Fix arm-epoc-pe build problem:
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45
46 /* The sizes of floating point registers. */
47
48 enum
49 {
50 MIPS_FPU_SINGLE_REGSIZE = 4,
51 MIPS_FPU_DOUBLE_REGSIZE = 8
52 };
53
54 /* All the possible MIPS ABIs. */
55
56 enum mips_abi
57 {
58 MIPS_ABI_UNKNOWN,
59 MIPS_ABI_N32,
60 MIPS_ABI_O32,
61 MIPS_ABI_O64,
62 MIPS_ABI_EABI32,
63 MIPS_ABI_EABI64
64 };
65
66 struct frame_extra_info
67 {
68 mips_extra_func_info_t proc_desc;
69 int num_args;
70 };
71
72 /* Various MIPS ISA options (related to stack analysis) can be
73 overridden dynamically. Establish an enum/array for managing
74 them. */
75
76 static const char size_auto[] = "auto";
77 static const char size_32[] = "32";
78 static const char size_64[] = "64";
79
80 static const char *size_enums[] = {
81 size_auto,
82 size_32,
83 size_64,
84 0
85 };
86
87 /* Some MIPS boards don't support floating point while others only
88 support single-precision floating-point operations. See also
89 FP_REGISTER_DOUBLE. */
90
91 enum mips_fpu_type
92 {
93 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
94 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
95 MIPS_FPU_NONE /* No floating point. */
96 };
97
98 #ifndef MIPS_DEFAULT_FPU_TYPE
99 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
100 #endif
101 static int mips_fpu_type_auto = 1;
102 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
103 #define MIPS_FPU_TYPE mips_fpu_type
104
105 /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
106 #ifndef FP_REGISTER_DOUBLE
107 #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
108 #endif
109
110
111 /* MIPS specific per-architecture information */
112 struct gdbarch_tdep
113 {
114 /* from the elf header */
115 int elf_flags;
116 /* mips options */
117 enum mips_abi mips_abi;
118 enum mips_fpu_type mips_fpu_type;
119 int mips_last_arg_regnum;
120 int mips_last_fp_arg_regnum;
121 int mips_default_saved_regsize;
122 int mips_fp_register_double;
123 int mips_regs_have_home_p;
124 int mips_default_stack_argsize;
125 int gdb_target_is_mips64;
126 };
127
128 #if GDB_MULTI_ARCH
129 #undef MIPS_EABI
130 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
131 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
132 #endif
133
134 #if GDB_MULTI_ARCH
135 #undef MIPS_LAST_FP_ARG_REGNUM
136 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
137 #endif
138
139 #if GDB_MULTI_ARCH
140 #undef MIPS_LAST_ARG_REGNUM
141 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
142 #endif
143
144 #if GDB_MULTI_ARCH
145 #undef MIPS_FPU_TYPE
146 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
147 #endif
148
149 /* Return the currently configured (or set) saved register size. */
150
151 #if GDB_MULTI_ARCH
152 #undef MIPS_DEFAULT_SAVED_REGSIZE
153 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
154 #elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
155 #define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
156 #endif
157
158 static const char *mips_saved_regsize_string = size_auto;
159
160 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
161
162 static unsigned int
163 mips_saved_regsize ()
164 {
165 if (mips_saved_regsize_string == size_auto)
166 return MIPS_DEFAULT_SAVED_REGSIZE;
167 else if (mips_saved_regsize_string == size_64)
168 return 8;
169 else /* if (mips_saved_regsize_string == size_32) */
170 return 4;
171 }
172
173 /* Indicate that the ABI makes use of double-precision registers
174 provided by the FPU (rather than combining pairs of registers to
175 form double-precision values). Do not use "TARGET_IS_MIPS64" to
176 determine if the ABI is using double-precision registers. See also
177 MIPS_FPU_TYPE. */
178 #if GDB_MULTI_ARCH
179 #undef FP_REGISTER_DOUBLE
180 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
181 #endif
182
183 /* Does the caller allocate a ``home'' for each register used in the
184 function call? The N32 ABI and MIPS_EABI do not, the others do. */
185
186 #if GDB_MULTI_ARCH
187 #undef MIPS_REGS_HAVE_HOME_P
188 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
189 #elif !defined (MIPS_REGS_HAVE_HOME_P)
190 #define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
191 #endif
192
193 /* The amount of space reserved on the stack for registers. This is
194 different to MIPS_SAVED_REGSIZE as it determines the alignment of
195 data allocated after the registers have run out. */
196
197 #if GDB_MULTI_ARCH
198 #undef MIPS_DEFAULT_STACK_ARGSIZE
199 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
200 #elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
201 #define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
202 #endif
203
204 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
205
206 static const char *mips_stack_argsize_string = size_auto;
207
208 static unsigned int
209 mips_stack_argsize (void)
210 {
211 if (mips_stack_argsize_string == size_auto)
212 return MIPS_DEFAULT_STACK_ARGSIZE;
213 else if (mips_stack_argsize_string == size_64)
214 return 8;
215 else /* if (mips_stack_argsize_string == size_32) */
216 return 4;
217 }
218
219 #if GDB_MULTI_ARCH
220 #undef GDB_TARGET_IS_MIPS64
221 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
222 #endif
223
224 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
225
226 #if 0
227 static int mips_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
228 #endif
229
230 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
231
232 static void mips_print_register (int, int);
233
234 static mips_extra_func_info_t
235 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
236
237 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
238
239 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
240
241 int mips_set_processor_type (char *);
242
243 static void mips_show_processor_type_command (char *, int);
244
245 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
246
247 static mips_extra_func_info_t
248 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
249
250 static CORE_ADDR after_prologue (CORE_ADDR pc,
251 mips_extra_func_info_t proc_desc);
252
253 /* This value is the model of MIPS in use. It is derived from the value
254 of the PrID register. */
255
256 char *mips_processor_type;
257
258 char *tmp_mips_processor_type;
259
260 /* A set of original names, to be used when restoring back to generic
261 registers from a specific set. */
262
263 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
264 char **mips_processor_reg_names = mips_generic_reg_names;
265
266 /* The list of available "set mips " and "show mips " commands */
267 static struct cmd_list_element *setmipscmdlist = NULL;
268 static struct cmd_list_element *showmipscmdlist = NULL;
269
270 char *
271 mips_register_name (i)
272 int i;
273 {
274 return mips_processor_reg_names[i];
275 }
276 /* *INDENT-OFF* */
277 /* Names of IDT R3041 registers. */
278
279 char *mips_r3041_reg_names[] = {
280 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
281 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
282 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
283 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
284 "sr", "lo", "hi", "bad", "cause","pc",
285 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
286 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
287 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
288 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
289 "fsr", "fir", "fp", "",
290 "", "", "bus", "ccfg", "", "", "", "",
291 "", "", "port", "cmp", "", "", "epc", "prid",
292 };
293
294 /* Names of IDT R3051 registers. */
295
296 char *mips_r3051_reg_names[] = {
297 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
298 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
299 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
300 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
301 "sr", "lo", "hi", "bad", "cause","pc",
302 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
303 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
304 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
305 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
306 "fsr", "fir", "fp", "",
307 "inx", "rand", "elo", "", "ctxt", "", "", "",
308 "", "", "ehi", "", "", "", "epc", "prid",
309 };
310
311 /* Names of IDT R3081 registers. */
312
313 char *mips_r3081_reg_names[] = {
314 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
315 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
316 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
317 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
318 "sr", "lo", "hi", "bad", "cause","pc",
319 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
320 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
321 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
322 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
323 "fsr", "fir", "fp", "",
324 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
325 "", "", "ehi", "", "", "", "epc", "prid",
326 };
327
328 /* Names of LSI 33k registers. */
329
330 char *mips_lsi33k_reg_names[] = {
331 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
332 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
333 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
334 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
335 "epc", "hi", "lo", "sr", "cause","badvaddr",
336 "dcic", "bpc", "bda", "", "", "", "", "",
337 "", "", "", "", "", "", "", "",
338 "", "", "", "", "", "", "", "",
339 "", "", "", "", "", "", "", "",
340 "", "", "", "",
341 "", "", "", "", "", "", "", "",
342 "", "", "", "", "", "", "", "",
343 };
344
345 struct {
346 char *name;
347 char **regnames;
348 } mips_processor_type_table[] = {
349 { "generic", mips_generic_reg_names },
350 { "r3041", mips_r3041_reg_names },
351 { "r3051", mips_r3051_reg_names },
352 { "r3071", mips_r3081_reg_names },
353 { "r3081", mips_r3081_reg_names },
354 { "lsi33k", mips_lsi33k_reg_names },
355 { NULL, NULL }
356 };
357 /* *INDENT-ON* */
358
359
360
361
362 /* Table to translate MIPS16 register field to actual register number. */
363 static int mips16_to_32_reg[8] =
364 {16, 17, 2, 3, 4, 5, 6, 7};
365
366 /* Heuristic_proc_start may hunt through the text section for a long
367 time across a 2400 baud serial line. Allows the user to limit this
368 search. */
369
370 static unsigned int heuristic_fence_post = 0;
371
372 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
373 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
374 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
375 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
376 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
377 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
378 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
379 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
380 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
381 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
382 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
383 #define _PROC_MAGIC_ 0x0F0F0F0F
384 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
385 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
386
387 struct linked_proc_info
388 {
389 struct mips_extra_func_info info;
390 struct linked_proc_info *next;
391 }
392 *linked_proc_desc_table = NULL;
393
394 void
395 mips_print_extra_frame_info (fi)
396 struct frame_info *fi;
397 {
398 if (fi
399 && fi->extra_info
400 && fi->extra_info->proc_desc
401 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
402 printf_filtered (" frame pointer is at %s+%s\n",
403 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
404 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
405 }
406
407 /* Convert between RAW and VIRTUAL registers. The RAW register size
408 defines the remote-gdb packet. */
409
410 static int mips64_transfers_32bit_regs_p = 0;
411
412 int
413 mips_register_raw_size (reg_nr)
414 int reg_nr;
415 {
416 if (mips64_transfers_32bit_regs_p)
417 return REGISTER_VIRTUAL_SIZE (reg_nr);
418 else
419 return MIPS_REGSIZE;
420 }
421
422 int
423 mips_register_convertible (reg_nr)
424 int reg_nr;
425 {
426 if (mips64_transfers_32bit_regs_p)
427 return 0;
428 else
429 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
430 }
431
432 void
433 mips_register_convert_to_virtual (n, virtual_type, raw_buf, virt_buf)
434 int n;
435 struct type *virtual_type;
436 char *raw_buf;
437 char *virt_buf;
438 {
439 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
440 memcpy (virt_buf,
441 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
442 TYPE_LENGTH (virtual_type));
443 else
444 memcpy (virt_buf,
445 raw_buf,
446 TYPE_LENGTH (virtual_type));
447 }
448
449 void
450 mips_register_convert_to_raw (virtual_type, n, virt_buf, raw_buf)
451 struct type *virtual_type;
452 int n;
453 char *virt_buf;
454 char *raw_buf;
455 {
456 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
457 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
458 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
459 virt_buf,
460 TYPE_LENGTH (virtual_type));
461 else
462 memcpy (raw_buf,
463 virt_buf,
464 TYPE_LENGTH (virtual_type));
465 }
466
467 /* Should the upper word of 64-bit addresses be zeroed? */
468 static int mask_address_p = 1;
469
470 /* Should call_function allocate stack space for a struct return? */
471 int
472 mips_use_struct_convention (gcc_p, type)
473 int gcc_p;
474 struct type *type;
475 {
476 if (MIPS_EABI)
477 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
478 else
479 return 1; /* Structures are returned by ref in extra arg0 */
480 }
481
482 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
483
484 static int
485 pc_is_mips16 (bfd_vma memaddr)
486 {
487 struct minimal_symbol *sym;
488
489 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
490 if (IS_MIPS16_ADDR (memaddr))
491 return 1;
492
493 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
494 the high bit of the info field. Use this to decide if the function is
495 MIPS16 or normal MIPS. */
496 sym = lookup_minimal_symbol_by_pc (memaddr);
497 if (sym)
498 return MSYMBOL_IS_SPECIAL (sym);
499 else
500 return 0;
501 }
502
503
504 /* This returns the PC of the first inst after the prologue. If we can't
505 find the prologue, then return 0. */
506
507 static CORE_ADDR
508 after_prologue (pc, proc_desc)
509 CORE_ADDR pc;
510 mips_extra_func_info_t proc_desc;
511 {
512 struct symtab_and_line sal;
513 CORE_ADDR func_addr, func_end;
514
515 if (!proc_desc)
516 proc_desc = find_proc_desc (pc, NULL);
517
518 if (proc_desc)
519 {
520 /* If function is frameless, then we need to do it the hard way. I
521 strongly suspect that frameless always means prologueless... */
522 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
523 && PROC_FRAME_OFFSET (proc_desc) == 0)
524 return 0;
525 }
526
527 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
528 return 0; /* Unknown */
529
530 sal = find_pc_line (func_addr, 0);
531
532 if (sal.end < func_end)
533 return sal.end;
534
535 /* The line after the prologue is after the end of the function. In this
536 case, tell the caller to find the prologue the hard way. */
537
538 return 0;
539 }
540
541 /* Decode a MIPS32 instruction that saves a register in the stack, and
542 set the appropriate bit in the general register mask or float register mask
543 to indicate which register is saved. This is a helper function
544 for mips_find_saved_regs. */
545
546 static void
547 mips32_decode_reg_save (inst, gen_mask, float_mask)
548 t_inst inst;
549 unsigned long *gen_mask;
550 unsigned long *float_mask;
551 {
552 int reg;
553
554 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
555 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
556 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
557 {
558 /* It might be possible to use the instruction to
559 find the offset, rather than the code below which
