */
3129 {
3130 /* Return the current pc, adjusted backwards by 2 if
3131 the previous instruction was an extend. */
3132 return pc - prev_extend_bytes;
3133 }
3134 }
3135 return pc;
3136 }
3137
3138 /* To skip prologues, I use this predicate. Returns either PC itself
3139 if the code at PC does not look like a function prologue; otherwise
3140 returns an address that (if we're lucky) follows the prologue. If
3141 LENIENT, then we must skip everything which is involved in setting
3142 up the frame (it's OK to skip more, just so long as we don't skip
3143 anything which might clobber the registers which are being saved.
3144 We must skip more in the case where part of the prologue is in the
3145 delay slot of a non-prologue instruction). */
3146
3147 CORE_ADDR
3148 mips_skip_prologue (CORE_ADDR pc)
3149 {
3150 /* See if we can determine the end of the prologue via the symbol table.
3151 If so, then return either PC, or the PC after the prologue, whichever
3152 is greater. */
3153
3154 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3155
3156 if (post_prologue_pc != 0)
3157 return max (pc, post_prologue_pc);
3158
3159 /* Can't determine prologue from the symbol table, need to examine
3160 instructions. */
3161
3162 if (pc_is_mips16 (pc))
3163 return mips16_skip_prologue (pc);
3164 else
3165 return mips32_skip_prologue (pc);
3166 }
3167
3168 /* Determine how a return value is stored within the MIPS register
3169 file, given the return type `valtype'. */
3170
3171 struct return_value_word
3172 {
3173 int len;
3174 int reg;
3175 int reg_offset;
3176 int buf_offset;
3177 };
3178
3179 static void
3180 return_value_location (struct type *valtype,
3181 struct return_value_word *hi,
3182 struct return_value_word *lo)
3183 {
3184 int len = TYPE_LENGTH (valtype);
3185
3186 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3187 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3188 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3189 {
3190 if (!FP_REGISTER_DOUBLE && len == 8)
3191 {
3192 /* We need to break a 64bit float in two 32 bit halves and
3193 spread them across a floating-point register pair. */
3194 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3195 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3196 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3197 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3198 ? 4 : 0);
3199 hi->reg_offset = lo->reg_offset;
3200 lo->reg = FP0_REGNUM + 0;
3201 hi->reg = FP0_REGNUM + 1;
3202 lo->len = 4;
3203 hi->len = 4;
3204 }
3205 else
3206 {
3207 /* The floating point value fits in a single floating-point
3208 register. */
3209 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3210 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3211 && len == 4)
3212 ? 4 : 0);
3213 lo->reg = FP0_REGNUM;
3214 lo->len = len;
3215 lo->buf_offset = 0;
3216 hi->len = 0;
3217 hi->reg_offset = 0;
3218 hi->buf_offset = 0;
3219 hi->reg = 0;
3220 }
3221 }
3222 else
3223 {
3224 /* Locate a result possibly spread across two registers. */
3225 int regnum = 2;
3226 lo->reg = regnum + 0;
3227 hi->reg = regnum + 1;
3228 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3229 && len < MIPS_SAVED_REGSIZE)
3230 {
3231 /* "un-left-justify" the value in the low register */
3232 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3233 lo->len = len;
3234 hi->reg_offset = 0;
3235 hi->len = 0;
3236 }
3237 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3238 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3239 && len < MIPS_SAVED_REGSIZE * 2
3240 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3241 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3242 {
3243 /* "un-left-justify" the value spread across two registers. */
3244 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3245 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3246 hi->reg_offset = 0;
3247 hi->len = len - lo->len;
3248 }
3249 else
3250 {
3251 /* Only perform a partial copy of the second register. */
3252 lo->reg_offset = 0;
3253 hi->reg_offset = 0;
3254 if (len > MIPS_SAVED_REGSIZE)
3255 {
3256 lo->len = MIPS_SAVED_REGSIZE;
3257 hi->len = len - MIPS_SAVED_REGSIZE;
3258 }
3259 else
3260 {
3261 lo->len = len;
3262 hi->len = 0;
3263 }
3264 }
3265 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3266 && REGISTER_RAW_SIZE (regnum) == 8
3267 && MIPS_SAVED_REGSIZE == 4)
3268 {
3269 /* Account for the fact that only the least-signficant part
3270 of the register is being used */
3271 lo->reg_offset += 4;
3272 hi->reg_offset += 4;
3273 }
3274 lo->buf_offset = 0;
3275 hi->buf_offset = lo->len;
3276 }
3277 }
3278
3279 /* Given a return value in `regbuf' with a type `valtype', extract and
3280 copy its value into `valbuf'. */
3281
3282 void
3283 mips_extract_return_value (struct type *valtype,
3284 char regbuf[REGISTER_BYTES],
3285 char *valbuf)
3286 {
3287 struct return_value_word lo;
3288 struct return_value_word hi;
3289 return_value_location (valtype, &hi, &lo);
3290
3291 memcpy (valbuf + lo.buf_offset,
3292 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3293 lo.len);
3294
3295 if (hi.len > 0)
3296 memcpy (valbuf + hi.buf_offset,
3297 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3298 hi.len);
3299 }
3300
3301 /* Given a return value in `valbuf' with a type `valtype', write it's
3302 value into the appropriate register. */
3303
3304 void
3305 mips_store_return_value (struct type *valtype, char *valbuf)
3306 {
3307 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3308 struct return_value_word lo;
3309 struct return_value_word hi;
3310 return_value_location (valtype, &hi, &lo);
3311
3312 memset (raw_buffer, 0, sizeof (raw_buffer));
3313 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3314 write_register_bytes (REGISTER_BYTE (lo.reg),
3315 raw_buffer,
3316 REGISTER_RAW_SIZE (lo.reg));
3317
3318 if (hi.len > 0)
3319 {
3320 memset (raw_buffer, 0, sizeof (raw_buffer));
3321 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3322 write_register_bytes (REGISTER_BYTE (hi.reg),
3323 raw_buffer,
3324 REGISTER_RAW_SIZE (hi.reg));
3325 }
3326 }
3327
3328 /* Exported procedure: Is PC in the signal trampoline code */
3329
3330 int
3331 in_sigtramp (CORE_ADDR pc, char *ignore)
3332 {
3333 if (sigtramp_address == 0)
3334 fixup_sigtramp ();
3335 return (pc >= sigtramp_address && pc < sigtramp_end);
3336 }
3337
3338 /* Root of all "set mips "/"show mips " commands. This will eventually be
3339 used for all MIPS-specific commands. */
3340
3341 static void
3342 show_mips_command (char *args, int from_tty)
3343 {
3344 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3345 }
3346
3347 static void
3348 set_mips_command (char *args, int from_tty)
3349 {
3350 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3351 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3352 }
3353
3354 /* Commands to show/set the MIPS FPU type. */
3355
3356 static void
3357 show_mipsfpu_command (char *args, int from_tty)
3358 {
3359 char *fpu;
3360 switch (MIPS_FPU_TYPE)
3361 {
3362 case MIPS_FPU_SINGLE:
3363 fpu = "single-precision";
3364 break;
3365 case MIPS_FPU_DOUBLE:
3366 fpu = "double-precision";
3367 break;
3368 case MIPS_FPU_NONE:
3369 fpu = "absent (none)";
3370 break;
3371 default:
3372 internal_error (__FILE__, __LINE__, "bad switch");
3373 }
3374 if (mips_fpu_type_auto)
3375 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3376 fpu);
3377 else
3378 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3379 fpu);
3380 }
3381
3382
3383 static void
3384 set_mipsfpu_command (char *args, int from_tty)
3385 {
3386 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3387 show_mipsfpu_command (args, from_tty);
3388 }
3389
3390 static void
3391 set_mipsfpu_single_command (char *args, int from_tty)
3392 {
3393 mips_fpu_type = MIPS_FPU_SINGLE;
3394 mips_fpu_type_auto = 0;
3395 if (GDB_MULTI_ARCH)
3396 {
3397 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3398 }
3399 }
3400
3401 static void
3402 set_mipsfpu_double_command (char *args, int from_tty)
3403 {
3404 mips_fpu_type = MIPS_FPU_DOUBLE;
3405 mips_fpu_type_auto = 0;
3406 if (GDB_MULTI_ARCH)
3407 {
3408 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3409 }
3410 }
3411
3412 static void
3413 set_mipsfpu_none_command (char *args, int from_tty)
3414 {
3415 mips_fpu_type = MIPS_FPU_NONE;
3416 mips_fpu_type_auto = 0;
3417 if (GDB_MULTI_ARCH)
3418 {
3419 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3420 }
3421 }
3422
3423 static void
3424 set_mipsfpu_auto_command (char *args, int from_tty)
3425 {
3426 mips_fpu_type_auto = 1;
3427 }
3428
3429 /* Command to set the processor type. */
3430
3431 void
3432 mips_set_processor_type_command (char *args, int from_tty)
3433 {
3434 int i;
3435
3436 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3437 {
3438 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3439 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3440 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3441
3442 /* Restore the value. */
3443 tmp_mips_processor_type = xstrdup (mips_processor_type);
3444
3445 return;
3446 }
3447
3448 if (!mips_set_processor_type (tmp_mips_processor_type))
3449 {
3450 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3451 /* Restore its value. */
3452 tmp_mips_processor_type = xstrdup (mips_processor_type);
3453 }
3454 }
3455
3456 static void
3457 mips_show_processor_type_command (char *args, int from_tty)
3458 {
3459 }
3460
3461 /* Modify the actual processor type. */
3462
3463 int
3464 mips_set_processor_type (char *str)
3465 {
3466 int i;
3467
3468 if (str == NULL)
3469 return 0;
3470
3471 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3472 {
3473 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3474 {
3475 mips_processor_type = str;
3476 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3477 return 1;
3478 /* FIXME tweak fpu flag too */
3479 }
3480 }
3481
3482 return 0;
3483 }
3484
3485 /* Attempt to identify the particular processor model by reading the
3486 processor id. */
3487
3488 char *
3489 mips_read_processor_type (void)
3490 {
3491 CORE_ADDR prid;
3492
3493 prid = read_register (PRID_REGNUM);
3494
3495 if ((prid & ~0xf) == 0x700)
3496 return savestring ("r3041", strlen ("r3041"));
3497
3498 return NULL;
3499 }
3500
3501 /* Just like reinit_frame_cache, but with the right arguments to be
3502 callable as an sfunc. */
3503
3504 static void
3505 reinit_frame_cache_sfunc (char *args, int from_tty,
3506 struct cmd_list_element *c)
3507 {
3508 reinit_frame_cache ();
3509 }
3510
3511 int
3512 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
3513 {
3514 mips_extra_func_info_t proc_desc;
3515
3516 /* Search for the function containing this address. Set the low bit
3517 of the address when searching, in case we were given an even address
3518 that is the start of a 16-bit function. If we didn't do this,
3519 the search would fail because the symbol table says the function
3520 starts at an odd address, i.e. 1 byte past the given address. */
3521 memaddr = ADDR_BITS_REMOVE (memaddr);
3522 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3523
3524 /* Make an attempt to determine if this is a 16-bit function. If
3525 the procedure descriptor exists and the address therein is odd,
3526 it's definitely a 16-bit function. Otherwise, we have to just
3527 guess that if the address passed in is odd, it's 16-bits. */
3528 if (proc_desc)
3529 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3530 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3531 else
3532 info->mach = pc_is_mips16 (memaddr) ?
3533 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3534
3535 /* Round down the instruction address to the appropriate boundary. */
3536 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
3537
3538 /* Call the appropriate disassembler based on the target endian-ness. */
3539 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3540 return print_insn_big_mips (memaddr, info);
3541 else
3542 return print_insn_little_mips (memaddr, info);
3543 }
3544
3545 /* Old-style breakpoint macros.