560 is based on things being in a certain order in the
561 frame, but figuring out what the instruction's offset
562 is relative to might be a little tricky. */
563 reg = (inst & 0x001f0000) >> 16;
564 *gen_mask |= (1 << reg);
565 }
566 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
567 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
568 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
569
570 {
571 reg = ((inst & 0x001f0000) >> 16);
572 *float_mask |= (1 << reg);
573 }
574 }
575
576 /* Decode a MIPS16 instruction that saves a register in the stack, and
577 set the appropriate bit in the general register or float register mask
578 to indicate which register is saved. This is a helper function
579 for mips_find_saved_regs. */
580
581 static void
582 mips16_decode_reg_save (inst, gen_mask)
583 t_inst inst;
584 unsigned long *gen_mask;
585 {
586 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
587 {
588 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
589 *gen_mask |= (1 << reg);
590 }
591 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
592 {
593 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
594 *gen_mask |= (1 << reg);
595 }
596 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
597 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
598 *gen_mask |= (1 << RA_REGNUM);
599 }
600
601
602 /* Fetch and return instruction from the specified location. If the PC
603 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
604
605 static t_inst
606 mips_fetch_instruction (addr)
607 CORE_ADDR addr;
608 {
609 char buf[MIPS_INSTLEN];
610 int instlen;
611 int status;
612
613 if (pc_is_mips16 (addr))
614 {
615 instlen = MIPS16_INSTLEN;
616 addr = UNMAKE_MIPS16_ADDR (addr);
617 }
618 else
619 instlen = MIPS_INSTLEN;
620 status = read_memory_nobpt (addr, buf, instlen);
621 if (status)
622 memory_error (status, addr);
623 return extract_unsigned_integer (buf, instlen);
624 }
625
626
627 /* These the fields of 32 bit mips instructions */
628 #define mips32_op(x) (x >> 25)
629 #define itype_op(x) (x >> 25)
630 #define itype_rs(x) ((x >> 21)& 0x1f)
631 #define itype_rt(x) ((x >> 16) & 0x1f)
632 #define itype_immediate(x) ( x & 0xffff)
633
634 #define jtype_op(x) (x >> 25)
635 #define jtype_target(x) ( x & 0x03fffff)
636
637 #define rtype_op(x) (x >>25)
638 #define rtype_rs(x) ((x>>21) & 0x1f)
639 #define rtype_rt(x) ((x>>16) & 0x1f)
640 #define rtype_rd(x) ((x>>11) & 0x1f)
641 #define rtype_shamt(x) ((x>>6) & 0x1f)
642 #define rtype_funct(x) (x & 0x3f )
643
644 static CORE_ADDR
645 mips32_relative_offset (unsigned long inst)
646 {
647 long x;
648 x = itype_immediate (inst);
649 if (x & 0x8000) /* sign bit set */
650 {
651 x |= 0xffff0000; /* sign extension */
652 }
653 x = x << 2;
654 return x;
655 }
656
657 /* Determine whate to set a single step breakpoint while considering
658 branch prediction */
659 CORE_ADDR
660 mips32_next_pc (CORE_ADDR pc)
661 {
662 unsigned long inst;
663 int op;
664 inst = mips_fetch_instruction (pc);
665 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
666 {
667 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
668 {
669 op = ((inst >> 25) & 0x03);
670 switch (op)
671 {
672 case 0:
673 goto equal_branch; /* BEQL */
674 case 1:
675 goto neq_branch; /* BNEZ */
676 case 2:
677 goto less_branch; /* BLEZ */
678 case 3:
679 goto greater_branch; /* BGTZ */
680 default:
681 pc += 4;
682 }
683 }
684 else
685 pc += 4; /* Not a branch, next instruction is easy */
686 }
687 else
688 { /* This gets way messy */
689
690 /* Further subdivide into SPECIAL, REGIMM and other */
691 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
692 {
693 case 0: /* SPECIAL */
694 op = rtype_funct (inst);
695 switch (op)
696 {
697 case 8: /* JR */
698 case 9: /* JALR */
699 pc = read_register (rtype_rs (inst)); /* Set PC to that address */
700 break;
701 default:
702 pc += 4;
703 }
704
705 break; /* end special */
706 case 1: /* REGIMM */
707 {
708 op = jtype_op (inst); /* branch condition */
709 switch (jtype_op (inst))
710 {
711 case 0: /* BLTZ */
712 case 2: /* BLTXL */
713 case 16: /* BLTZALL */
714 case 18: /* BLTZALL */
715 less_branch:
716 if (read_register (itype_rs (inst)) < 0)
717 pc += mips32_relative_offset (inst) + 4;
718 else
719 pc += 8; /* after the delay slot */
720 break;
721 case 1: /* GEZ */
722 case 3: /* BGEZL */
723 case 17: /* BGEZAL */
724 case 19: /* BGEZALL */
725 greater_equal_branch:
726 if (read_register (itype_rs (inst)) >= 0)
727 pc += mips32_relative_offset (inst) + 4;
728 else
729 pc += 8; /* after the delay slot */
730 break;
731 /* All of the other intructions in the REGIMM catagory */
732 default:
733 pc += 4;
734 }
735 }
736 break; /* end REGIMM */
737 case 2: /* J */
738 case 3: /* JAL */
739 {
740 unsigned long reg;
741 reg = jtype_target (inst) << 2;
742 pc = reg + ((pc + 4) & 0xf0000000);
743 /* Whats this mysterious 0xf000000 adjustment ??? */
744 }
745 break;
746 /* FIXME case JALX : */
747 {
748 unsigned long reg;
749 reg = jtype_target (inst) << 2;
750 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
751 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
752 }
753 break; /* The new PC will be alternate mode */
754 case 4: /* BEQ , BEQL */
755 equal_branch:
756 if (read_register (itype_rs (inst)) ==
757 read_register (itype_rt (inst)))
758 pc += mips32_relative_offset (inst) + 4;
759 else
760 pc += 8;
761 break;
762 case 5: /* BNE , BNEL */
763 neq_branch:
764 if (read_register (itype_rs (inst)) !=
765 read_register (itype_rs (inst)))
766 pc += mips32_relative_offset (inst) + 4;
767 else
768 pc += 8;
769 break;
770 case 6: /* BLEZ , BLEZL */
771 less_zero_branch:
772 if (read_register (itype_rs (inst) <= 0))
773 pc += mips32_relative_offset (inst) + 4;
774 else
775 pc += 8;
776 break;
777 case 7:
778 greater_branch: /* BGTZ BGTZL */
779 if (read_register (itype_rs (inst) > 0))
780 pc += mips32_relative_offset (inst) + 4;
781 else
782 pc += 8;
783 break;
784 default:
785 pc += 8;
786 } /* switch */
787 } /* else */
788 return pc;
789 } /* mips32_next_pc */
790
791 /* Decoding the next place to set a breakpoint is irregular for the
792 mips 16 variant, but fortunatly, there fewer instructions. We have to cope
793 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
794 We dont want to set a single step instruction on the extend instruction
795 either.
796 */
797
798 /* Lots of mips16 instruction formats */
799 /* Predicting jumps requires itype,ritype,i8type
800 and their extensions extItype,extritype,extI8type
801 */
802 enum mips16_inst_fmts
803 {
804 itype, /* 0 immediate 5,10 */
805 ritype, /* 1 5,3,8 */
806 rrtype, /* 2 5,3,3,5 */
807 rritype, /* 3 5,3,3,5 */
808 rrrtype, /* 4 5,3,3,3,2 */
809 rriatype, /* 5 5,3,3,1,4 */
810 shifttype, /* 6 5,3,3,3,2 */
811 i8type, /* 7 5,3,8 */
812 i8movtype, /* 8 5,3,3,5 */
813 i8mov32rtype, /* 9 5,3,5,3 */
814 i64type, /* 10 5,3,8 */
815 ri64type, /* 11 5,3,3,5 */
816 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
817 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
818 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
819 extRRItype, /* 15 5,5,5,5,3,3,5 */
820 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
821 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
822 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
823 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
824 extRi64type, /* 20 5,6,5,5,3,3,5 */
825 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
826 };
827 /* I am heaping all the fields of the formats into one structure and then,
828 only the fields which are involved in instruction extension */
829 struct upk_mips16
830 {
831 unsigned short inst;
832 enum mips16_inst_fmts fmt;
833 unsigned long offset;
834 unsigned int regx; /* Function in i8 type */
835 unsigned int regy;
836 };
837
838
839
840 static void
841 print_unpack (char *comment,
842 struct upk_mips16 *u)
843 {
844 printf ("%s %04x ,f(%d) off(%s) (x(%x) y(%x)\n",
845 comment, u->inst, u->fmt, paddr (u->offset), u->regx, u->regy);
846 }
847
848 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
849 format for the bits which make up the immediatate extension.
850 */
851 static unsigned long
852 extended_offset (unsigned long extension)
853 {
854 unsigned long value;
855 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
856 value = value << 6;
857 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
858 value = value << 5;
859 value |= extension & 0x01f; /* extract 4:0 */
860 return value;
861 }
862
863 /* Only call this function if you know that this is an extendable
864 instruction, It wont malfunction, but why make excess remote memory references?
865 If the immediate operands get sign extended or somthing, do it after
866 the extension is performed.
867 */
868 /* FIXME: Every one of these cases needs to worry about sign extension
869 when the offset is to be used in relative addressing */
870
871
872 static unsigned short
873 fetch_mips_16 (CORE_ADDR pc)
874 {
875 char buf[8];
876 pc &= 0xfffffffe; /* clear the low order bit */
877 target_read_memory (pc, buf, 2);
878 return extract_unsigned_integer (buf, 2);
879 }
880
881 static void
882 unpack_mips16 (CORE_ADDR pc,
883 struct upk_mips16 *upk)
884 {
885 CORE_ADDR extpc;
886 unsigned long extension;
887 int extended;
888 extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */
889 /* Decrement to previous address and loose the 16bit mode flag */
890 /* return if the instruction was extendable, but not actually extended */
891 extended = ((mips32_op (extension) == 30) ? 1 : 0);
892 if (extended)
893 {
894 extension = mips_fetch_instruction (extpc);
895 }
896 switch (upk->fmt)
897 {
898 case itype:
899 {
900 unsigned long value;
901 if (extended)
902 {
903 value = extended_offset (extension);
904 value = value << 11; /* rom for the original value */
905 value |= upk->inst & 0x7ff; /* eleven bits from instruction */
906 }
907 else
908 {
909 value = upk->inst & 0x7ff;
910 /* FIXME : Consider sign extension */
911 }
912 upk->offset = value;
913 }
914 break;
915 case ritype:
916 case i8type:
917 { /* A register identifier and an offset */
918 /* Most of the fields are the same as I type but the
919 immediate value is of a different length */
920 unsigned long value;
921 if (extended)
922 {
923 value = extended_offset (extension);
924 value = value << 8; /* from the original instruction */
925 value |= upk->inst & 0xff; /* eleven bits from instruction */
926 upk->regx = (extension >> 8) & 0x07; /* or i8 funct */
927 if (value & 0x4000) /* test the sign bit , bit 26 */
928 {
929 value &= ~0x3fff; /* remove the sign bit */
930 value = -value;
931 }
932 }
933 else
934 {
935 value = upk->inst & 0xff; /* 8 bits */
936 upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */
937 /* FIXME: Do sign extension , this format needs it */
938 if (value & 0x80) /* THIS CONFUSES ME */
939 {
940 value &= 0xef; /* remove the sign bit */
941 value = -value;
942 }
943
944 }
945 upk->offset = value;
946 break;
947 }
948 case jalxtype:
949 {
950 unsigned long value;
951 unsigned short nexthalf;
952 value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f);
953 value = value << 16;
954 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
955 value |= nexthalf;
956 upk->offset = value;
957 break;
958 }
959 default:
960 printf_filtered ("Decoding unimplemented instruction format type\n");
961 break;
962 }
963 /* print_unpack("UPK",upk) ; */
964 }
965
966
967 #define mips16_op(x) (x >> 11)
968
969 /* This is a map of the opcodes which ae known to perform branches */
970 static unsigned char map16[32] =
971 {0, 0, 1, 1, 1, 1, 0, 0,
972 0, 0, 0, 0, 1, 0, 0, 0,
973 0, 0, 0, 0, 0, 0, 0, 0,
974 0, 0, 0, 0, 0, 1, 1, 0
975 };
976
977 static CORE_ADDR
978 add_offset_16 (CORE_ADDR pc, int offset)
979 {
980 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
981
982 }
983
984
985
986 static struct upk_mips16 upk;
987
988 CORE_ADDR
989 mips16_next_pc (CORE_ADDR pc)
990 {
991 int op;
992 t_inst inst;
993 /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
994 inst = fetch_mips_16 (pc);
995 upk.inst = inst;
996 op = mips16_op (upk.inst);
997 if (map16[op])
998 {
999 int reg;
1000 switch (op)
1001 {
1002 case 2: /* Branch */
1003 upk.fmt = itype;
1004 unpack_mips16 (pc, &upk);
1005 {
1006 long offset;
1007 offset = upk.offset;
1008 if (offset & 0x800)
1009 {
1010 offset &= 0xeff;
1011 offset = -offset;
1012 }
1013 pc += (offset << 1) + 2;
1014 }
1015 break;
1016 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1017 upk.fmt = jalxtype;
1018 unpack_mips16 (pc, &upk);
1019 pc = add_offset_16 (pc, upk.offset);
1020 if ((upk.inst >> 10) & 0x01) /* Exchange mode */
1021 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1022 else
1023 pc |= 0x01;
1024 break;
1025 case 4: /* beqz */
1026 upk.fmt = ritype;
1027 unpack_mips16 (pc, &upk);
1028 reg = read_register (upk.regx);
1029 if (reg == 0)
1030 pc += (upk.offset << 1) + 2;
1031 else
1032 pc += 2;
1033 break;
1034 case 5: /* bnez */
1035 upk.fmt = ritype;
1036 unpack_mips16 (pc, &upk);
1037 reg = read_register (upk.regx);
1038 if (reg != 0)
1039 pc += (upk.offset << 1) + 2;
1040 else
1041 pc += 2;
1042 break;
1043 case 12: /* I8 Formats btez btnez */
1044 upk.fmt = i8type;
1045 unpack_mips16 (pc, &upk);
1046 /* upk.regx contains the opcode */
1047 reg = read_register (24); /* Test register is 24 */
1048 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1049 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1050 /* pc = add_offset_16(pc,upk.offset) ; */
1051 pc += (upk.offset << 1) + 2;
1052 else
1053 pc += 2;
1054 break;
1055 case 29: /* RR Formats JR, JALR, JALR-RA */
1056 upk.fmt = rrtype;
1057 op = upk.inst & 0x1f;
1058 if (op == 0)
1059 {
1060 upk.regx = (upk.inst >> 8) & 0x07;
1061 upk.regy = (upk.inst >> 5) & 0x07;
1062 switch (upk.regy)
1063 {
1064 case 0:
1065 reg = upk.regx;
1066 break;
1067 case 1:
1068 reg = 31;
1069 break; /* Function return instruction */
1070 case 2:
1071 reg = upk.regx;
1072 break;
1073 default:
1074 reg = 31;
1075 break; /* BOGUS Guess */
1076 }
1077 pc = read_register (reg);
1078 }
1079 else
1080 pc += 2;
1081 break;
1082 case 30: /* This is an extend instruction */
1083 pc += 4; /* Dont be setting breakpints on the second half */
1084 break;
1085 default:
1086 printf ("Filtered - next PC probably incorrrect due to jump inst\n");
1087 pc += 2;
1088 break;
1089 }
1090 }
1091 else
1092 pc += 2; /* just a good old instruction */
1093 /* See if we CAN actually break on the next instruction */
1094 /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
1095 return pc;
1096 } /* mips16_next_pc */
1097
1098 /* The mips_next_pc function supports single_tep when the remote target monitor or
1099 stub is not developed enough to so a single_step.
1100 It works by decoding the current instruction and predicting where a branch
1101 will go. This isnt hard because all the data is available.
1102 The MIPS32 and MIPS16 variants are quite different
1103 */
1104 CORE_ADDR
1105 mips_next_pc (CORE_ADDR pc)
1106 {
1107 t_inst inst;
1108 /* inst = mips_fetch_instruction(pc) ; */
1109 /* if (pc_is_mips16) <----- This is failing */
1110 if (pc & 0x01)
1111 return mips16_next_pc (pc);
1112 else
1113 return mips32_next_pc (pc);
1114 } /* mips_next_pc */
1115
1116 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1117 NULL). */
1118
1119 void
1120 mips_find_saved_regs (fci)
1121 struct frame_info *fci;
1122 {
1123 int ireg;
1124 CORE_ADDR reg_position;
1125 /* r0 bit means kernel trap */
1126 int kernel_trap;
1127 /* What registers have been saved? Bitmasks. */
1128 unsigned long gen_mask, float_mask;
1129 mips_extra_func_info_t proc_desc;
1130 t_inst inst;
1131
1132 frame_saved_regs_zalloc (fci);
1133
1134 /* If it is the frame for sigtramp, the saved registers are located
1135 in a sigcontext structure somewhere on the stack.