3546 The IDT board uses an unusual breakpoint value, and sometimes gets
3547 confused when it sees the usual MIPS breakpoint instruction. */
3548
3549 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3550 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3551 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3552 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3553 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3554 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3555 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3556 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3557
3558 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3559 counter value to determine whether a 16- or 32-bit breakpoint should be
3560 used. It returns a pointer to a string of bytes that encode a breakpoint
3561 instruction, stores the length of the string to *lenptr, and adjusts pc
3562 (if necessary) to point to the actual memory location where the
3563 breakpoint should be inserted. */
3564
3565 unsigned char *
3566 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
3567 {
3568 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3569 {
3570 if (pc_is_mips16 (*pcptr))
3571 {
3572 static unsigned char mips16_big_breakpoint[] =
3573 MIPS16_BIG_BREAKPOINT;
3574 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3575 *lenptr = sizeof (mips16_big_breakpoint);
3576 return mips16_big_breakpoint;
3577 }
3578 else
3579 {
3580 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
3581 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3582 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3583
3584 *lenptr = sizeof (big_breakpoint);
3585
3586 if (strcmp (target_shortname, "mips") == 0)
3587 return idt_big_breakpoint;
3588 else if (strcmp (target_shortname, "ddb") == 0
3589 || strcmp (target_shortname, "pmon") == 0
3590 || strcmp (target_shortname, "lsi") == 0)
3591 return pmon_big_breakpoint;
3592 else
3593 return big_breakpoint;
3594 }
3595 }
3596 else
3597 {
3598 if (pc_is_mips16 (*pcptr))
3599 {
3600 static unsigned char mips16_little_breakpoint[] =
3601 MIPS16_LITTLE_BREAKPOINT;
3602 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3603 *lenptr = sizeof (mips16_little_breakpoint);
3604 return mips16_little_breakpoint;
3605 }
3606 else
3607 {
3608 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
3609 static unsigned char pmon_little_breakpoint[] =
3610 PMON_LITTLE_BREAKPOINT;
3611 static unsigned char idt_little_breakpoint[] =
3612 IDT_LITTLE_BREAKPOINT;
3613
3614 *lenptr = sizeof (little_breakpoint);
3615
3616 if (strcmp (target_shortname, "mips") == 0)
3617 return idt_little_breakpoint;
3618 else if (strcmp (target_shortname, "ddb") == 0
3619 || strcmp (target_shortname, "pmon") == 0
3620 || strcmp (target_shortname, "lsi") == 0)
3621 return pmon_little_breakpoint;
3622 else
3623 return little_breakpoint;
3624 }
3625 }
3626 }
3627
3628 /* If PC is in a mips16 call or return stub, return the address of the target
3629 PC, which is either the callee or the caller. There are several
3630 cases which must be handled:
3631
3632 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3633 target PC is in $31 ($ra).
3634 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3635 and the target PC is in $2.
3636 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3637 before the jal instruction, this is effectively a call stub
3638 and the the target PC is in $2. Otherwise this is effectively
3639 a return stub and the target PC is in $18.
3640
3641 See the source code for the stubs in gcc/config/mips/mips16.S for
3642 gory details.
3643
3644 This function implements the SKIP_TRAMPOLINE_CODE macro.
3645 */
3646
3647 CORE_ADDR
3648 mips_skip_stub (CORE_ADDR pc)
3649 {
3650 char *name;
3651 CORE_ADDR start_addr;
3652
3653 /* Find the starting address and name of the function containing the PC. */
3654 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3655 return 0;
3656
3657 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3658 target PC is in $31 ($ra). */
3659 if (strcmp (name, "__mips16_ret_sf") == 0
3660 || strcmp (name, "__mips16_ret_df") == 0)
3661 return read_signed_register (RA_REGNUM);
3662
3663 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3664 {
3665 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3666 and the target PC is in $2. */
3667 if (name[19] >= '0' && name[19] <= '9')
3668 return read_signed_register (2);
3669
3670 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3671 before the jal instruction, this is effectively a call stub
3672 and the the target PC is in $2. Otherwise this is effectively
3673 a return stub and the target PC is in $18. */
3674 else if (name[19] == 's' || name[19] == 'd')
3675 {
3676 if (pc == start_addr)
3677 {
3678 /* Check if the target of the stub is a compiler-generated
3679 stub. Such a stub for a function bar might have a name
3680 like __fn_stub_bar, and might look like this:
3681 mfc1 $4,$f13
3682 mfc1 $5,$f12
3683 mfc1 $6,$f15
3684 mfc1 $7,$f14
3685 la $1,bar (becomes a lui/addiu pair)
3686 jr $1
3687 So scan down to the lui/addi and extract the target
3688 address from those two instructions. */
3689
3690 CORE_ADDR target_pc = read_signed_register (2);
3691 t_inst inst;
3692 int i;
3693
3694 /* See if the name of the target function is __fn_stub_*. */
3695 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3696 return target_pc;
3697 if (strncmp (name, "__fn_stub_", 10) != 0
3698 && strcmp (name, "etext") != 0
3699 && strcmp (name, "_etext") != 0)
3700 return target_pc;
3701
3702 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3703 The limit on the search is arbitrarily set to 20
3704 instructions. FIXME. */
3705 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3706 {
3707 inst = mips_fetch_instruction (target_pc);
3708 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3709 pc = (inst << 16) & 0xffff0000; /* high word */
3710 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3711 return pc | (inst & 0xffff); /* low word */
3712 }
3713
3714 /* Couldn't find the lui/addui pair, so return stub address. */
3715 return target_pc;
3716 }
3717 else
3718 /* This is the 'return' part of a call stub. The return
3719 address is in $r18. */
3720 return read_signed_register (18);
3721 }
3722 }
3723 return 0; /* not a stub */
3724 }
3725
3726
3727 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3728 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3729
3730 int
3731 mips_in_call_stub (CORE_ADDR pc, char *name)
3732 {
3733 CORE_ADDR start_addr;
3734
3735 /* Find the starting address of the function containing the PC. If the
3736 caller didn't give us a name, look it up at the same time. */
3737 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3738 return 0;
3739
3740 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3741 {
3742 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3743 if (name[19] >= '0' && name[19] <= '9')
3744 return 1;
3745 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3746 before the jal instruction, this is effectively a call stub. */
3747 else if (name[19] == 's' || name[19] == 'd')
3748 return pc == start_addr;
3749 }
3750
3751 return 0; /* not a stub */
3752 }
3753
3754
3755 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3756 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3757
3758 int
3759 mips_in_return_stub (CORE_ADDR pc, char *name)
3760 {
3761 CORE_ADDR start_addr;
3762
3763 /* Find the starting address of the function containing the PC. */
3764 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3765 return 0;
3766
3767 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3768 if (strcmp (name, "__mips16_ret_sf") == 0
3769 || strcmp (name, "__mips16_ret_df") == 0)
3770 return 1;
3771
3772 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
3773 i.e. after the jal instruction, this is effectively a return stub. */
3774 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3775 && (name[19] == 's' || name[19] == 'd')
3776 && pc != start_addr)
3777 return 1;
3778
3779 return 0; /* not a stub */
3780 }
3781
3782
3783 /* Return non-zero if the PC is in a library helper function that should
3784 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3785
3786 int
3787 mips_ignore_helper (CORE_ADDR pc)
3788 {
3789 char *name;
3790
3791 /* Find the starting address and name of the function containing the PC. */
3792 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3793 return 0;
3794
3795 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3796 that we want to ignore. */
3797 return (strcmp (name, "__mips16_ret_sf") == 0
3798 || strcmp (name, "__mips16_ret_df") == 0);
3799 }
3800
3801
3802 /* Return a location where we can set a breakpoint that will be hit
3803 when an inferior function call returns. This is normally the
3804 program's entry point. Executables that don't have an entry
3805 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3806 whose address is the location where the breakpoint should be placed. */
3807
3808 CORE_ADDR
3809 mips_call_dummy_address (void)
3810 {
3811 struct minimal_symbol *sym;
3812
3813 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3814 if (sym)
3815 return SYMBOL_VALUE_ADDRESS (sym);
3816 else
3817 return entry_point_address ();
3818 }
3819
3820
3821 /* If the current gcc for this target does not produce correct debugging
3822 information for float parameters, both prototyped and unprototyped, then
3823 define this macro. This forces gdb to always assume that floats are
3824 passed as doubles and then converted in the callee.
3825
3826 For the mips chip, it appears that the debug info marks the parameters as
3827 floats regardless of whether the function is prototyped, but the actual
3828 values are passed as doubles for the non-prototyped case and floats for
3829 the prototyped case. Thus we choose to make the non-prototyped case work
3830 for C and break the prototyped case, since the non-prototyped case is
3831 probably much more common. (FIXME). */
3832
3833 static int
3834 mips_coerce_float_to_double (struct type *formal, struct type *actual)
3835 {
3836 return current_language->la_language == language_c;
3837 }
3838
3839 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3840 the register stored on the stack (32) is different to its real raw
3841 size (64). The below ensures that registers are fetched from the
3842 stack using their ABI size and then stored into the RAW_BUFFER
3843 using their raw size.
3844
3845 The alternative to adding this function would be to add an ABI
3846 macro - REGISTER_STACK_SIZE(). */
3847
3848 static void
3849 mips_get_saved_register (char *raw_buffer,
3850 int *optimized,
3851 CORE_ADDR *addrp,
3852 struct frame_info *frame,
3853 int regnum,
3854 enum lval_type *lval)
3855 {
3856 CORE_ADDR addr;
3857
3858 if (!target_has_registers)
3859 error ("No registers.");
3860
3861 /* Normal systems don't optimize out things with register numbers. */
3862 if (optimized != NULL)
3863 *optimized = 0;
3864 addr = find_saved_register (frame, regnum);
3865 if (addr != 0)
3866 {
3867 if (lval != NULL)
3868 *lval = lval_memory;
3869 if (regnum == SP_REGNUM)
3870 {
3871 if (raw_buffer != NULL)
3872 {
3873 /* Put it back in target format. */
3874 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3875 (LONGEST) addr);
3876 }
3877 if (addrp != NULL)
3878 *addrp = 0;
3879 return;
3880 }
3881 if (raw_buffer != NULL)
3882 {
3883 LONGEST val;
3884 if (regnum < 32)
3885 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3886 saved. */
3887 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3888 else
3889 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3890 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3891 }
3892 }
3893 else
3894 {
3895 if (lval != NULL)
3896 *lval = lval_register;
3897 addr = REGISTER_BYTE (regnum);
3898 if (raw_buffer != NULL)
3899 read_register_gen (regnum, raw_buffer);
3900 }
3901 if (addrp != NULL)
3902 *addrp = addr;
3903 }
3904
3905 /* Immediately after a function call, return the saved pc.
3906 Can't always go through the frames for this because on some machines
3907 the new frame is not set up until the new function executes
3908 some instructions. */
3909
3910 static CORE_ADDR
3911 mips_saved_pc_after_call (struct frame_info *frame)
3912 {
3913 return read_signed_register (RA_REGNUM);
3914 }
3915
3916
3917 /* Convert a dbx stab register number (from `r' declaration) to a gdb
3918 REGNUM */
3919
3920 static int
3921 mips_stab_reg_to_regnum (int num)
3922 {
3923 if (num < 32)
3924 return num;
3925 else
3926 return num + FP0_REGNUM - 38;
3927 }
3928
3929 /* Convert a ecoff register number to a gdb REGNUM */
3930
3931 static int
3932 mips_ecoff_reg_to_regnum (int num)
3933 {
3934 if (num < 32)
3935 return num;
3936 else
3937 return num + FP0_REGNUM - 32;
3938 }
3939
3940 static struct gdbarch *
3941 mips_gdbarch_init (struct gdbarch_info info,
3942 struct gdbarch_list *arches)
3943 {
3944 static LONGEST mips_call_dummy_words[] =
3945 {0};
3946 struct gdbarch *gdbarch;
3947 struct gdbarch_tdep *tdep;
3948 int elf_flags;
3949 enum mips_abi mips_abi;
3950
3951 /* Reset the disassembly info, in case it was set to something
3952 non-default. */
3953 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
3954 tm_print_insn_info.arch = bfd_arch_unknown;
3955 tm_print_insn_info.mach = 0;
3956
3957 /* Extract the elf_flags if available */
3958 if (info.abfd != NULL
3959 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3960 elf_flags = elf_elfheader (info.abfd)->e_flags;
3961 else
3962 elf_flags = 0;
3963
3964 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3965 switch ((elf_flags & EF_MIPS_ABI))
3966 {
3967 case E_MIPS_ABI_O32:
3968 mips_abi = MIPS_ABI_O32;
3969 break;
3970 case E_MIPS_ABI_O64:
3971 mips_abi = MIPS_ABI_O64;
3972 break;
3973 case E_MIPS_ABI_EABI32:
3974 mips_abi = MIPS_ABI_EABI32;
3975 break;
3976 case E_MIPS_ABI_EABI64:
3977 mips_abi = MIPS_ABI_EABI64;
3978 break;
3979 default:
3980 if ((elf_flags & EF_MIPS_ABI2))
3981 mips_abi = MIPS_ABI_N32;
3982 else
3983 mips_abi = MIPS_ABI_UNKNOWN;
3984 break;
3985 }
3986
3987 /* Try the architecture for any hint of the corect ABI */
3988 if (mips_abi == MIPS_ABI_UNKNOWN
3989 && info.bfd_arch_info != NULL
3990 && info.bfd_arch_info->arch == bfd_arch_mips)
3991 {
3992 switch (info.bfd_arch_info->mach)
3993 {
3994 case bfd_mach_mips3900:
3995 mips_abi = MIPS_ABI_EABI32;
3996 break;
3997 case bfd_mach_mips4100:
3998 case bfd_mach_mips5000:
3999 mips_abi = MIPS_ABI_EABI64;
4000 break;
4001 case bfd_mach_mips8000:
4002 case bfd_mach_mips10000:
4003 mips_abi = MIPS_ABI_N32;
4004 break;
4005 }
4006 }
4007 #ifdef MIPS_DEFAULT_ABI
4008 if (mips_abi == MIPS_ABI_UNKNOWN)
4009 mips_abi = MIPS_DEFAULT_ABI;
4010 #endif
4011
4012 if (gdbarch_debug)
4013 {
4014 fprintf_unfiltered (gdb_stdlog,
4015 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4016 elf_flags);
4017 fprintf_unfiltered (gdb_stdlog,
4018 "mips_gdbarch_init: mips_abi = %d\n",