1136 If the stack layout for sigtramp changes we might have to change these
1137 constants and the companion fixup_sigtramp in mdebugread.c */
1138 #ifndef SIGFRAME_BASE
1139 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1140 above the sigtramp frame. */
1141 #define SIGFRAME_BASE MIPS_REGSIZE
1142 /* FIXME! Are these correct?? */
1143 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1144 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1145 #define SIGFRAME_FPREGSAVE_OFF \
1146 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1147 #endif
1148 #ifndef SIGFRAME_REG_SIZE
1149 /* FIXME! Is this correct?? */
1150 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1151 #endif
1152 if (fci->signal_handler_caller)
1153 {
1154 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1155 {
1156 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1157 + ireg * SIGFRAME_REG_SIZE;
1158 fci->saved_regs[ireg] = reg_position;
1159 }
1160 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1161 {
1162 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1163 + ireg * SIGFRAME_REG_SIZE;
1164 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1165 }
1166 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1167 return;
1168 }
1169
1170 proc_desc = fci->extra_info->proc_desc;
1171 if (proc_desc == NULL)
1172 /* I'm not sure how/whether this can happen. Normally when we can't
1173 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1174 and set the saved_regs right away. */
1175 return;
1176
1177 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1178 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1179 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1180
1181 if ( /* In any frame other than the innermost or a frame interrupted by
1182 a signal, we assume that all registers have been saved.
1183 This assumes that all register saves in a function happen before
1184 the first function call. */
1185 (fci->next == NULL || fci->next->signal_handler_caller)
1186
1187 /* In a dummy frame we know exactly where things are saved. */
1188 && !PROC_DESC_IS_DUMMY (proc_desc)
1189
1190 /* Don't bother unless we are inside a function prologue. Outside the
1191 prologue, we know where everything is. */
1192
1193 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1194
1195 /* Not sure exactly what kernel_trap means, but if it means
1196 the kernel saves the registers without a prologue doing it,
1197 we better not examine the prologue to see whether registers
1198 have been saved yet. */
1199 && !kernel_trap)
1200 {
1201 /* We need to figure out whether the registers that the proc_desc
1202 claims are saved have been saved yet. */
1203
1204 CORE_ADDR addr;
1205
1206 /* Bitmasks; set if we have found a save for the register. */
1207 unsigned long gen_save_found = 0;
1208 unsigned long float_save_found = 0;
1209 int instlen;
1210
1211 /* If the address is odd, assume this is MIPS16 code. */
1212 addr = PROC_LOW_ADDR (proc_desc);
1213 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1214
1215 /* Scan through this function's instructions preceding the current
1216 PC, and look for those that save registers. */
1217 while (addr < fci->pc)
1218 {
1219 inst = mips_fetch_instruction (addr);
1220 if (pc_is_mips16 (addr))
1221 mips16_decode_reg_save (inst, &gen_save_found);
1222 else
1223 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1224 addr += instlen;
1225 }
1226 gen_mask = gen_save_found;
1227 float_mask = float_save_found;
1228 }
1229
1230 /* Fill in the offsets for the registers which gen_mask says
1231 were saved. */
1232 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1233 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1234 if (gen_mask & 0x80000000)
1235 {
1236 fci->saved_regs[ireg] = reg_position;
1237 reg_position -= MIPS_SAVED_REGSIZE;
1238 }
1239
1240 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1241 of that normally used by gcc. Therefore, we have to fetch the first
1242 instruction of the function, and if it's an entry instruction that
1243 saves $s0 or $s1, correct their saved addresses. */
1244 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1245 {
1246 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1247 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1248 {
1249 int reg;
1250 int sreg_count = (inst >> 6) & 3;
1251
1252 /* Check if the ra register was pushed on the stack. */
1253 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1254 if (inst & 0x20)
1255 reg_position -= MIPS_SAVED_REGSIZE;
1256
1257 /* Check if the s0 and s1 registers were pushed on the stack. */
1258 for (reg = 16; reg < sreg_count + 16; reg++)
1259 {
1260 fci->saved_regs[reg] = reg_position;
1261 reg_position -= MIPS_SAVED_REGSIZE;
1262 }
1263 }
1264 }
1265
1266 /* Fill in the offsets for the registers which float_mask says
1267 were saved. */
1268 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1269
1270 /* The freg_offset points to where the first *double* register
1271 is saved. So skip to the high-order word. */
1272 if (!GDB_TARGET_IS_MIPS64)
1273 reg_position += MIPS_SAVED_REGSIZE;
1274
1275 /* Fill in the offsets for the float registers which float_mask says
1276 were saved. */
1277 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1278 if (float_mask & 0x80000000)
1279 {
1280 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1281 reg_position -= MIPS_SAVED_REGSIZE;
1282 }
1283
1284 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1285 }
1286
1287 static CORE_ADDR
1288 read_next_frame_reg (fi, regno)
1289 struct frame_info *fi;
1290 int regno;
1291 {
1292 for (; fi; fi = fi->next)
1293 {
1294 /* We have to get the saved sp from the sigcontext
1295 if it is a signal handler frame. */
1296 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1297 return fi->frame;
1298 else
1299 {
1300 if (fi->saved_regs == NULL)
1301 mips_find_saved_regs (fi);
1302 if (fi->saved_regs[regno])
1303 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1304 }
1305 }
1306 return read_register (regno);
1307 }
1308
1309 /* mips_addr_bits_remove - remove useless address bits */
1310
1311 CORE_ADDR
1312 mips_addr_bits_remove (addr)
1313 CORE_ADDR addr;
1314 {
1315 if (GDB_TARGET_IS_MIPS64)
1316 {
1317 if (mask_address_p && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1318 {
1319 /* This hack is a work-around for existing boards using
1320 PMON, the simulator, and any other 64-bit targets that
1321 doesn't have true 64-bit addressing. On these targets,
1322 the upper 32 bits of addresses are ignored by the
1323 hardware. Thus, the PC or SP are likely to have been
1324 sign extended to all 1s by instruction sequences that
1325 load 32-bit addresses. For example, a typical piece of
1326 code that loads an address is this: lui $r2, <upper 16
1327 bits> ori $r2, <lower 16 bits> But the lui sign-extends
1328 the value such that the upper 32 bits may be all 1s. The
1329 workaround is simply to mask off these bits. In the
1330 future, gcc may be changed to support true 64-bit
1331 addressing, and this masking will have to be disabled. */
1332 addr &= (CORE_ADDR) 0xffffffff;
1333 }
1334 }
1335 else
1336 {
1337 /* Even when GDB is configured for some 32-bit targets
1338 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1339 so CORE_ADDR is 64 bits. So we still have to mask off
1340 useless bits from addresses. */
1341 addr &= (CORE_ADDR) 0xffffffff;
1342 }
1343 return addr;
1344 }
1345
1346 void
1347 mips_init_frame_pc_first (fromleaf, prev)
1348 int fromleaf;
1349 struct frame_info *prev;
1350 {
1351 CORE_ADDR pc, tmp;
1352
1353 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1354 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1355 tmp = mips_skip_stub (pc);
1356 prev->pc = tmp ? tmp : pc;
1357 }
1358
1359
1360 CORE_ADDR
1361 mips_frame_saved_pc (frame)
1362 struct frame_info *frame;
1363 {
1364 CORE_ADDR saved_pc;
1365 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1366 /* We have to get the saved pc from the sigcontext
1367 if it is a signal handler frame. */
1368 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1369 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1370
1371 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1372 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1373 else
1374 saved_pc = read_next_frame_reg (frame, pcreg);
1375
1376 return ADDR_BITS_REMOVE (saved_pc);
1377 }
1378
1379 static struct mips_extra_func_info temp_proc_desc;
1380 static CORE_ADDR temp_saved_regs[NUM_REGS];
1381
1382 /* Set a register's saved stack address in temp_saved_regs. If an address
1383 has already been set for this register, do nothing; this way we will
1384 only recognize the first save of a given register in a function prologue.
1385 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1386
1387 static void
1388 set_reg_offset (regno, offset)
1389 int regno;
1390 CORE_ADDR offset;
1391 {
1392 if (temp_saved_regs[regno] == 0)
1393 temp_saved_regs[regno] = offset;
1394 }
1395
1396
1397 /* Test whether the PC points to the return instruction at the
1398 end of a function. */
1399
1400 static int
1401 mips_about_to_return (pc)
1402 CORE_ADDR pc;
1403 {
1404 if (pc_is_mips16 (pc))
1405 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1406 generates a "jr $ra"; other times it generates code to load
1407 the return address from the stack to an accessible register (such
1408 as $a3), then a "jr" using that register. This second case
1409 is almost impossible to distinguish from an indirect jump
1410 used for switch statements, so we don't even try. */
1411 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1412 else
1413 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1414 }
1415
1416
1417 /* This fencepost looks highly suspicious to me. Removing it also
1418 seems suspicious as it could affect remote debugging across serial
1419 lines. */
1420
1421 static CORE_ADDR
1422 heuristic_proc_start (pc)
1423 CORE_ADDR pc;
1424 {
1425 CORE_ADDR start_pc;
1426 CORE_ADDR fence;
1427 int instlen;
1428 int seen_adjsp = 0;
1429
1430 pc = ADDR_BITS_REMOVE (pc);
1431 start_pc = pc;
1432 fence = start_pc - heuristic_fence_post;
1433 if (start_pc == 0)
1434 return 0;
1435
1436 if (heuristic_fence_post == UINT_MAX
1437 || fence < VM_MIN_ADDRESS)
1438 fence = VM_MIN_ADDRESS;
1439
1440 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1441
1442 /* search back for previous return */
1443 for (start_pc -= instlen;; start_pc -= instlen)
1444 if (start_pc < fence)
1445 {
1446 /* It's not clear to me why we reach this point when
1447 stop_soon_quietly, but with this test, at least we
1448 don't print out warnings for every child forked (eg, on
1449 decstation). 22apr93 rich@cygnus.com. */
1450 if (!stop_soon_quietly)
1451 {
1452 static int blurb_printed = 0;
1453
1454 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1455 paddr_nz (pc));
1456
1457 if (!blurb_printed)
1458 {
1459 /* This actually happens frequently in embedded
1460 development, when you first connect to a board
1461 and your stack pointer and pc are nowhere in
1462 particular. This message needs to give people
1463 in that situation enough information to
1464 determine that it's no big deal. */
1465 printf_filtered ("\n\
1466 GDB is unable to find the start of the function at 0x%s\n\
1467 and thus can't determine the size of that function's stack frame.\n\
1468 This means that GDB may be unable to access that stack frame, or\n\
1469 the frames below it.\n\
1470 This problem is most likely caused by an invalid program counter or\n\
1471 stack pointer.\n\
1472 However, if you think GDB should simply search farther back\n\
1473 from 0x%s for code which looks like the beginning of a\n\
1474 function, you can increase the range of the search using the `set\n\
1475 heuristic-fence-post' command.\n",
1476 paddr_nz (pc), paddr_nz (pc));
1477 blurb_printed = 1;
1478 }
1479 }
1480
1481 return 0;
1482 }
1483 else if (pc_is_mips16 (start_pc))
1484 {
1485 unsigned short inst;
1486
1487 /* On MIPS16, any one of the following is likely to be the
1488 start of a function:
1489 entry
1490 addiu sp,-n
1491 daddiu sp,-n
1492 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1493 inst = mips_fetch_instruction (start_pc);
1494 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1495 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1496 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1497 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1498 break;
1499 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1500 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1501 seen_adjsp = 1;
1502 else
1503 seen_adjsp = 0;
1504 }
1505 else if (mips_about_to_return (start_pc))
1506 {
1507 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1508 break;
1509 }
1510
1511 #if 0
1512 /* skip nops (usually 1) 0 - is this */
1513 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
1514 start_pc += MIPS_INSTLEN;
1515 #endif
1516 return start_pc;
1517 }
1518
1519 /* Fetch the immediate value from a MIPS16 instruction.
1520 If the previous instruction was an EXTEND, use it to extend
1521 the upper bits of the immediate value. This is a helper function
1522 for mips16_heuristic_proc_desc. */
1523
1524 static int
1525 mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
1526 unsigned short prev_inst; /* previous instruction */
1527 unsigned short inst; /* current instruction */
1528 int nbits; /* number of bits in imm field */
1529 int scale; /* scale factor to be applied to imm */
1530 int is_signed; /* is the imm field signed? */
1531 {
1532 int offset;
1533
1534 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1535 {
1536 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1537 if (offset & 0x8000) /* check for negative extend */
1538 offset = 0 - (0x10000 - (offset & 0xffff));
1539 return offset | (inst & 0x1f);
1540 }
1541 else
1542 {
1543 int max_imm = 1 << nbits;
1544 int mask = max_imm - 1;
1545 int sign_bit = max_imm >> 1;
1546
1547 offset = inst & mask;
1548 if (is_signed && (offset & sign_bit))
1549 offset = 0 - (max_imm - offset);
1550 return offset * scale;
1551 }
1552 }
1553
1554
1555 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1556 stream from start_pc to limit_pc. */
1557
1558 static void
1559 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1560 CORE_ADDR start_pc, limit_pc;
1561 struct frame_info *next_frame;
1562 CORE_ADDR sp;
1563 {
1564 CORE_ADDR cur_pc;
1565 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1566 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1567 unsigned inst = 0; /* current instruction */
1568 unsigned entry_inst = 0; /* the entry instruction */
1569 int reg, offset;
1570
1571 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1572 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1573
1574 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1575 {
1576 /* Save the previous instruction. If it's an EXTEND, we'll extract
1577 the immediate offset extension from it in mips16_get_imm. */
1578 prev_inst = inst;
1579
1580 /* Fetch and decode the instruction. */
1581 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1582 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1583 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1584 {
1585 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1586 if (offset < 0) /* negative stack adjustment? */
1587 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1588 else
1589 /* Exit loop if a positive stack adjustment is found, which
1590 usually means that the stack cleanup code in the function
1591 epilogue is reached. */
1592 break;
1593 }
1594 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1595 {
1596 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1597 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1598 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1599 set_reg_offset (reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1604 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1605 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1606 set_reg_offset (reg, sp + offset);
1607 }
1608 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1609 {
1610 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1611 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1612 set_reg_offset (RA_REGNUM, sp + offset);
1613 }
1614 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1615 {
1616 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1617 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1618 set_reg_offset (RA_REGNUM, sp + offset);
1619 }
1620 else if (inst == 0x673d) /* move $s1, $sp */
1621 {
1622 frame_addr = sp;
1623 PROC_FRAME_REG (&temp_proc_desc) = 17;
1624 }
1625 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1626 {
1627 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1628 frame_addr = sp + offset;
1629 PROC_FRAME_REG (&temp_proc_desc) = 17;
1630 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1631 }
1632 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1633 {
1634 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1635 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1636 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1637 set_reg_offset (reg, frame_addr + offset);
1638 }
1639 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1640 {
1641 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1642 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1643 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1644 set_reg_offset (reg, frame_addr + offset);
1645 }
1646 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1647 entry_inst = inst; /* save for later processing */
1648 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1649 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1650 }
1651
1652 /* The entry instruction is typically the first instruction in a function,
1653 and it stores registers at offsets relative to the value of the old SP
1654 (before the prologue). But the value of the sp parameter to this
1655 function is the new SP (after the prologue has been executed). So we
1656 can't calculate those offsets until we've seen the entire prologue,
1657 and can calculate what the old SP must have been. */
1658 if (entry_inst != 0)
1659 {
1660 int areg_count = (entry_inst >> 8) & 7;
1661 int sreg_count = (entry_inst >> 6) & 3;
1662
1663 /* The entry instruction always subtracts 32 from the SP. */
1664 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1665
1666 /* Now we can calculate what the SP must have been at the
1667 start of the function prologue. */
1668 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1669
1670 /* Check if a0-a3 were saved in the caller's argument save area. */
1671 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1672 {
1673 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1674 set_reg_offset (reg, sp + offset);
1675 offset += MIPS_SAVED_REGSIZE;
1676 }
1677
1678 /* Check if the ra register was pushed on the stack. */
1679 offset = -4;
1680 if (entry_inst & 0x20)
1681 {
1682 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1683 set_reg_offset (RA_REGNUM, sp + offset);
1684 offset -= MIPS_SAVED_REGSIZE;
1685 }
1686
1687 /* Check if the s0 and s1 registers were pushed on the stack. */
1688 for (reg = 16; reg < sreg_count + 16; reg++)
1689 {
1690 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1691 set_reg_offset (reg, sp + offset);
1692 offset -= MIPS_SAVED_REGSIZE;
1693 }
1694 }
1695 }
1696
1697 static void
1698 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1699 CORE_ADDR start_pc, limit_pc;
1700 struct frame_info *next_frame;
1701 CORE_ADDR sp;
1702 {
1703 CORE_ADDR cur_pc;
1704 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1705 restart:
1706 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1707 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1708 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1709 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1710 {
1711 unsigned long inst, high_word, low_word;
1712 int reg;
1713
1714 /* Fetch the instruction. */
1715 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1716
1717 /* Save some code by pre-extracting some useful fields. */
1718 high_word = (inst >> 16) & 0xffff;
1719 low_word = inst & 0xffff;
1720 reg = high_word & 0x1f;
1721
1722 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1723 || high_word == 0x23bd /* addi $sp,$sp,-i */
1724 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1725 {
1726 if (low_word & 0x8000) /* negative stack adjustment? */
1727 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1728 else
1729 /* Exit loop if a positive stack adjustment is found, which
1730 usually means that the stack cleanup code in the function
1731 epilogue is reached. */
1732 break;
1733 }
1734 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1735 {
1736 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1737 set_reg_offset (reg, sp + low_word);
1738 }
1739 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1740 {
1741 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1742 but the register size used is only 32 bits. Make the address
1743 for the saved register point to the lower 32 bits. */
1744 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1745 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1746 }
1747 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1748 {
1749 /* Old gcc frame, r30 is virtual frame pointer. */
1750 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1751 frame_addr = sp + low_word;
1752 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1753 {
1754 unsigned alloca_adjust;
1755 PROC_FRAME_REG (&temp_proc_desc) = 30;
1756 frame_addr = read_next_frame_reg (next_frame, 30);
1757 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1758 if (alloca_adjust > 0)
1759 {
1760 /* FP > SP + frame_size. This may be because
1761 * of an alloca or somethings similar.