4019 mips_abi);
4020 }
4021
4022 /* try to find a pre-existing architecture */
4023 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4024 arches != NULL;
4025 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4026 {
4027 /* MIPS needs to be pedantic about which ABI the object is
4028 using. */
4029 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4030 continue;
4031 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4032 continue;
4033 return arches->gdbarch;
4034 }
4035
4036 /* Need a new architecture. Fill in a target specific vector. */
4037 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4038 gdbarch = gdbarch_alloc (&info, tdep);
4039 tdep->elf_flags = elf_flags;
4040
4041 /* Initially set everything according to the ABI. */
4042 set_gdbarch_short_bit (gdbarch, 16);
4043 set_gdbarch_int_bit (gdbarch, 32);
4044 set_gdbarch_float_bit (gdbarch, 32);
4045 set_gdbarch_double_bit (gdbarch, 64);
4046 set_gdbarch_long_double_bit (gdbarch, 64);
4047 tdep->mips_abi = mips_abi;
4048
4049 switch (mips_abi)
4050 {
4051 case MIPS_ABI_O32:
4052 tdep->mips_abi_string = "o32";
4053 tdep->mips_default_saved_regsize = 4;
4054 tdep->mips_default_stack_argsize = 4;
4055 tdep->mips_fp_register_double = 0;
4056 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4057 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4058 tdep->mips_regs_have_home_p = 1;
4059 tdep->gdb_target_is_mips64 = 0;
4060 tdep->default_mask_address_p = 0;
4061 set_gdbarch_long_bit (gdbarch, 32);
4062 set_gdbarch_ptr_bit (gdbarch, 32);
4063 set_gdbarch_long_long_bit (gdbarch, 64);
4064 break;
4065 case MIPS_ABI_O64:
4066 tdep->mips_abi_string = "o64";
4067 tdep->mips_default_saved_regsize = 8;
4068 tdep->mips_default_stack_argsize = 8;
4069 tdep->mips_fp_register_double = 1;
4070 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4071 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4072 tdep->mips_regs_have_home_p = 1;
4073 tdep->gdb_target_is_mips64 = 1;
4074 tdep->default_mask_address_p = 0;
4075 set_gdbarch_long_bit (gdbarch, 32);
4076 set_gdbarch_ptr_bit (gdbarch, 32);
4077 set_gdbarch_long_long_bit (gdbarch, 64);
4078 break;
4079 case MIPS_ABI_EABI32:
4080 tdep->mips_abi_string = "eabi32";
4081 tdep->mips_default_saved_regsize = 4;
4082 tdep->mips_default_stack_argsize = 4;
4083 tdep->mips_fp_register_double = 0;
4084 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4085 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4086 tdep->mips_regs_have_home_p = 0;
4087 tdep->gdb_target_is_mips64 = 0;
4088 tdep->default_mask_address_p = 0;
4089 set_gdbarch_long_bit (gdbarch, 32);
4090 set_gdbarch_ptr_bit (gdbarch, 32);
4091 set_gdbarch_long_long_bit (gdbarch, 64);
4092 break;
4093 case MIPS_ABI_EABI64:
4094 tdep->mips_abi_string = "eabi64";
4095 tdep->mips_default_saved_regsize = 8;
4096 tdep->mips_default_stack_argsize = 8;
4097 tdep->mips_fp_register_double = 1;
4098 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4099 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4100 tdep->mips_regs_have_home_p = 0;
4101 tdep->gdb_target_is_mips64 = 1;
4102 tdep->default_mask_address_p = 0;
4103 set_gdbarch_long_bit (gdbarch, 64);
4104 set_gdbarch_ptr_bit (gdbarch, 64);
4105 set_gdbarch_long_long_bit (gdbarch, 64);
4106 break;
4107 case MIPS_ABI_N32:
4108 tdep->mips_abi_string = "n32";
4109 tdep->mips_default_saved_regsize = 4;
4110 tdep->mips_default_stack_argsize = 8;
4111 tdep->mips_fp_register_double = 1;
4112 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4113 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4114 tdep->mips_regs_have_home_p = 0;
4115 tdep->gdb_target_is_mips64 = 0;
4116 tdep->default_mask_address_p = 0;
4117 set_gdbarch_long_bit (gdbarch, 32);
4118 set_gdbarch_ptr_bit (gdbarch, 32);
4119 set_gdbarch_long_long_bit (gdbarch, 64);
4120
4121 /* Set up the disassembler info, so that we get the right
4122 register names from libopcodes. */
4123 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4124 tm_print_insn_info.arch = bfd_arch_mips;
4125 if (info.bfd_arch_info != NULL
4126 && info.bfd_arch_info->arch == bfd_arch_mips
4127 && info.bfd_arch_info->mach)
4128 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4129 else
4130 tm_print_insn_info.mach = bfd_mach_mips8000;
4131 break;
4132 default:
4133 tdep->mips_abi_string = "default";
4134 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
4135 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
4136 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
4137 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4138 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4139 tdep->mips_regs_have_home_p = 1;
4140 tdep->gdb_target_is_mips64 = 0;
4141 tdep->default_mask_address_p = 0;
4142 set_gdbarch_long_bit (gdbarch, 32);
4143 set_gdbarch_ptr_bit (gdbarch, 32);
4144 set_gdbarch_long_long_bit (gdbarch, 64);
4145 break;
4146 }
4147
4148 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4149 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4150 comment:
4151
4152 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4153 flag in object files because to do so would make it impossible to
4154 link with libraries compiled without "-gp32". This is
4155 unnecessarily restrictive.
4156
4157 We could solve this problem by adding "-gp32" multilibs to gcc,
4158 but to set this flag before gcc is built with such multilibs will
4159 break too many systems.''
4160
4161 But even more unhelpfully, the default linker output target for
4162 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4163 for 64-bit programs - you need to change the ABI to change this,
4164 and not all gcc targets support that currently. Therefore using
4165 this flag to detect 32-bit mode would do the wrong thing given
4166 the current gcc - it would make GDB treat these 64-bit programs
4167 as 32-bit programs by default. */
4168
4169 /* enable/disable the MIPS FPU */
4170 if (!mips_fpu_type_auto)
4171 tdep->mips_fpu_type = mips_fpu_type;
4172 else if (info.bfd_arch_info != NULL
4173 && info.bfd_arch_info->arch == bfd_arch_mips)
4174 switch (info.bfd_arch_info->mach)
4175 {
4176 case bfd_mach_mips3900:
4177 case bfd_mach_mips4100:
4178 case bfd_mach_mips4111:
4179 tdep->mips_fpu_type = MIPS_FPU_NONE;
4180 break;
4181 case bfd_mach_mips4650:
4182 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4183 break;
4184 default:
4185 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4186 break;
4187 }
4188 else
4189 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4190
4191 /* MIPS version of register names. NOTE: At present the MIPS
4192 register name management is part way between the old -
4193 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4194 Further work on it is required. */
4195 set_gdbarch_register_name (gdbarch, mips_register_name);
4196 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4197 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4198 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4199 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4200 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4201 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4202
4203 /* Add/remove bits from an address. The MIPS needs be careful to
4204 ensure that all 32 bit addresses are sign extended to 64 bits. */
4205 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4206
4207 /* There's a mess in stack frame creation. See comments in
4208 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
4209 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
4210 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
4211
4212 /* Map debug register numbers onto internal register numbers. */
4213 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4214 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4215
4216 /* Initialize a frame */
4217 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4218
4219 /* MIPS version of CALL_DUMMY */
4220
4221 set_gdbarch_call_dummy_p (gdbarch, 1);
4222 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4223 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4224 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4225 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4226 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4227 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4228 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4229 set_gdbarch_call_dummy_length (gdbarch, 0);
4230 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4231 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4232 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4233 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4234 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4235 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4236 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4237
4238 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4239 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4240
4241 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4242 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4243 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4244 set_gdbarch_ieee_float (gdbarch, 1);
4245
4246 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4247 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4248
4249 return gdbarch;
4250 }
4251
4252 static void
4253 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4254 {
4255 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4256 if (tdep != NULL)
4257 {
4258 int ef_mips_arch;
4259 int ef_mips_32bitmode;
4260 /* determine the ISA */
4261 switch (tdep->elf_flags & EF_MIPS_ARCH)
4262 {
4263 case E_MIPS_ARCH_1:
4264 ef_mips_arch = 1;
4265 break;
4266 case E_MIPS_ARCH_2:
4267 ef_mips_arch = 2;
4268 break;
4269 case E_MIPS_ARCH_3:
4270 ef_mips_arch = 3;
4271 break;
4272 case E_MIPS_ARCH_4:
4273 ef_mips_arch = 4;
4274 break;
4275 default:
4276 ef_mips_arch = 0;
4277 break;
4278 }
4279 /* determine the size of a pointer */
4280 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4281 fprintf_unfiltered (file,
4282 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
4283 tdep->elf_flags);
4284 fprintf_unfiltered (file,
4285 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4286 ef_mips_32bitmode);
4287 fprintf_unfiltered (file,
4288 "mips_dump_tdep: ef_mips_arch = %d\n",
4289 ef_mips_arch);
4290 fprintf_unfiltered (file,
4291 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4292 tdep->mips_abi,
4293 tdep->mips_abi_string);
4294 fprintf_unfiltered (file,
4295 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4296 mips_mask_address_p (),
4297 tdep->default_mask_address_p);
4298 }
4299 fprintf_unfiltered (file,
4300 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4301 FP_REGISTER_DOUBLE);
4302 fprintf_unfiltered (file,
4303 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4304 MIPS_DEFAULT_FPU_TYPE,
4305 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4306 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4307 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4308 : "???"));
4309 fprintf_unfiltered (file,
4310 "mips_dump_tdep: MIPS_EABI = %d\n",
4311 MIPS_EABI);
4312 fprintf_unfiltered (file,
4313 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4314 MIPS_LAST_FP_ARG_REGNUM,
4315 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4316 fprintf_unfiltered (file,
4317 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4318 MIPS_FPU_TYPE,
4319 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4320 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4321 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4322 : "???"));
4323 fprintf_unfiltered (file,
4324 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4325 MIPS_DEFAULT_SAVED_REGSIZE);
4326 fprintf_unfiltered (file,
4327 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4328 FP_REGISTER_DOUBLE);
4329 fprintf_unfiltered (file,
4330 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4331 MIPS_REGS_HAVE_HOME_P);
4332 fprintf_unfiltered (file,
4333 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4334 MIPS_DEFAULT_STACK_ARGSIZE);
4335 fprintf_unfiltered (file,
4336 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4337 MIPS_STACK_ARGSIZE);
4338 fprintf_unfiltered (file,
4339 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4340 MIPS_REGSIZE);
4341 fprintf_unfiltered (file,
4342 "mips_dump_tdep: A0_REGNUM = %d\n",
4343 A0_REGNUM);
4344 fprintf_unfiltered (file,
4345 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4346 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4347 fprintf_unfiltered (file,
4348 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4349 XSTRING (ATTACH_DETACH));
4350 fprintf_unfiltered (file,
4351 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4352 BADVADDR_REGNUM);
4353 fprintf_unfiltered (file,
4354 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4355 fprintf_unfiltered (file,
4356 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4357 CAUSE_REGNUM);
4358 fprintf_unfiltered (file,
4359 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4360 CPLUS_MARKER);
4361 fprintf_unfiltered (file,
4362 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4363 DEFAULT_MIPS_TYPE);
4364 fprintf_unfiltered (file,
4365 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4366 XSTRING (DO_REGISTERS_INFO));
4367 fprintf_unfiltered (file,
4368 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4369 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4370 fprintf_unfiltered (file,
4371 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4372 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4373 fprintf_unfiltered (file,
4374 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4375 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4376 fprintf_unfiltered (file,
4377 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4378 FCRCS_REGNUM);