1762 * Fix sp to "pre-alloca" value, and try again.
1763 */
1764 sp += alloca_adjust;
1765 goto restart;
1766 }
1767 }
1768 }
1769 /* move $30,$sp. With different versions of gas this will be either
1770 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1771 Accept any one of these. */
1772 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1773 {
1774 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1775 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1776 {
1777 unsigned alloca_adjust;
1778 PROC_FRAME_REG (&temp_proc_desc) = 30;
1779 frame_addr = read_next_frame_reg (next_frame, 30);
1780 alloca_adjust = (unsigned) (frame_addr - sp);
1781 if (alloca_adjust > 0)
1782 {
1783 /* FP > SP + frame_size. This may be because
1784 * of an alloca or somethings similar.
1785 * Fix sp to "pre-alloca" value, and try again.
1786 */
1787 sp += alloca_adjust;
1788 goto restart;
1789 }
1790 }
1791 }
1792 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1793 {
1794 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1795 set_reg_offset (reg, frame_addr + low_word);
1796 }
1797 }
1798 }
1799
1800 static mips_extra_func_info_t
1801 heuristic_proc_desc (start_pc, limit_pc, next_frame)
1802 CORE_ADDR start_pc, limit_pc;
1803 struct frame_info *next_frame;
1804 {
1805 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1806
1807 if (start_pc == 0)
1808 return NULL;
1809 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1810 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1811 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1812 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1813 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1814
1815 if (start_pc + 200 < limit_pc)
1816 limit_pc = start_pc + 200;
1817 if (pc_is_mips16 (start_pc))
1818 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1819 else
1820 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1821 return &temp_proc_desc;
1822 }
1823
1824 static mips_extra_func_info_t
1825 non_heuristic_proc_desc (pc, addrptr)
1826 CORE_ADDR pc;
1827 CORE_ADDR *addrptr;
1828 {
1829 CORE_ADDR startaddr;
1830 mips_extra_func_info_t proc_desc;
1831 struct block *b = block_for_pc (pc);
1832 struct symbol *sym;
1833
1834 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1835 if (addrptr)
1836 *addrptr = startaddr;
1837 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1838 sym = NULL;
1839 else
1840 {
1841 if (startaddr > BLOCK_START (b))
1842 /* This is the "pathological" case referred to in a comment in
1843 print_frame_info. It might be better to move this check into
1844 symbol reading. */
1845 sym = NULL;
1846 else
1847 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1848 }
1849
1850 /* If we never found a PDR for this function in symbol reading, then
1851 examine prologues to find the information. */
1852 if (sym)
1853 {
1854 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1855 if (PROC_FRAME_REG (proc_desc) == -1)
1856 return NULL;
1857 else
1858 return proc_desc;
1859 }
1860 else
1861 return NULL;
1862 }
1863
1864
1865 static mips_extra_func_info_t
1866 find_proc_desc (pc, next_frame)
1867 CORE_ADDR pc;
1868 struct frame_info *next_frame;
1869 {
1870 mips_extra_func_info_t proc_desc;
1871 CORE_ADDR startaddr;
1872
1873 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1874
1875 if (proc_desc)
1876 {
1877 /* IF this is the topmost frame AND
1878 * (this proc does not have debugging information OR
1879 * the PC is in the procedure prologue)
1880 * THEN create a "heuristic" proc_desc (by analyzing
1881 * the actual code) to replace the "official" proc_desc.
1882 */
1883 if (next_frame == NULL)
1884 {
1885 struct symtab_and_line val;
1886 struct symbol *proc_symbol =
1887 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
1888
1889 if (proc_symbol)
1890 {
1891 val = find_pc_line (BLOCK_START
1892 (SYMBOL_BLOCK_VALUE (proc_symbol)),
1893 0);
1894 val.pc = val.end ? val.end : pc;
1895 }
1896 if (!proc_symbol || pc < val.pc)
1897 {
1898 mips_extra_func_info_t found_heuristic =
1899 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1900 pc, next_frame);
1901 if (found_heuristic)
1902 proc_desc = found_heuristic;
1903 }
1904 }
1905 }
1906 else
1907 {
1908 /* Is linked_proc_desc_table really necessary? It only seems to be used
1909 by procedure call dummys. However, the procedures being called ought
1910 to have their own proc_descs, and even if they don't,
1911 heuristic_proc_desc knows how to create them! */
1912
1913 register struct linked_proc_info *link;
1914
1915 for (link = linked_proc_desc_table; link; link = link->next)
1916 if (PROC_LOW_ADDR (&link->info) <= pc
1917 && PROC_HIGH_ADDR (&link->info) > pc)
1918 return &link->info;
1919
1920 if (startaddr == 0)
1921 startaddr = heuristic_proc_start (pc);
1922
1923 proc_desc =
1924 heuristic_proc_desc (startaddr, pc, next_frame);
1925 }
1926 return proc_desc;
1927 }
1928
1929 static CORE_ADDR
1930 get_frame_pointer (frame, proc_desc)
1931 struct frame_info *frame;
1932 mips_extra_func_info_t proc_desc;
1933 {
1934 return ADDR_BITS_REMOVE (
1935 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1936 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1937 }
1938
1939 mips_extra_func_info_t cached_proc_desc;
1940
1941 CORE_ADDR
1942 mips_frame_chain (frame)
1943 struct frame_info *frame;
1944 {
1945 mips_extra_func_info_t proc_desc;
1946 CORE_ADDR tmp;
1947 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
1948
1949 if (saved_pc == 0 || inside_entry_file (saved_pc))
1950 return 0;
1951
1952 /* Check if the PC is inside a call stub. If it is, fetch the
1953 PC of the caller of that stub. */
1954 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1955 saved_pc = tmp;
1956
1957 /* Look up the procedure descriptor for this PC. */
1958 proc_desc = find_proc_desc (saved_pc, frame);
1959 if (!proc_desc)
1960 return 0;
1961
1962 cached_proc_desc = proc_desc;
1963
1964 /* If no frame pointer and frame size is zero, we must be at end
1965 of stack (or otherwise hosed). If we don't check frame size,
1966 we loop forever if we see a zero size frame. */
1967 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1968 && PROC_FRAME_OFFSET (proc_desc) == 0
1969 /* The previous frame from a sigtramp frame might be frameless
1970 and have frame size zero. */
1971 && !frame->signal_handler_caller)
1972 return 0;
1973 else
1974 return get_frame_pointer (frame, proc_desc);
1975 }
1976
1977 void
1978 mips_init_extra_frame_info (fromleaf, fci)
1979 int fromleaf;
1980 struct frame_info *fci;
1981 {
1982 int regnum;
1983
1984 /* Use proc_desc calculated in frame_chain */
1985 mips_extra_func_info_t proc_desc =
1986 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
1987
1988 fci->extra_info = (struct frame_extra_info *)
1989 frame_obstack_alloc (sizeof (struct frame_extra_info));
1990
1991 fci->saved_regs = NULL;
1992 fci->extra_info->proc_desc =
1993 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1994 if (proc_desc)
1995 {
1996 /* Fixup frame-pointer - only needed for top frame */
1997 /* This may not be quite right, if proc has a real frame register.
1998 Get the value of the frame relative sp, procedure might have been
1999 interrupted by a signal at it's very start. */
2000 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2001 && !PROC_DESC_IS_DUMMY (proc_desc))
2002 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2003 else
2004 fci->frame = get_frame_pointer (fci->next, proc_desc);
2005
2006 if (proc_desc == &temp_proc_desc)
2007 {
2008 char *name;
2009
2010 /* Do not set the saved registers for a sigtramp frame,
2011 mips_find_saved_registers will do that for us.
2012 We can't use fci->signal_handler_caller, it is not yet set. */
2013 find_pc_partial_function (fci->pc, &name,
2014 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2015 if (!IN_SIGTRAMP (fci->pc, name))
2016 {
2017 frame_saved_regs_zalloc (fci);
2018 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2019 fci->saved_regs[PC_REGNUM]
2020 = fci->saved_regs[RA_REGNUM];
2021 }
2022 }
2023
2024 /* hack: if argument regs are saved, guess these contain args */
2025 /* assume we can't tell how many args for now */
2026 fci->extra_info->num_args = -1;
2027 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2028 {
2029 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2030 {
2031 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2032 break;
2033 }
2034 }
2035 }
2036 }
2037
2038 /* MIPS stack frames are almost impenetrable. When execution stops,
2039 we basically have to look at symbol information for the function
2040 that we stopped in, which tells us *which* register (if any) is
2041 the base of the frame pointer, and what offset from that register
2042 the frame itself is at.
2043
2044 This presents a problem when trying to examine a stack in memory
2045 (that isn't executing at the moment), using the "frame" command. We
2046 don't have a PC, nor do we have any registers except SP.
2047
2048 This routine takes two arguments, SP and PC, and tries to make the
2049 cached frames look as if these two arguments defined a frame on the
2050 cache. This allows the rest of info frame to extract the important
2051 arguments without difficulty. */
2052
2053 struct frame_info *
2054 setup_arbitrary_frame (argc, argv)
2055 int argc;
2056 CORE_ADDR *argv;
2057 {
2058 if (argc != 2)
2059 error ("MIPS frame specifications require two arguments: sp and pc");
2060
2061 return create_new_frame (argv[0], argv[1]);
2062 }
2063
2064 CORE_ADDR
2065 mips_push_arguments (nargs, args, sp, struct_return, struct_addr)
2066 int nargs;
2067 value_ptr *args;
2068 CORE_ADDR sp;
2069 int struct_return;
2070 CORE_ADDR struct_addr;
2071 {
2072 int argreg;
2073 int float_argreg;
2074 int argnum;
2075 int len = 0;
2076 int stack_offset = 0;
2077
2078 /* Macros to round N up or down to the next A boundary; A must be
2079 a power of two. */
2080 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2081 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2082
2083 /* First ensure that the stack and structure return address (if any)
2084 are properly aligned. The stack has to be at least 64-bit aligned
2085 even on 32-bit machines, because doubles must be 64-bit aligned.
2086 On at least one MIPS variant, stack frames need to be 128-bit
2087 aligned, so we round to this widest known alignment. */
2088 sp = ROUND_DOWN (sp, 16);
2089 struct_addr = ROUND_DOWN (struct_addr, MIPS_SAVED_REGSIZE);
2090
2091 /* Now make space on the stack for the args. We allocate more
2092 than necessary for EABI, because the first few arguments are
2093 passed in registers, but that's OK. */
2094 for (argnum = 0; argnum < nargs; argnum++)
2095 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_SAVED_REGSIZE);
2096 sp -= ROUND_UP (len, 16);
2097
2098 /* Initialize the integer and float register pointers. */
2099 argreg = A0_REGNUM;
2100 float_argreg = FPA0_REGNUM;
2101
2102 /* the struct_return pointer occupies the first parameter-passing reg */
2103 if (struct_return)
2104 write_register (argreg++, struct_addr);
2105
2106 /* Now load as many as possible of the first arguments into
2107 registers, and push the rest onto the stack. Loop thru args
2108 from first to last. */
2109 for (argnum = 0; argnum < nargs; argnum++)
2110 {
2111 char *val;
2112 char valbuf[MAX_REGISTER_RAW_SIZE];
2113 value_ptr arg = args[argnum];
2114 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2115 int len = TYPE_LENGTH (arg_type);
2116 enum type_code typecode = TYPE_CODE (arg_type);
2117
2118 /* The EABI passes structures that do not fit in a register by
2119 reference. In all other cases, pass the structure by value. */
2120 if (MIPS_EABI && len > MIPS_SAVED_REGSIZE &&
2121 (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2122 {
2123 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2124 typecode = TYPE_CODE_PTR;
2125 len = MIPS_SAVED_REGSIZE;
2126 val = valbuf;
2127 }
2128 else
2129 val = (char *) VALUE_CONTENTS (arg);
2130
2131 /* 32-bit ABIs always start floating point arguments in an
2132 even-numbered floating point register. */
2133 if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT
2134 && (float_argreg & 1))
2135 float_argreg++;
2136
2137 /* Floating point arguments passed in registers have to be
2138 treated specially. On 32-bit architectures, doubles
2139 are passed in register pairs; the even register gets
2140 the low word, and the odd register gets the high word.