4379 fprintf_unfiltered (file,
4380 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4381 FCRIR_REGNUM);
4382 fprintf_unfiltered (file,
4383 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4384 FIRST_EMBED_REGNUM);
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4387 FPA0_REGNUM);
4388 fprintf_unfiltered (file,
4389 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4390 GDB_TARGET_IS_MIPS64);
4391 fprintf_unfiltered (file,
4392 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4393 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4394 fprintf_unfiltered (file,
4395 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4396 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4397 fprintf_unfiltered (file,
4398 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4399 GEN_REG_SAVE_MASK);
4400 fprintf_unfiltered (file,
4401 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4402 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4403 fprintf_unfiltered (file,
4404 "mips_dump_tdep: HI_REGNUM = %d\n",
4405 HI_REGNUM);
4406 fprintf_unfiltered (file,
4407 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4408 fprintf_unfiltered (file,
4409 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4410 fprintf_unfiltered (file,
4411 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4412 XSTRING (IGNORE_HELPER_CALL (PC)));
4413 fprintf_unfiltered (file,
4414 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4415 XSTRING (IN_SIGTRAMP (PC, NAME)));
4416 fprintf_unfiltered (file,
4417 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4418 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4419 fprintf_unfiltered (file,
4420 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4421 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4422 fprintf_unfiltered (file,
4423 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4424 fprintf_unfiltered (file,
4425 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4426 LAST_EMBED_REGNUM);
4427 fprintf_unfiltered (file,
4428 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4429 fprintf_unfiltered (file,
4430 "mips_dump_tdep: LO_REGNUM = %d\n",
4431 LO_REGNUM);
4432 #ifdef MACHINE_CPROC_FP_OFFSET
4433 fprintf_unfiltered (file,
4434 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4435 MACHINE_CPROC_FP_OFFSET);
4436 #endif
4437 #ifdef MACHINE_CPROC_PC_OFFSET
4438 fprintf_unfiltered (file,
4439 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4440 MACHINE_CPROC_PC_OFFSET);
4441 #endif
4442 #ifdef MACHINE_CPROC_SP_OFFSET
4443 fprintf_unfiltered (file,
4444 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4445 MACHINE_CPROC_SP_OFFSET);
4446 #endif
4447 fprintf_unfiltered (file,
4448 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4449 fprintf_unfiltered (file,
4450 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4451 fprintf_unfiltered (file,
4452 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4453 MIPS16_INSTLEN);
4454 fprintf_unfiltered (file,
4455 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4456 fprintf_unfiltered (file,
4457 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4458 fprintf_unfiltered (file,
4459 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4460 fprintf_unfiltered (file,
4461 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4462 MIPS_INSTLEN);
4463 fprintf_unfiltered (file,
4464 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4465 MIPS_LAST_ARG_REGNUM,
4466 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
4467 fprintf_unfiltered (file,
4468 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4469 MIPS_NUMREGS);
4470 fprintf_unfiltered (file,
4471 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4472 fprintf_unfiltered (file,
4473 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4474 MIPS_SAVED_REGSIZE);
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4477 fprintf_unfiltered (file,
4478 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4479 XSTRING (MSYMBOL_SIZE (MSYM)));
4480 fprintf_unfiltered (file,
4481 "mips_dump_tdep: OP_LDFPR = used?\n");
4482 fprintf_unfiltered (file,
4483 "mips_dump_tdep: OP_LDGPR = used?\n");
4484 fprintf_unfiltered (file,
4485 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4486 fprintf_unfiltered (file,
4487 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4488 fprintf_unfiltered (file,
4489 "mips_dump_tdep: PRID_REGNUM = %d\n",
4490 PRID_REGNUM);
4491 fprintf_unfiltered (file,
4492 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4493 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4494 fprintf_unfiltered (file,
4495 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4496 fprintf_unfiltered (file,
4497 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4498 fprintf_unfiltered (file,
4499 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4500 fprintf_unfiltered (file,
4501 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4502 fprintf_unfiltered (file,
4503 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4504 fprintf_unfiltered (file,
4505 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4506 fprintf_unfiltered (file,
4507 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4508 fprintf_unfiltered (file,
4509 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4510 fprintf_unfiltered (file,
4511 "mips_dump_tdep: PROC_PC_REG = function?\n");
4512 fprintf_unfiltered (file,
4513 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4514 fprintf_unfiltered (file,
4515 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4516 fprintf_unfiltered (file,
4517 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4518 fprintf_unfiltered (file,
4519 "mips_dump_tdep: PS_REGNUM = %d\n",
4520 PS_REGNUM);
4521 fprintf_unfiltered (file,
4522 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4523 PUSH_FP_REGNUM);
4524 fprintf_unfiltered (file,
4525 "mips_dump_tdep: RA_REGNUM = %d\n",
4526 RA_REGNUM);
4527 fprintf_unfiltered (file,
4528 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4529 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4530 fprintf_unfiltered (file,
4531 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4532 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4533 fprintf_unfiltered (file,
4534 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4535 fprintf_unfiltered (file,
4536 "mips_dump_tdep: ROUND_DOWN = function?\n");
4537 fprintf_unfiltered (file,
4538 "mips_dump_tdep: ROUND_UP = function?\n");
4539 #ifdef SAVED_BYTES
4540 fprintf_unfiltered (file,
4541 "mips_dump_tdep: SAVED_BYTES = %d\n",
4542 SAVED_BYTES);
4543 #endif
4544 #ifdef SAVED_FP
4545 fprintf_unfiltered (file,
4546 "mips_dump_tdep: SAVED_FP = %d\n",
4547 SAVED_FP);
4548 #endif
4549 #ifdef SAVED_PC
4550 fprintf_unfiltered (file,
4551 "mips_dump_tdep: SAVED_PC = %d\n",
4552 SAVED_PC);
4553 #endif
4554 fprintf_unfiltered (file,
4555 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4556 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4557 fprintf_unfiltered (file,
4558 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4559 fprintf_unfiltered (file,
4560 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4561 SIGFRAME_BASE);
4562 fprintf_unfiltered (file,
4563 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4564 SIGFRAME_FPREGSAVE_OFF);
4565 fprintf_unfiltered (file,
4566 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4567 SIGFRAME_PC_OFF);
4568 fprintf_unfiltered (file,
4569 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4570 SIGFRAME_REGSAVE_OFF);
4571 fprintf_unfiltered (file,
4572 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4573 SIGFRAME_REG_SIZE);
4574 fprintf_unfiltered (file,
4575 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4576 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4577 fprintf_unfiltered (file,
4578 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4579 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4580 fprintf_unfiltered (file,
4581 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
4582 SOFTWARE_SINGLE_STEP_P ());
4583 fprintf_unfiltered (file,
4584 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4585 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4586 #ifdef STACK_END_ADDR
4587 fprintf_unfiltered (file,
4588 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4589 STACK_END_ADDR);
4590 #endif
4591 fprintf_unfiltered (file,