2141 On non-EABI processors, the first two floating point arguments are
2142 also copied to general registers, because MIPS16 functions
2143 don't use float registers for arguments. This duplication of
2144 arguments in general registers can't hurt non-MIPS16 functions
2145 because those registers are normally skipped. */
2146 if (typecode == TYPE_CODE_FLT
2147 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
2148 && MIPS_FPU_TYPE != MIPS_FPU_NONE)
2149 {
2150 if (!FP_REGISTER_DOUBLE && len == 8)
2151 {
2152 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2153 unsigned long regval;
2154
2155 /* Write the low word of the double to the even register(s). */
2156 regval = extract_unsigned_integer (val + low_offset, 4);
2157 write_register (float_argreg++, regval);
2158 if (!MIPS_EABI)
2159 write_register (argreg + 1, regval);
2160
2161 /* Write the high word of the double to the odd register(s). */
2162 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2163 write_register (float_argreg++, regval);
2164 if (!MIPS_EABI)
2165 {
2166 write_register (argreg, regval);
2167 argreg += 2;
2168 }
2169
2170 }
2171 else
2172 {
2173 /* This is a floating point value that fits entirely
2174 in a single register. */
2175 /* On 32 bit ABI's the float_argreg is further adjusted
2176 above to ensure that it is even register aligned. */
2177 CORE_ADDR regval = extract_address (val, len);
2178 write_register (float_argreg++, regval);
2179 if (!MIPS_EABI)
2180 {
2181 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2182 registers for each argument. The below is (my
2183 guess) to ensure that the corresponding integer
2184 register has reserved the same space. */
2185 write_register (argreg, regval);
2186 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2187 }
2188 }
2189 }
2190 else
2191 {
2192 /* Copy the argument to general registers or the stack in
2193 register-sized pieces. Large arguments are split between
2194 registers and stack. */
2195 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2196 are treated specially: Irix cc passes them in registers
2197 where gcc sometimes puts them on the stack. For maximum
2198 compatibility, we will put them in both places. */
2199
2200 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2201 (len % MIPS_SAVED_REGSIZE != 0));
2202 while (len > 0)
2203 {
2204 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2205
2206 if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
2207 {
2208 /* Write this portion of the argument to the stack. */
2209 /* Should shorter than int integer values be
2210 promoted to int before being stored? */
2211
2212 int longword_offset = 0;
2213 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2214 {
2215 if (MIPS_STACK_ARGSIZE == 8 &&
2216 (typecode == TYPE_CODE_INT ||
2217 typecode == TYPE_CODE_PTR ||
2218 typecode == TYPE_CODE_FLT) && len <= 4)
2219 longword_offset = MIPS_STACK_ARGSIZE - len;
2220 else if ((typecode == TYPE_CODE_STRUCT ||
2221 typecode == TYPE_CODE_UNION) &&
2222 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2223 longword_offset = MIPS_STACK_ARGSIZE - len;
2224 }
2225
2226 write_memory (sp + stack_offset + longword_offset,
2227 val, partial_len);
2228 }
2229
2230 /* Note!!! This is NOT an else clause.
2231 Odd sized structs may go thru BOTH paths. */
2232 if (argreg <= MIPS_LAST_ARG_REGNUM)
2233 {
2234 CORE_ADDR regval = extract_address (val, partial_len);
2235
2236 /* A non-floating-point argument being passed in a
2237 general register. If a struct or union, and if
2238 the remaining length is smaller than the register
2239 size, we have to adjust the register value on
2240 big endian targets.
2241
2242 It does not seem to be necessary to do the
2243 same for integral types.
2244
2245 Also don't do this adjustment on EABI and O64
2246 binaries. */
2247
2248 if (!MIPS_EABI
2249 && MIPS_SAVED_REGSIZE < 8
2250 && TARGET_BYTE_ORDER == BIG_ENDIAN
2251 && partial_len < MIPS_SAVED_REGSIZE
2252 && (typecode == TYPE_CODE_STRUCT ||
2253 typecode == TYPE_CODE_UNION))
2254 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2255 TARGET_CHAR_BIT);
2256
2257 write_register (argreg, regval);
2258 argreg++;
2259
2260 /* If this is the old ABI, prevent subsequent floating
2261 point arguments from being passed in floating point
2262 registers. */
2263 if (!MIPS_EABI)
2264 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2265 }
2266
2267 len -= partial_len;
2268 val += partial_len;
2269
2270 /* The offset onto the stack at which we will start
2271 copying parameters (after the registers are used up)
2272 begins at (4 * MIPS_REGSIZE) in the old ABI. This
2273 leaves room for the "home" area for register parameters.
2274
2275 In the new EABI (and the NABI32), the 8 register parameters
2276 do not have "home" stack space reserved for them, so the
2277 stack offset does not get incremented until after
2278 we have used up the 8 parameter registers. */
2279
2280 if (MIPS_REGS_HAVE_HOME_P || argnum >= 8)
2281 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2282 }
2283 }
2284 }
2285
2286 /* Return adjusted stack pointer. */
2287 return sp;
2288 }
2289
2290 CORE_ADDR
2291 mips_push_return_address (pc, sp)
2292 CORE_ADDR pc;
2293 CORE_ADDR sp;
2294 {
2295 /* Set the return address register to point to the entry
2296 point of the program, where a breakpoint lies in wait. */
2297 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2298 return sp;
2299 }
2300
2301 static void
2302 mips_push_register (CORE_ADDR * sp, int regno)
2303 {
2304 char buffer[MAX_REGISTER_RAW_SIZE];
2305 int regsize;
2306 int offset;
2307 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2308 {
2309 regsize = MIPS_SAVED_REGSIZE;
2310 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2311 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2312 : 0);
2313 }
2314 else
2315 {
2316 regsize = REGISTER_RAW_SIZE (regno);
2317 offset = 0;
2318 }
2319 *sp -= regsize;
2320 read_register_gen (regno, buffer);
2321 write_memory (*sp, buffer + offset, regsize);
2322 }
2323
2324 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2325 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2326
2327 void
2328 mips_push_dummy_frame ()
2329 {
2330 int ireg;
2331 struct linked_proc_info *link = (struct linked_proc_info *)
2332 xmalloc (sizeof (struct linked_proc_info));
2333 mips_extra_func_info_t proc_desc = &link->info;
2334 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
2335 CORE_ADDR old_sp = sp;
2336 link->next = linked_proc_desc_table;
2337 linked_proc_desc_table = link;
2338
2339 /* FIXME! are these correct ? */
2340 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2341 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2342 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2343 #define FLOAT_SINGLE_REG_SAVE_MASK \
2344 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2345 /*
2346 * The registers we must save are all those not preserved across
2347 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2348 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2349 * and FP Control/Status registers.
2350 *
2351 *
2352 * Dummy frame layout:
2353 * (high memory)
2354 * Saved PC
2355 * Saved MMHI, MMLO, FPC_CSR
2356 * Saved R31
2357 * Saved R28
2358 * ...
2359 * Saved R1
2360 * Saved D18 (i.e. F19, F18)
2361 * ...
2362 * Saved D0 (i.e. F1, F0)
2363 * Argument build area and stack arguments written via mips_push_arguments
2364 * (low memory)
2365 */
2366
2367 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2368 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2369 PROC_FRAME_OFFSET (proc_desc) = 0;
2370 PROC_FRAME_ADJUST (proc_desc) = 0;
2371 mips_push_register (&sp, PC_REGNUM);
2372 mips_push_register (&sp, HI_REGNUM);
2373 mips_push_register (&sp, LO_REGNUM);
2374 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2375
2376 /* Save general CPU registers */
2377 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2378 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2379 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2380 for (ireg = 32; --ireg >= 0;)
2381 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2382 mips_push_register (&sp, ireg);
2383
2384 /* Save floating point registers starting with high order word */
2385 PROC_FREG_MASK (proc_desc) =
2386 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2387 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2388 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2389 from FP. */
2390 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2391 for (ireg = 32; --ireg >= 0;)
2392 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2393 mips_push_register (&sp, ireg + FP0_REGNUM);
2394
2395 /* Update the frame pointer for the call dummy and the stack pointer.
2396 Set the procedure's starting and ending addresses to point to the
2397 call dummy address at the entry point. */
2398 write_register (PUSH_FP_REGNUM, old_sp);
2399 write_register (SP_REGNUM, sp);
2400 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2401 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2402 SET_PROC_DESC_IS_DUMMY (proc_desc);
2403 PROC_PC_REG (proc_desc) = RA_REGNUM;
2404 }
2405
2406 void
2407 mips_pop_frame ()
2408 {
2409 register int regnum;
2410 struct frame_info *frame = get_current_frame ();
2411 CORE_ADDR new_sp = FRAME_FP (frame);
2412
2413 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2414
2415 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2416 if (frame->saved_regs == NULL)
2417 mips_find_saved_regs (frame);
2418 for (regnum = 0; regnum < NUM_REGS; regnum++)
2419 {
2420 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2421 && frame->saved_regs[regnum])
2422 write_register (regnum,
2423 read_memory_integer (frame->saved_regs[regnum],
2424 MIPS_SAVED_REGSIZE));
2425 }
2426 write_register (SP_REGNUM, new_sp);
2427 flush_cached_frames ();
2428
2429 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2430 {
2431 struct linked_proc_info *pi_ptr, *prev_ptr;
2432
2433 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2434 pi_ptr != NULL;
2435 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2436 {
2437 if (&pi_ptr->info == proc_desc)
2438 break;
2439 }
2440
2441 if (pi_ptr == NULL)
2442 error ("Can't locate dummy extra frame info\n");
2443
2444 if (prev_ptr != NULL)
2445 prev_ptr->next = pi_ptr->next;
2446 else
2447 linked_proc_desc_table = pi_ptr->next;
2448
2449 free (pi_ptr);
2450
2451 write_register (HI_REGNUM,
2452 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2453 MIPS_SAVED_REGSIZE));
2454 write_register (LO_REGNUM,
2455 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2456 MIPS_SAVED_REGSIZE));
2457 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2458 write_register (FCRCS_REGNUM,
2459 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2460 MIPS_SAVED_REGSIZE));
2461 }
2462 }
2463
2464 static void
2465 mips_print_register (regnum, all)
2466 int regnum, all;
2467 {
2468 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2469
2470 /* Get the data in raw format. */
2471 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2472 {
2473 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2474 return;
2475 }
2476
2477 /* If an even floating point register, also print as double. */
2478 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2479 && !((regnum - FP0_REGNUM) & 1))
2480 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
2481 {
2482 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2483
2484 read_relative_register_raw_bytes (regnum, dbuffer);
2485 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
2486 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2487
2488 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2489 val_print (builtin_type_double, dbuffer, 0, 0,
2490 gdb_stdout, 0, 1, 0, Val_pretty_default);
2491 printf_filtered ("); ");
2492 }
2493 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2494
2495 /* The problem with printing numeric register names (r26, etc.) is that
2496 the user can't use them on input. Probably the best solution is to
2497 fix it so that either the numeric or the funky (a2, etc.) names
2498 are accepted on input. */
2499 if (regnum < MIPS_NUMREGS)
2500 printf_filtered ("(r%d): ", regnum);
2501 else
2502 printf_filtered (": ");
2503
2504 /* If virtual format is floating, print it that way. */
2505 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2506 if (FP_REGISTER_DOUBLE)
2507 { /* show 8-byte floats as float AND double: */
2508 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2509
2510 printf_filtered (" (float) ");
2511 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2512 gdb_stdout, 0, 1, 0, Val_pretty_default);
2513 printf_filtered (", (double) ");
2514 val_print (builtin_type_double, raw_buffer, 0, 0,
2515 gdb_stdout, 0, 1, 0, Val_pretty_default);
2516 }
2517 else
2518 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2519 gdb_stdout, 0, 1, 0, Val_pretty_default);
2520 /* Else print as integer in hex. */
2521 else
2522 {
2523 int offset;
2524
2525 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2526 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2527 else
2528 offset = 0;
2529
2530 print_scalar_formatted (raw_buffer + offset,
2531 REGISTER_VIRTUAL_TYPE (regnum),
2532 'x', 0, gdb_stdout);
2533 }
2534 }
2535
2536 /* Replacement for generic do_registers_info.
2537 Print regs in pretty columns. */
2538
2539 static int
2540 do_fp_register_row (regnum)
2541 int regnum;
2542 { /* do values for FP (float) regs */
2543 char *raw_buffer[2];
2544 char *dbl_buffer;
2545 /* use HI and LO to control the order of combining two flt regs */
2546 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2547 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2548 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2549 int inv1, inv2, inv3;
2550
2551 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2552 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2553 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2554
2555 /* Get the data in raw format. */
2556 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2557 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2558 if (REGISTER_RAW_SIZE (regnum) == 4)
2559 {
2560 /* 4-byte registers: we can fit two registers per row. */
2561 /* Also print every pair of 4-byte regs as an 8-byte double. */
2562 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
2563 error ("can't read register %d (%s)",
2564 regnum + 1, REGISTER_NAME (regnum + 1));
2565
2566 /* copy the two floats into one double, and unpack both */
2567 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2568 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2569 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2570 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2571
2572 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2573 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2574 printf_filtered (inv2 ? " %-5s: <invalid float>" :
2575 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
2576 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2577 " dbl: %-24.17g\n", doub);
2578 /* may want to do hex display here (future enhancement) */
2579 regnum += 2;
2580 }
2581 else
2582 { /* eight byte registers: print each one as float AND as double. */
2583 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2584
2585 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2586 flt1 = unpack_double (builtin_type_float,
2587 &raw_buffer[HI][offset], &inv1);
2588 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2589
2590 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2591 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
2592 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2593 " dbl: %-24.17g\n", doub);
2594 /* may want to do hex display here (future enhancement) */
2595 regnum++;
2596 }
2597 return regnum;
2598 }
2599
2600 /* Print a row's worth of GP (int) registers, with name labels above */
2601
2602 static int
2603 do_gp_register_row (regnum)
2604 int regnum;
2605 {
2606 /* do values for GP (int) regs */
2607 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2608 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2609 int col, byte;
2610 int start_regnum = regnum;
2611 int numregs = NUM_REGS;
2612
2613
2614 /* For GP registers, we print a separate row of names above the vals */
2615 printf_filtered (" ");
2616 for (col = 0; col < ncols && regnum < numregs; regnum++)
2617 {
2618 if (*REGISTER_NAME (regnum) == '\0')
2619 continue; /* unused register */
2620 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2621 break; /* end the row: reached FP register */
2622 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
2623 REGISTER_NAME (regnum));
2624 col++;
2625 }
2626 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
2627 start_regnum); /* print the R0 to R31 names */
2628
2629 regnum = start_regnum; /* go back to start of row */
2630 /* now print the values in hex, 4 or 8 to the row */
2631 for (col = 0; col < ncols && regnum < numregs; regnum++)
2632 {
2633 if (*REGISTER_NAME (regnum) == '\0')
2634 continue; /* unused register */
2635 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2636 break; /* end row: reached FP register */
2637 /* OK: get the data in raw format. */
2638 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2639 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2640 /* pad small registers */
2641 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
2642 printf_filtered (" ");
2643 /* Now print the register value in hex, endian order. */
2644 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2645 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2646 byte < REGISTER_RAW_SIZE (regnum);
2647 byte++)
2648 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2649 else
2650 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2651 byte >= 0;
2652 byte--)
2653 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2654 printf_filtered (" ");
2655 col++;
2656 }
2657 if (col > 0) /* ie. if we actually printed anything... */
2658 printf_filtered ("\n");
2659
2660 return regnum;
2661 }
2662
2663 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2664
2665 void
2666 mips_do_registers_info (regnum, fpregs)
2667 int regnum;
2668 int fpregs;
2669 {
2670 if (regnum != -1) /* do one specified register */
2671 {
2672 if (*(REGISTER_NAME (regnum)) == '\0')
2673 error ("Not a valid register for the current processor type");
2674
2675 mips_print_register (regnum, 0);
2676 printf_filtered ("\n");
2677 }
2678 else
2679 /* do all (or most) registers */
2680 {
2681 regnum = 0;
2682 while (regnum < NUM_REGS)
2683 {
2684 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2685 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
2686 regnum = do_fp_register_row (regnum); /* FP regs */
2687 else
2688 regnum += MIPS_NUMREGS; /* skip floating point regs */
2689 else
2690 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2691 }
2692 }
2693 }
2694
2695 /* Return number of args passed to a frame. described by FIP.
2696 Can return -1, meaning no way to tell. */
2697
2698 int
2699 mips_frame_num_args (frame)
2700 struct frame_info *frame;
2701 {
2702 #if 0 /* FIXME Use or lose this! */
2703 struct chain_info_t *p;
2704
2705 p = mips_find_cached_frame (FRAME_FP (frame));
2706 if (p->valid)
2707 return p->the_info.numargs;
2708 #endif
2709 return -1;
2710 }
2711
2712 /* Is this a branch with a delay slot? */
2713
2714 static int is_delayed (unsigned long);
2715
2716 static int
2717 is_delayed (insn)
2718 unsigned long insn;
2719 {
2720 int i;
2721 for (i = 0; i < NUMOPCODES; ++i)
2722 if (mips_opcodes[i].pinfo != INSN_MACRO
2723 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2724 break;
2725 return (i < NUMOPCODES
2726 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2727 | INSN_COND_BRANCH_DELAY
2728 | INSN_COND_BRANCH_LIKELY)));
2729 }
2730
2731 int
2732 mips_step_skips_delay (pc)
2733 CORE_ADDR pc;
2734 {
2735 char buf[MIPS_INSTLEN];
2736
2737 /* There is no branch delay slot on MIPS16. */
2738 if (pc_is_mips16 (pc))
2739 return 0;
2740
2741 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2742 /* If error reading memory, guess that it is not a delayed branch. */
2743 return 0;
2744 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
2745 }
2746
2747
2748 /* Skip the PC past function prologue instructions (32-bit version).
2749 This is a helper function for mips_skip_prologue. */
2750
2751 static CORE_ADDR
2752 mips32_skip_prologue (pc, lenient)
2753 CORE_ADDR pc; /* starting PC to search from */
2754 int lenient;
2755 {
2756 t_inst inst;
2757 CORE_ADDR end_pc;
2758 int seen_sp_adjust = 0;
2759 int load_immediate_bytes = 0;
2760
2761 /* Skip the typical prologue instructions. These are the stack adjustment
2762 instruction and the instructions that save registers on the stack
2763 or in the gcc frame. */
2764 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2765 {
2766 unsigned long high_word;
2767
2768 inst = mips_fetch_instruction (pc);
2769 high_word = (inst >> 16) & 0xffff;
2770
2771 #if 0
2772 if (lenient && is_delayed (inst))
2773 continue;
2774 #endif
2775
2776 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2777 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2778 seen_sp_adjust = 1;
2779 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2780 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2781 seen_sp_adjust = 1;
2782 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2783 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2784 && (inst & 0x001F0000)) /* reg != $zero */
2785 continue;
2786
2787 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2788 continue;
2789 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2790 /* sx reg,n($s8) */
2791 continue; /* reg != $zero */
2792
2793 /* move $s8,$sp. With different versions of gas this will be either
2794 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2795 Accept any one of these. */
2796 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2797 continue;
2798
2799 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2800 continue;
2801 else if (high_word == 0x3c1c) /* lui $gp,n */
2802 continue;
2803 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2804 continue;
2805 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2806 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2807 continue;
2808 /* The following instructions load $at or $t0 with an immediate
2809 value in preparation for a stack adjustment via
2810 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2811 a local variable, so we accept them only before a stack adjustment
2812 instruction was seen. */
2813 else if (!seen_sp_adjust)
2814 {
2815 if (high_word == 0x3c01 || /* lui $at,n */
2816 high_word == 0x3c08) /* lui $t0,n */
2817 {
2818 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2819 continue;
2820 }
2821 else if (high_word == 0x3421 || /* ori $at,$at,n */
2822 high_word == 0x3508 || /* ori $t0,$t0,n */
2823 high_word == 0x3401 || /* ori $at,$zero,n */
2824 high_word == 0x3408) /* ori $t0,$zero,n */
2825 {
2826 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2827 continue;
2828 }
2829 else
2830 break;
2831 }
2832 else
2833 break;
2834 }
2835
2836 /* In a frameless function, we might have incorrectly
2837 skipped some load immediate instructions. Undo the skipping
2838 if the load immediate was not followed by a stack adjustment. */
2839 if (load_immediate_bytes && !seen_sp_adjust)
2840 pc -= load_immediate_bytes;
2841 return pc;
2842 }
2843
2844 /* Skip the PC past function prologue instructions (16-bit version).
2845 This is a helper function for mips_skip_prologue. */
2846
2847 static CORE_ADDR
2848 mips16_skip_prologue (pc, lenient)
2849 CORE_ADDR pc; /* starting PC to search from */
2850 int lenient;
2851 {
2852 CORE_ADDR end_pc;
2853 int extend_bytes = 0;
2854 int prev_extend_bytes;
2855
2856 /* Table of instructions likely to be found in a function prologue. */
2857 static struct
2858 {
2859 unsigned short inst;
2860 unsigned short mask;
2861 }
2862 table[] =
2863 {
2864 {
2865 0x6300, 0xff00
2866 }
2867 , /* addiu $sp,offset */
2868 {
2869 0xfb00, 0xff00
2870 }
2871 , /* daddiu $sp,offset */
2872 {
2873 0xd000, 0xf800
2874 }
2875 , /* sw reg,n($sp) */
2876 {
2877 0xf900, 0xff00
2878 }
2879 , /* sd reg,n($sp) */
2880 {
2881 0x6200, 0xff00
2882 }
2883 , /* sw $ra,n($sp) */
2884 {
2885 0xfa00, 0xff00
2886 }
2887 , /* sd $ra,n($sp) */
2888 {
2889 0x673d, 0xffff
2890 }
2891 , /* move $s1,sp */
2892 {
2893 0xd980, 0xff80
2894 }
2895 , /* sw $a0-$a3,n($s1) */
2896 {
2897 0x6704, 0xff1c
2898 }
2899 , /* move reg,$a0-$a3 */
2900 {
2901 0xe809, 0xf81f
2902 }
2903 , /* entry pseudo-op */
2904 {
2905 0x0100, 0xff00
2906 }
2907 , /* addiu $s1,$sp,n */
2908 {
2909 0, 0
2910 } /* end of table marker */
2911 };
2912
2913 /* Skip the typical prologue instructions. These are the stack adjustment
2914 instruction and the instructions that save registers on the stack
2915 or in the gcc frame. */
2916 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
2917 {
2918 unsigned short inst;
2919 int i;
2920
2921 inst = mips_fetch_instruction (pc);
2922
2923 /* Normally we ignore an extend instruction. However, if it is
2924 not followed by a valid prologue instruction, we must adjust
2925 the pc back over the extend so that it won't be considered
2926 part of the prologue. */
2927 if ((inst & 0xf800) == 0xf000) /* extend */
2928 {
2929 extend_bytes = MIPS16_INSTLEN;
2930 continue;
2931 }
2932 prev_extend_bytes = extend_bytes;
2933 extend_bytes = 0;
2934
2935 /* Check for other valid prologue instructions besides extend. */
2936 for (i = 0; table[i].mask != 0; i++)
2937 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
2938 break;
2939 if (table[i].mask != 0) /* it was in table? */
2940 continue; /* ignore it */
2941 else
2942 /* non-prologue */
2943 {
2944 /* Return the current pc, adjusted backwards by 2 if
2945 the previous instruction was an extend. */
2946 return pc - prev_extend_bytes;
2947 }
2948 }
2949 return pc;
2950 }
2951
2952 /* To skip prologues, I use this predicate. Returns either PC itself
2953 if the code at PC does not look like a function prologue; otherwise
2954 returns an address that (if we're lucky) follows the prologue. If
2955 LENIENT, then we must skip everything which is involved in setting
2956 up the frame (it's OK to skip more, just so long as we don't skip
2957 anything which might clobber the registers which are being saved.
2958 We must skip more in the case where part of the prologue is in the
2959 delay slot of a non-prologue instruction). */
2960
2961 CORE_ADDR
2962 mips_skip_prologue (pc, lenient)
2963 CORE_ADDR pc;
2964 int lenient;
2965 {
2966 /* See if we can determine the end of the prologue via the symbol table.
2967 If so, then return either PC, or the PC after the prologue, whichever
2968 is greater. */
2969
2970 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
2971
2972 if (post_prologue_pc != 0)
2973 return max (pc, post_prologue_pc);
2974
2975 /* Can't determine prologue from the symbol table, need to examine
2976 instructions. */
2977
2978 if (pc_is_mips16 (pc))
2979 return mips16_skip_prologue (pc, lenient);
2980 else
2981 return mips32_skip_prologue (pc, lenient);
2982 }
2983
2984 #if 0
2985 /* The lenient prologue stuff should be superseded by the code in
2986 init_extra_frame_info which looks to see whether the stores mentioned
2987 in the proc_desc have actually taken place. */
2988
2989 /* Is address PC in the prologue (loosely defined) for function at
2990 STARTADDR? */
2991
2992 static int
2993 mips_in_lenient_prologue (startaddr, pc)
2994 CORE_ADDR startaddr;
2995 CORE_ADDR pc;
2996 {
2997 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
2998 return pc >= startaddr && pc < end_prologue;
2999 }
3000 #endif
3001
3002 /* Determine how a return value is stored within the MIPS register
3003 file, given the return type `valtype'. */
3004
3005 struct return_value_word
3006 {
3007 int len;
3008 int reg;
3009 int reg_offset;
3010 int buf_offset;
3011 };
3012
3013 static void return_value_location (struct type *, struct return_value_word *,
3014 struct return_value_word *);
3015
3016 static void
3017 return_value_location (valtype, hi, lo)
3018 struct type *valtype;
3019 struct return_value_word *hi;
3020 struct return_value_word *lo;
3021 {
3022 int len = TYPE_LENGTH (valtype);
3023
3024 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3025 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3026 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3027 {
3028 if (!FP_REGISTER_DOUBLE && len == 8)
3029 {
3030 /* We need to break a 64bit float in two 32 bit halves and
3031 spread them across a floating-point register pair. */
3032 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3033 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3034 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3035 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3036 ? 4 : 0);
3037 hi->reg_offset = lo->reg_offset;
3038 lo->reg = FP0_REGNUM + 0;
3039 hi->reg = FP0_REGNUM + 1;
3040 lo->len = 4;
3041 hi->len = 4;
3042 }
3043 else
3044 {
3045 /* The floating point value fits in a single floating-point
3046 register. */
3047 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3048 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3049 && len == 4)
3050 ? 4 : 0);
3051 lo->reg = FP0_REGNUM;
3052 lo->len = len;
3053 lo->buf_offset = 0;
3054 hi->len = 0;
3055 hi->reg_offset = 0;
3056 hi->buf_offset = 0;
3057 hi->reg = 0;
3058 }
3059 }
3060 else
3061 {
3062 /* Locate a result possibly spread across two registers. */
3063 int regnum = 2;
3064 lo->reg = regnum + 0;
3065 hi->reg = regnum + 1;
3066 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3067 && len < MIPS_SAVED_REGSIZE)
3068 {
3069 /* "un-left-justify" the value in the low register */
3070 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3071 lo->len = len;
3072 hi->reg_offset = 0;
3073 hi->len = 0;
3074 }
3075 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3076 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3077 && len < MIPS_SAVED_REGSIZE * 2
3078 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3079 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3080 {
3081 /* "un-left-justify" the value spread across two registers. */
3082 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3083 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3084 hi->reg_offset = 0;
3085 hi->len = len - lo->len;
3086 }
3087 else
3088 {
3089 /* Only perform a partial copy of the second register. */
3090 lo->reg_offset = 0;
3091 hi->reg_offset = 0;
3092 if (len > MIPS_SAVED_REGSIZE)
3093 {
3094 lo->len = MIPS_SAVED_REGSIZE;
3095 hi->len = len - MIPS_SAVED_REGSIZE;
3096 }
3097 else
3098 {
3099 lo->len = len;
3100 hi->len = 0;
3101 }
3102 }
3103 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3104 && REGISTER_RAW_SIZE (regnum) == 8
3105 && MIPS_SAVED_REGSIZE == 4)
3106 {
3107 /* Account for the fact that only the least-signficant part
3108 of the register is being used */
3109 lo->reg_offset += 4;
3110 hi->reg_offset += 4;
3111 }
3112 lo->buf_offset = 0;
3113 hi->buf_offset = lo->len;
3114 }
3115 }
3116
3117 /* Given a return value in `regbuf' with a type `valtype', extract and
3118 copy its value into `valbuf'. */
3119
3120 void
3121 mips_extract_return_value (valtype, regbuf, valbuf)
3122 struct type *valtype;
3123 char regbuf[REGISTER_BYTES];
3124 char *valbuf;
3125 {
3126 struct return_value_word lo;
3127 struct return_value_word hi;
3128 return_value_location (valtype, &lo, &hi);
3129
3130 memcpy (valbuf + lo.buf_offset,
3131 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3132 lo.len);
3133
3134 if (hi.len > 0)
3135 memcpy (valbuf + hi.buf_offset,
3136 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3137 hi.len);
3138
3139 #if 0
3140 int regnum;
3141 int offset = 0;
3142 int len = TYPE_LENGTH (valtype);
3143
3144 regnum = 2;
3145 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3146 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3147 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3148 && len <= MIPS_FPU_SINGLE_REGSIZE)))
3149 regnum = FP0_REGNUM;
3150
3151 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3152 { /* "un-left-justify" the value from the register */
3153 if (len < REGISTER_RAW_SIZE (regnum))
3154 offset = REGISTER_RAW_SIZE (regnum) - len;
3155 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
3156 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3157 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3158 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3159 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3160 }
3161 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
3162 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
3163 #endif
3164 }
3165
3166 /* Given a return value in `valbuf' with a type `valtype', write it's
3167 value into the appropriate register. */
3168
3169 void
3170 mips_store_return_value (valtype, valbuf)
3171 struct type *valtype;
3172 char *valbuf;
3173 {
3174 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3175 struct return_value_word lo;
3176 struct return_value_word hi;
3177 return_value_location (valtype, &lo, &hi);
3178
3179 memset (raw_buffer, 0, sizeof (raw_buffer));
3180 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3181 write_register_bytes (REGISTER_BYTE (lo.reg),
3182 raw_buffer,
3183 REGISTER_RAW_SIZE (lo.reg));
3184
3185 if (hi.len > 0)
3186 {
3187 memset (raw_buffer, 0, sizeof (raw_buffer));
3188 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3189 write_register_bytes (REGISTER_BYTE (hi.reg),
3190 raw_buffer,
3191 REGISTER_RAW_SIZE (hi.reg));
3192 }
3193
3194 #if 0
3195 int regnum;
3196 int offset = 0;
3197 int len = TYPE_LENGTH (valtype);
3198 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3199
3200 regnum = 2;
3201 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3202 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3203 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3204 && len <= MIPS_REGSIZE)))
3205 regnum = FP0_REGNUM;
3206
3207 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3208 { /* "left-justify" the value in the register */
3209 if (len < REGISTER_RAW_SIZE (regnum))
3210 offset = REGISTER_RAW_SIZE (regnum) - len;
3211 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
3212 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3213 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3214 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3215 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3216 }
3217 memcpy (raw_buffer + offset, valbuf, len);
3218 REGISTER_CONVERT_FROM_TYPE (regnum, valtype, raw_buffer);
3219 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
3220 len > REGISTER_RAW_SIZE (regnum) ?