4592 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4593 XSTRING (STEP_SKIPS_DELAY (PC)));
4594 fprintf_unfiltered (file,
4595 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4596 STEP_SKIPS_DELAY_P);
4597 fprintf_unfiltered (file,
4598 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4599 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4600 fprintf_unfiltered (file,
4601 "mips_dump_tdep: T9_REGNUM = %d\n",
4602 T9_REGNUM);
4603 fprintf_unfiltered (file,
4604 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4605 fprintf_unfiltered (file,
4606 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4607 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4608 fprintf_unfiltered (file,
4609 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4610 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4611 fprintf_unfiltered (file,
4612 "mips_dump_tdep: TARGET_MIPS = used?\n");
4613 fprintf_unfiltered (file,
4614 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4615 XSTRING (TM_PRINT_INSN_MACH));
4616 #ifdef TRACE_CLEAR
4617 fprintf_unfiltered (file,
4618 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4619 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4620 #endif
4621 #ifdef TRACE_FLAVOR
4622 fprintf_unfiltered (file,
4623 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4624 TRACE_FLAVOR);
4625 #endif
4626 #ifdef TRACE_FLAVOR_SIZE
4627 fprintf_unfiltered (file,
4628 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4629 TRACE_FLAVOR_SIZE);
4630 #endif
4631 #ifdef TRACE_SET
4632 fprintf_unfiltered (file,
4633 "mips_dump_tdep: TRACE_SET # %s\n",
4634 XSTRING (TRACE_SET (X,STATE)));
4635 #endif
4636 fprintf_unfiltered (file,
4637 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4638 #ifdef UNUSED_REGNUM
4639 fprintf_unfiltered (file,
4640 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4641 UNUSED_REGNUM);
4642 #endif
4643 fprintf_unfiltered (file,
4644 "mips_dump_tdep: V0_REGNUM = %d\n",
4645 V0_REGNUM);
4646 fprintf_unfiltered (file,
4647 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4648 (long) VM_MIN_ADDRESS);
4649 #ifdef VX_NUM_REGS
4650 fprintf_unfiltered (file,
4651 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4652 VX_NUM_REGS);
4653 #endif
4654 fprintf_unfiltered (file,
4655 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4656 ZERO_REGNUM);
4657 fprintf_unfiltered (file,
4658 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4659 _PROC_MAGIC_);
4660 }
4661
4662 void
4663 _initialize_mips_tdep (void)
4664 {
4665 static struct cmd_list_element *mipsfpulist = NULL;
4666 struct cmd_list_element *c;
4667
4668 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
4669 if (!tm_print_insn) /* Someone may have already set it */
4670 tm_print_insn = gdb_print_insn_mips;
4671
4672 /* Add root prefix command for all "set mips"/"show mips" commands */
4673 add_prefix_cmd ("mips", no_class, set_mips_command,
4674 "Various MIPS specific commands.",
4675 &setmipscmdlist, "set mips ", 0, &setlist);
4676
4677 add_prefix_cmd ("mips", no_class, show_mips_command,
4678 "Various MIPS specific commands.",
4679 &showmipscmdlist, "show mips ", 0, &showlist);
4680
4681 /* Allow the user to override the saved register size. */
4682 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4683 class_obscure,
4684 size_enums,
4685 &mips_saved_regsize_string, "\
4686 Set size of general purpose registers saved on the stack.\n\
4687 This option can be set to one of:\n\
4688 32 - Force GDB to treat saved GP registers as 32-bit\n\
4689 64 - Force GDB to treat saved GP registers as 64-bit\n\
4690 auto - Allow GDB to use the target's default setting or autodetect the\n\
4691 saved GP register size from information contained in the executable.\n\
4692 (default: auto)",
4693 &setmipscmdlist),
4694 &showmipscmdlist);
4695
4696 /* Allow the user to override the argument stack size. */
4697 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4698 class_obscure,
4699 size_enums,
4700 &mips_stack_argsize_string, "\
4701 Set the amount of stack space reserved for each argument.\n\
4702 This option can be set to one of:\n\
4703 32 - Force GDB to allocate 32-bit chunks per argument\n\
4704 64 - Force GDB to allocate 64-bit chunks per argument\n\
4705 auto - Allow GDB to determine the correct setting from the current\n\
4706 target and executable (default)",
4707 &setmipscmdlist),
4708 &showmipscmdlist);
4709
4710 /* Let the user turn off floating point and set the fence post for
4711 heuristic_proc_start. */
4712
4713 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4714 "Set use of MIPS floating-point coprocessor.",
4715 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4716 add_cmd ("single", class_support, set_mipsfpu_single_command,
4717 "Select single-precision MIPS floating-point coprocessor.",
4718 &mipsfpulist);
4719 add_cmd ("double", class_support, set_mipsfpu_double_command,
4720 "Select double-precision MIPS floating-point coprocessor.",
4721 &mipsfpulist);
4722 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4723 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4724 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4725 add_cmd ("none", class_support, set_mipsfpu_none_command,
4726 "Select no MIPS floating-point coprocessor.",
4727 &mipsfpulist);
4728 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4729 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4730 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4731 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4732 "Select MIPS floating-point coprocessor automatically.",
4733 &mipsfpulist);
4734 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4735 "Show current use of MIPS floating-point coprocessor target.",
4736 &showlist);
4737
4738 #if !GDB_MULTI_ARCH
4739 c = add_set_cmd ("processor", class_support, var_string_noescape,
4740 (char *) &tmp_mips_processor_type,
4741 "Set the type of MIPS processor in use.\n\
4742 Set this to be able to access processor-type-specific registers.\n\
4743 ",
4744 &setlist);
4745 c->function.cfunc = mips_set_processor_type_command;
4746 c = add_show_from_set (c, &showlist);
4747 c->function.cfunc = mips_show_processor_type_command;
4748
4749 tmp_mips_processor_type = xstrdup (DEFAULT_MIPS_TYPE);
4750 mips_set_processor_type_command (xstrdup (DEFAULT_MIPS_TYPE), 0);
4751 #endif
4752
4753 /* We really would like to have both "0" and "unlimited" work, but
4754 command.c doesn't deal with that. So make it a var_zinteger
4755 because the user can always use "999999" or some such for unlimited. */
4756 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4757 (char *) &heuristic_fence_post,
4758 "\
4759 Set the distance searched for the start of a function.\n\
4760 If you are debugging a stripped executable, GDB needs to search through the\n\
4761 program for the start of a function. This command sets the distance of the\n\
4762 search. The only need to set it is when debugging a stripped executable.",
4763 &setlist);
4764 /* We need to throw away the frame cache when we set this, since it
4765 might change our ability to get backtraces. */
4766 c->function.sfunc = reinit_frame_cache_sfunc;
4767 add_show_from_set (c, &showlist);
4768
4769 /* Allow the user to control whether the upper bits of 64-bit
4770 addresses should be zeroed. */
4771 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4772 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4773 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4774 the correct value.\n",
4775 &setmipscmdlist);
4776 add_cmd ("mask-address", no_class, show_mask_address,
4777 "Show current mask-address value", &showmipscmdlist);
4778
4779 /* Allow the user to control the size of 32 bit registers within the
4780 raw remote packet. */
4781 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4782 class_obscure,
4783 var_boolean,
4784 (char *)&mips64_transfers_32bit_regs_p, "\
4785 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4786 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4787 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
4788 64 bits for others. Use \"off\" to disable compatibility mode",
4789 &setlist),
4790 &showlist);
4791
4792 /* Debug this files internals. */
4793 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4794 &mips_debug, "Set mips debugging.\n\
4795 When non-zero, mips specific debugging is enabled.", &setdebuglist),
4796 &showdebuglist);
4797 }
4798
This page took 0.13016 seconds and 4 git commands to generate.