3221 len : REGISTER_RAW_SIZE (regnum));
3222 #endif
3223 }
3224
3225 /* Exported procedure: Is PC in the signal trampoline code */
3226
3227 int
3228 in_sigtramp (pc, ignore)
3229 CORE_ADDR pc;
3230 char *ignore; /* function name */
3231 {
3232 if (sigtramp_address == 0)
3233 fixup_sigtramp ();
3234 return (pc >= sigtramp_address && pc < sigtramp_end);
3235 }
3236
3237 /* Root of all "set mips "/"show mips " commands. This will eventually be
3238 used for all MIPS-specific commands. */
3239
3240 static void show_mips_command (char *, int);
3241 static void
3242 show_mips_command (args, from_tty)
3243 char *args;
3244 int from_tty;
3245 {
3246 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3247 }
3248
3249 static void set_mips_command (char *, int);
3250 static void
3251 set_mips_command (args, from_tty)
3252 char *args;
3253 int from_tty;
3254 {
3255 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3256 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3257 }
3258
3259 /* Commands to show/set the MIPS FPU type. */
3260
3261 static void show_mipsfpu_command (char *, int);
3262 static void
3263 show_mipsfpu_command (args, from_tty)
3264 char *args;
3265 int from_tty;
3266 {
3267 char *msg;
3268 char *fpu;
3269 switch (MIPS_FPU_TYPE)
3270 {
3271 case MIPS_FPU_SINGLE:
3272 fpu = "single-precision";
3273 break;
3274 case MIPS_FPU_DOUBLE:
3275 fpu = "double-precision";
3276 break;
3277 case MIPS_FPU_NONE:
3278 fpu = "absent (none)";
3279 break;
3280 }
3281 if (mips_fpu_type_auto)
3282 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3283 fpu);
3284 else
3285 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3286 fpu);
3287 }
3288
3289
3290 static void set_mipsfpu_command (char *, int);
3291 static void
3292 set_mipsfpu_command (args, from_tty)
3293 char *args;
3294 int from_tty;
3295 {
3296 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3297 show_mipsfpu_command (args, from_tty);
3298 }
3299
3300 static void set_mipsfpu_single_command (char *, int);
3301 static void
3302 set_mipsfpu_single_command (args, from_tty)
3303 char *args;
3304 int from_tty;
3305 {
3306 mips_fpu_type = MIPS_FPU_SINGLE;
3307 mips_fpu_type_auto = 0;
3308 if (GDB_MULTI_ARCH)
3309 {
3310 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3311 }
3312 }
3313
3314 static void set_mipsfpu_double_command (char *, int);
3315 static void
3316 set_mipsfpu_double_command (args, from_tty)
3317 char *args;
3318 int from_tty;
3319 {
3320 mips_fpu_type = MIPS_FPU_DOUBLE;
3321 mips_fpu_type_auto = 0;
3322 if (GDB_MULTI_ARCH)
3323 {
3324 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3325 }
3326 }
3327
3328 static void set_mipsfpu_none_command (char *, int);
3329 static void
3330 set_mipsfpu_none_command (args, from_tty)
3331 char *args;
3332 int from_tty;
3333 {
3334 mips_fpu_type = MIPS_FPU_NONE;
3335 mips_fpu_type_auto = 0;
3336 if (GDB_MULTI_ARCH)
3337 {
3338 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3339 }
3340 }
3341
3342 static void set_mipsfpu_auto_command (char *, int);
3343 static void
3344 set_mipsfpu_auto_command (args, from_tty)
3345 char *args;
3346 int from_tty;
3347 {
3348 mips_fpu_type_auto = 1;
3349 }
3350
3351 /* Command to set the processor type. */
3352
3353 void
3354 mips_set_processor_type_command (args, from_tty)
3355 char *args;
3356 int from_tty;
3357 {
3358 int i;
3359
3360 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3361 {
3362 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3363 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3364 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3365
3366 /* Restore the value. */
3367 tmp_mips_processor_type = strsave (mips_processor_type);
3368
3369 return;
3370 }
3371
3372 if (!mips_set_processor_type (tmp_mips_processor_type))
3373 {
3374 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3375 /* Restore its value. */
3376 tmp_mips_processor_type = strsave (mips_processor_type);
3377 }
3378 }
3379
3380 static void
3381 mips_show_processor_type_command (args, from_tty)
3382 char *args;
3383 int from_tty;
3384 {
3385 }
3386
3387 /* Modify the actual processor type. */
3388
3389 int
3390 mips_set_processor_type (str)
3391 char *str;
3392 {
3393 int i, j;
3394
3395 if (str == NULL)
3396 return 0;
3397
3398 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3399 {
3400 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3401 {
3402 mips_processor_type = str;
3403 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3404 return 1;
3405 /* FIXME tweak fpu flag too */
3406 }
3407 }
3408
3409 return 0;
3410 }
3411
3412 /* Attempt to identify the particular processor model by reading the
3413 processor id. */
3414
3415 char *
3416 mips_read_processor_type ()
3417 {
3418 CORE_ADDR prid;
3419
3420 prid = read_register (PRID_REGNUM);
3421
3422 if ((prid & ~0xf) == 0x700)
3423 return savestring ("r3041", strlen ("r3041"));
3424
3425 return NULL;
3426 }
3427
3428 /* Just like reinit_frame_cache, but with the right arguments to be
3429 callable as an sfunc. */
3430
3431 static void
3432 reinit_frame_cache_sfunc (args, from_tty, c)
3433 char *args;
3434 int from_tty;
3435 struct cmd_list_element *c;
3436 {
3437 reinit_frame_cache ();
3438 }
3439
3440 int
3441 gdb_print_insn_mips (memaddr, info)
3442 bfd_vma memaddr;
3443 disassemble_info *info;
3444 {
3445 mips_extra_func_info_t proc_desc;
3446
3447 /* Search for the function containing this address. Set the low bit
3448 of the address when searching, in case we were given an even address
3449 that is the start of a 16-bit function. If we didn't do this,
3450 the search would fail because the symbol table says the function
3451 starts at an odd address, i.e. 1 byte past the given address. */
3452 memaddr = ADDR_BITS_REMOVE (memaddr);
3453 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3454
3455 /* Make an attempt to determine if this is a 16-bit function. If
3456 the procedure descriptor exists and the address therein is odd,
3457 it's definitely a 16-bit function. Otherwise, we have to just
3458 guess that if the address passed in is odd, it's 16-bits. */
3459 if (proc_desc)
3460 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH;
3461 else
3462 info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH;
3463
3464 /* Round down the instruction address to the appropriate boundary. */
3465 memaddr &= (info->mach == 16 ? ~1 : ~3);
3466
3467 /* Call the appropriate disassembler based on the target endian-ness. */
3468 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3469 return print_insn_big_mips (memaddr, info);
3470 else
3471 return print_insn_little_mips (memaddr, info);
3472 }
3473
3474 /* Old-style breakpoint macros.
3475 The IDT board uses an unusual breakpoint value, and sometimes gets
3476 confused when it sees the usual MIPS breakpoint instruction. */
3477
3478 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3479 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3480 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3481 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3482 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3483 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3484 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3485 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3486
3487 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3488 counter value to determine whether a 16- or 32-bit breakpoint should be
3489 used. It returns a pointer to a string of bytes that encode a breakpoint
3490 instruction, stores the length of the string to *lenptr, and adjusts pc
3491 (if necessary) to point to the actual memory location where the
3492 breakpoint should be inserted. */
3493
3494 unsigned char *
3495 mips_breakpoint_from_pc (pcptr, lenptr)
3496 CORE_ADDR *pcptr;
3497 int *lenptr;
3498 {
3499 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3500 {
3501 if (pc_is_mips16 (*pcptr))
3502 {
3503 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3504 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3505 *lenptr = sizeof (mips16_big_breakpoint);
3506 return mips16_big_breakpoint;
3507 }
3508 else
3509 {
3510 static char big_breakpoint[] = BIG_BREAKPOINT;
3511 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3512 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3513
3514 *lenptr = sizeof (big_breakpoint);
3515
3516 if (strcmp (target_shortname, "mips") == 0)
3517 return idt_big_breakpoint;
3518 else if (strcmp (target_shortname, "ddb") == 0
3519 || strcmp (target_shortname, "pmon") == 0
3520 || strcmp (target_shortname, "lsi") == 0)
3521 return pmon_big_breakpoint;
3522 else
3523 return big_breakpoint;
3524 }
3525 }
3526 else
3527 {
3528 if (pc_is_mips16 (*pcptr))
3529 {
3530 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3531 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3532 *lenptr = sizeof (mips16_little_breakpoint);
3533 return mips16_little_breakpoint;
3534 }
3535 else
3536 {
3537 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3538 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3539 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3540
3541 *lenptr = sizeof (little_breakpoint);
3542
3543 if (strcmp (target_shortname, "mips") == 0)
3544 return idt_little_breakpoint;
3545 else if (strcmp (target_shortname, "ddb") == 0
3546 || strcmp (target_shortname, "pmon") == 0
3547 || strcmp (target_shortname, "lsi") == 0)
3548 return pmon_little_breakpoint;
3549 else
3550 return little_breakpoint;
3551 }
3552 }
3553 }
3554
3555 /* If PC is in a mips16 call or return stub, return the address of the target
3556 PC, which is either the callee or the caller. There are several
3557 cases which must be handled:
3558
3559 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3560 target PC is in $31 ($ra).
3561 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3562 and the target PC is in $2.
3563 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3564 before the jal instruction, this is effectively a call stub
3565 and the the target PC is in $2. Otherwise this is effectively
3566 a return stub and the target PC is in $18.
3567
3568 See the source code for the stubs in gcc/config/mips/mips16.S for
3569 gory details.
3570
3571 This function implements the SKIP_TRAMPOLINE_CODE macro.
3572 */
3573
3574 CORE_ADDR
3575 mips_skip_stub (pc)
3576 CORE_ADDR pc;
3577 {
3578 char *name;
3579 CORE_ADDR start_addr;
3580
3581 /* Find the starting address and name of the function containing the PC. */
3582 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3583 return 0;
3584
3585 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3586 target PC is in $31 ($ra). */
3587 if (strcmp (name, "__mips16_ret_sf") == 0
3588 || strcmp (name, "__mips16_ret_df") == 0)
3589 return read_register (RA_REGNUM);
3590
3591 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3592 {
3593 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3594 and the target PC is in $2. */
3595 if (name[19] >= '0' && name[19] <= '9')
3596 return read_register (2);
3597
3598 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3599 before the jal instruction, this is effectively a call stub
3600 and the the target PC is in $2. Otherwise this is effectively
3601 a return stub and the target PC is in $18. */
3602 else if (name[19] == 's' || name[19] == 'd')
3603 {
3604 if (pc == start_addr)
3605 {
3606 /* Check if the target of the stub is a compiler-generated
3607 stub. Such a stub for a function bar might have a name
3608 like __fn_stub_bar, and might look like this:
3609 mfc1 $4,$f13
3610 mfc1 $5,$f12
3611 mfc1 $6,$f15
3612 mfc1 $7,$f14
3613 la $1,bar (becomes a lui/addiu pair)
3614 jr $1
3615 So scan down to the lui/addi and extract the target
3616 address from those two instructions. */
3617
3618 CORE_ADDR target_pc = read_register (2);
3619 t_inst inst;
3620 int i;
3621
3622 /* See if the name of the target function is __fn_stub_*. */
3623 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3624 return target_pc;
3625 if (strncmp (name, "__fn_stub_", 10) != 0
3626 && strcmp (name, "etext") != 0
3627 && strcmp (name, "_etext") != 0)
3628 return target_pc;
3629
3630 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3631 The limit on the search is arbitrarily set to 20
3632 instructions. FIXME. */
3633 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3634 {
3635 inst = mips_fetch_instruction (target_pc);
3636 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3637 pc = (inst << 16) & 0xffff0000; /* high word */
3638 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3639 return pc | (inst & 0xffff); /* low word */
3640 }
3641
3642 /* Couldn't find the lui/addui pair, so return stub address. */
3643 return target_pc;
3644 }
3645 else
3646 /* This is the 'return' part of a call stub. The return
3647 address is in $r18. */
3648 return read_register (18);
3649 }
3650 }
3651 return 0; /* not a stub */
3652 }
3653
3654
3655 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3656 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3657
3658 int
3659 mips_in_call_stub (pc, name)
3660 CORE_ADDR pc;
3661 char *name;
3662 {
3663 CORE_ADDR start_addr;
3664
3665 /* Find the starting address of the function containing the PC. If the
3666 caller didn't give us a name, look it up at the same time. */
3667 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3668 return 0;
3669
3670 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3671 {
3672 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3673 if (name[19] >= '0' && name[19] <= '9')
3674 return 1;
3675 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3676 before the jal instruction, this is effectively a call stub. */
3677 else if (name[19] == 's' || name[19] == 'd')
3678 return pc == start_addr;
3679 }
3680
3681 return 0; /* not a stub */
3682 }
3683
3684
3685 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3686 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3687
3688 int
3689 mips_in_return_stub (pc, name)
3690 CORE_ADDR pc;
3691 char *name;
3692 {
3693 CORE_ADDR start_addr;
3694
3695 /* Find the starting address of the function containing the PC. */
3696 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3697 return 0;
3698
3699 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3700 if (strcmp (name, "__mips16_ret_sf") == 0
3701 || strcmp (name, "__mips16_ret_df") == 0)
3702 return 1;
3703
3704 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
3705 i.e. after the jal instruction, this is effectively a return stub. */
3706 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3707 && (name[19] == 's' || name[19] == 'd')
3708 && pc != start_addr)
3709 return 1;
3710
3711 return 0; /* not a stub */
3712 }
3713
3714
3715 /* Return non-zero if the PC is in a library helper function that should
3716 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3717
3718 int
3719 mips_ignore_helper (pc)
3720 CORE_ADDR pc;
3721 {
3722 char *name;
3723
3724 /* Find the starting address and name of the function containing the PC. */
3725 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3726 return 0;
3727
3728 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3729 that we want to ignore. */
3730 return (strcmp (name, "__mips16_ret_sf") == 0
3731 || strcmp (name, "__mips16_ret_df") == 0);
3732 }
3733
3734
3735 /* Return a location where we can set a breakpoint that will be hit
3736 when an inferior function call returns. This is normally the
3737 program's entry point. Executables that don't have an entry
3738 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3739 whose address is the location where the breakpoint should be placed. */
3740
3741 CORE_ADDR
3742 mips_call_dummy_address ()
3743 {
3744 struct minimal_symbol *sym;
3745
3746 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3747 if (sym)
3748 return SYMBOL_VALUE_ADDRESS (sym);
3749 else
3750 return entry_point_address ();
3751 }
3752
3753
3754 /* If the current gcc for for this target does not produce correct debugging
3755 information for float parameters, both prototyped and unprototyped, then
3756 define this macro. This forces gdb to always assume that floats are
3757 passed as doubles and then converted in the callee.
3758
3759 For the mips chip, it appears that the debug info marks the parameters as
3760 floats regardless of whether the function is prototyped, but the actual
3761 values are passed as doubles for the non-prototyped case and floats for
3762 the prototyped case. Thus we choose to make the non-prototyped case work
3763 for C and break the prototyped case, since the non-prototyped case is
3764 probably much more common. (FIXME). */
3765
3766 static int
3767 mips_coerce_float_to_double (struct type *formal, struct type *actual)
3768 {
3769 return current_language->la_language == language_c;
3770 }
3771
3772 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3773 the register stored on the stack (32) is different to its real raw
3774 size (64). The below ensures that registers are fetched from the
3775 stack using their ABI size and then stored into the RAW_BUFFER
3776 using their raw size.
3777
3778 The alternative to adding this function would be to add an ABI
3779 macro - REGISTER_STACK_SIZE(). */
3780
3781 static void
3782 mips_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
3783 char *raw_buffer;
3784 int *optimized;
3785 CORE_ADDR *addrp;
3786 struct frame_info *frame;
3787 int regnum;
3788 enum lval_type *lval;
3789 {
3790 CORE_ADDR addr;
3791
3792 if (!target_has_registers)
3793 error ("No registers.");
3794
3795 /* Normal systems don't optimize out things with register numbers. */
3796 if (optimized != NULL)
3797 *optimized = 0;
3798 addr = find_saved_register (frame, regnum);
3799 if (addr != 0)
3800 {
3801 if (lval != NULL)
3802 *lval = lval_memory;
3803 if (regnum == SP_REGNUM)
3804 {
3805 if (raw_buffer != NULL)
3806 {
3807 /* Put it back in target format. */
3808 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3809 (LONGEST) addr);
3810 }
3811 if (addrp != NULL)
3812 *addrp = 0;
3813 return;
3814 }
3815 if (raw_buffer != NULL)
3816 {
3817 LONGEST val;
3818 if (regnum < 32)
3819 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3820 saved. */
3821 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3822 else
3823 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3824 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3825 }
3826 }
3827 else
3828 {
3829 if (lval != NULL)
3830 *lval = lval_register;
3831 addr = REGISTER_BYTE (regnum);
3832 if (raw_buffer != NULL)
3833 read_register_gen (regnum, raw_buffer);
3834 }
3835 if (addrp != NULL)
3836 *addrp = addr;
3837 }
3838
3839 static gdbarch_init_ftype mips_gdbarch_init;
3840 static struct gdbarch *
3841 mips_gdbarch_init (info, arches)
3842 struct gdbarch_info info;
3843 struct gdbarch_list *arches;
3844 {
3845 static LONGEST mips_call_dummy_words[] =
3846 {0};
3847 struct gdbarch *gdbarch;
3848 struct gdbarch_tdep *tdep;
3849 int elf_flags;
3850 int ef_mips_bitptrs;
3851 int ef_mips_arch;
3852 enum mips_abi mips_abi;
3853
3854 /* Extract the elf_flags if available */
3855 if (info.abfd != NULL
3856 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3857 elf_flags = elf_elfheader (info.abfd)->e_flags;
3858 else
3859 elf_flags = 0;
3860
3861 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3862 switch ((elf_flags & EF_MIPS_ABI))
3863 {
3864 case E_MIPS_ABI_O32:
3865 mips_abi = MIPS_ABI_O32;
3866 break;
3867 case E_MIPS_ABI_O64:
3868 mips_abi = MIPS_ABI_O64;
3869 break;
3870 case E_MIPS_ABI_EABI32:
3871 mips_abi = MIPS_ABI_EABI32;
3872 break;
3873 case E_MIPS_ABI_EABI64:
3874 mips_abi = MIPS_ABI_EABI32;
3875 break;
3876 default:
3877 mips_abi = MIPS_ABI_UNKNOWN;
3878 break;
3879 }
3880 /* Try the architecture for any hint of the corect ABI */
3881 if (mips_abi == MIPS_ABI_UNKNOWN
3882 && info.bfd_arch_info != NULL
3883 && info.bfd_arch_info->arch == bfd_arch_mips)
3884 {
3885 switch (info.bfd_arch_info->mach)
3886 {
3887 case bfd_mach_mips3900:
3888 mips_abi = MIPS_ABI_EABI32;
3889 break;
3890 case bfd_mach_mips4100:
3891 case bfd_mach_mips5000:
3892 mips_abi = MIPS_ABI_EABI64;
3893 break;
3894 }
3895 }
3896 #ifdef MIPS_DEFAULT_ABI
3897 if (mips_abi == MIPS_ABI_UNKNOWN)
3898 mips_abi = MIPS_DEFAULT_ABI;
3899 #endif
3900
3901 if (gdbarch_debug)
3902 {
3903 fprintf_unfiltered (gdb_stdlog,
3904 "mips_gdbarch_init: elf_flags = %08x\n",
3905 elf_flags);
3906 fprintf_unfiltered (gdb_stdlog,
3907 "mips_gdbarch_init: ef_mips_arch = %d\n",
3908 ef_mips_arch);
3909 fprintf_unfiltered (gdb_stdlog,
3910 "mips_gdbarch_init: ef_mips_bitptrs = %d\n",
3911 ef_mips_bitptrs);
3912 fprintf_unfiltered (gdb_stdlog,
3913 "mips_gdbarch_init: mips_abi = %d\n",
3914 mips_abi);
3915 }
3916
3917 /* try to find a pre-existing architecture */
3918 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3919 arches != NULL;
3920 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3921 {
3922 /* MIPS needs to be pedantic about which ABI the object is
3923 using. */
3924 if (gdbarch_tdep (current_gdbarch)->elf_flags != elf_flags)
3925 continue;
3926 if (gdbarch_tdep (current_gdbarch)->mips_abi != mips_abi)
3927 continue;
3928 return arches->gdbarch;
3929 }
3930
3931 /* Need a new architecture. Fill in a target specific vector. */
3932 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3933 gdbarch = gdbarch_alloc (&info, tdep);
3934 tdep->elf_flags = elf_flags;
3935
3936 /* Initially set everything according to the ABI. */
3937 set_gdbarch_short_bit (gdbarch, 16);
3938 set_gdbarch_int_bit (gdbarch, 32);
3939 set_gdbarch_float_bit (gdbarch, 32);
3940 set_gdbarch_double_bit (gdbarch, 64);
3941 set_gdbarch_long_double_bit (gdbarch, 64);
3942 tdep->mips_abi = mips_abi;
3943 switch (mips_abi)
3944 {
3945 case MIPS_ABI_O32:
3946 tdep->mips_default_saved_regsize = 4;
3947 tdep->mips_default_stack_argsize = 4;
3948 tdep->mips_fp_register_double = 0;
3949 tdep->mips_last_arg_regnum = ZERO_REGNUM + 7;
3950 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
3951 tdep->mips_regs_have_home_p = 1;
3952 tdep->gdb_target_is_mips64 = 0;
3953 set_gdbarch_long_bit (gdbarch, 32);
3954 set_gdbarch_ptr_bit (gdbarch, 32);
3955 set_gdbarch_long_long_bit (gdbarch, 64);
3956 break;
3957 case MIPS_ABI_O64:
3958 tdep->mips_default_saved_regsize = 8;
3959 tdep->mips_default_stack_argsize = 8;
3960 tdep->mips_fp_register_double = 1;
3961 tdep->mips_last_arg_regnum = ZERO_REGNUM + 7;
3962 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
3963 tdep->mips_regs_have_home_p = 1;
3964 tdep->gdb_target_is_mips64 = 1;
3965 set_gdbarch_long_bit (gdbarch, 32);
3966 set_gdbarch_ptr_bit (gdbarch, 32);
3967 set_gdbarch_long_long_bit (gdbarch, 64);
3968 break;
3969 case MIPS_ABI_EABI32:
3970 tdep->mips_default_saved_regsize = 4;
3971 tdep->mips_default_stack_argsize = 4;
3972 tdep->mips_fp_register_double = 0;
3973 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3974 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3975 tdep->mips_regs_have_home_p = 0;
3976 tdep->gdb_target_is_mips64 = 0;
3977 set_gdbarch_long_bit (gdbarch, 32);
3978 set_gdbarch_ptr_bit (gdbarch, 32);
3979 set_gdbarch_long_long_bit (gdbarch, 64);
3980 break;
3981 case MIPS_ABI_EABI64:
3982 tdep->mips_default_saved_regsize = 8;
3983 tdep->mips_default_stack_argsize = 8;
3984 tdep->mips_fp_register_double = 1;
3985 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3986 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3987 tdep->mips_regs_have_home_p = 0;
3988 tdep->gdb_target_is_mips64 = 1;
3989 set_gdbarch_long_bit (gdbarch, 64);
3990 set_gdbarch_ptr_bit (gdbarch, 64);
3991 set_gdbarch_long_long_bit (gdbarch, 64);
3992 break;
3993 case MIPS_ABI_N32:
3994 tdep->mips_default_saved_regsize = 4;
3995 tdep->mips_default_stack_argsize = 8;
3996 tdep->mips_fp_register_double = 1;
3997 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3998 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3999 tdep->mips_regs_have_home_p = 0;
4000 tdep->gdb_target_is_mips64 = 0;
4001 set_gdbarch_long_bit (gdbarch, 32);
4002 set_gdbarch_ptr_bit (gdbarch, 32);
4003 set_gdbarch_long_long_bit (gdbarch, 64);
4004 break;
4005 default:
4006 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
4007 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
4008 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
4009 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
4010 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
4011 tdep->mips_regs_have_home_p = 1;
4012 tdep->gdb_target_is_mips64 = 0;
4013 set_gdbarch_long_bit (gdbarch, 32);
4014 set_gdbarch_ptr_bit (gdbarch, 32);
4015 set_gdbarch_long_long_bit (gdbarch, 64);
4016 break;
4017 }
4018
4019 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4020 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4021 comment:
4022
4023 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4024 flag in object files because to do so would make it impossible to
4025 link with libraries compiled without "-gp32". This is
4026 unnecessarily restrictive.
4027
4028 We could solve this problem by adding "-gp32" multilibs to gcc,
4029 but to set this flag before gcc is built with such multilibs will
4030 break too many systems.''
4031
4032 But even more unhelpfully, the default linker output target for
4033 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4034 for 64-bit programs - you need to change the ABI to change this,
4035 and not all gcc targets support that currently. Therefore using
4036 this flag to detect 32-bit mode would do the wrong thing given
4037 the current gcc - it would make GDB treat these 64-bit programs
4038 as 32-bit programs by default. */
4039
4040 /* determine the ISA */
4041 switch (elf_flags & EF_MIPS_ARCH)
4042 {
4043 case E_MIPS_ARCH_1:
4044 ef_mips_arch = 1;
4045 break;
4046 case E_MIPS_ARCH_2:
4047 ef_mips_arch = 2;
4048 break;
4049 case E_MIPS_ARCH_3:
4050 ef_mips_arch = 3;
4051 break;
4052 case E_MIPS_ARCH_4:
4053 ef_mips_arch = 0;
4054 break;
4055 default:
4056 break;
4057 }
4058
4059 #if 0
4060 /* determine the size of a pointer */
4061 if ((elf_flags & EF_MIPS_32BITPTRS))
4062 {
4063 ef_mips_bitptrs = 32;
4064 }
4065 else if ((elf_flags & EF_MIPS_64BITPTRS))
4066 {
4067 ef_mips_bitptrs = 64;
4068 }
4069 else
4070 {
4071 ef_mips_bitptrs = 0;
4072 }
4073 #endif
4074
4075 /* enable/disable the MIPS FPU */
4076 if (!mips_fpu_type_auto)
4077 tdep->mips_fpu_type = mips_fpu_type;
4078 else if (info.bfd_arch_info != NULL
4079 && info.bfd_arch_info->arch == bfd_arch_mips)
4080 switch (info.bfd_arch_info->mach)
4081 {
4082 case bfd_mach_mips3900:
4083 case bfd_mach_mips4100:
4084 case bfd_mach_mips4111:
4085 tdep->mips_fpu_type = MIPS_FPU_NONE;
4086 break;
4087 case bfd_mach_mips4650:
4088 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4089 break;
4090 default:
4091 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4092 break;
4093 }
4094 else
4095 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4096
4097 /* MIPS version of register names. NOTE: At present the MIPS
4098 register name management is part way between the old -
4099 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4100 Further work on it is required. */
4101 set_gdbarch_register_name (gdbarch, mips_register_name);
4102 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
4103 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4104 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4105 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4106 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4107 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4108
4109 /* Initialize a frame */
4110 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4111
4112 /* MIPS version of CALL_DUMMY */
4113
4114 set_gdbarch_call_dummy_p (gdbarch, 1);
4115 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4116 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4117 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4118 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4119 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4120 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4121 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4122 set_gdbarch_call_dummy_length (gdbarch, 0);
4123 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4124 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4125 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4126 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4127 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4128 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4129 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4130
4131 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4132 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4133
4134 return gdbarch;
4135 }
4136
4137 static void
4138 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4139 {
4140 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4141 if (tdep != NULL)
4142 {
4143 fprintf_unfiltered (file,
4144 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
4145 tdep->elf_flags);
4146 fprintf_unfiltered (file,
4147 "mips_dump_tdep: tdep->mips_abi = %d\n",
4148 tdep->mips_abi);
4149 }
4150 fprintf_unfiltered (file,
4151 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4152 FP_REGISTER_DOUBLE);
4153 fprintf_unfiltered (file,
4154 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4155 MIPS_DEFAULT_FPU_TYPE,
4156 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4157 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4158 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4159 : "???"));
4160 fprintf_unfiltered (file,
4161 "mips_dump_tdep: MIPS_EABI = %d\n",
4162 MIPS_EABI);
4163 fprintf_unfiltered (file,
4164 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d\n",
4165 MIPS_LAST_FP_ARG_REGNUM);
4166 fprintf_unfiltered (file,
4167 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4168 MIPS_FPU_TYPE,
4169 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4170 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4171 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4172 : "???"));
4173 fprintf_unfiltered (file,
4174 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4175 MIPS_DEFAULT_SAVED_REGSIZE);
4176 fprintf_unfiltered (file,
4177 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4178 FP_REGISTER_DOUBLE);
4179 fprintf_unfiltered (file,
4180 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4181 MIPS_REGS_HAVE_HOME_P);
4182 fprintf_unfiltered (file,
4183 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4184 MIPS_DEFAULT_STACK_ARGSIZE);
4185 fprintf_unfiltered (file,
4186 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4187 MIPS_STACK_ARGSIZE);
4188 fprintf_unfiltered (file,
4189 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4190 MIPS_REGSIZE);
4191 fprintf_unfiltered (file,
4192 "mips_dump_tdep: A0_REGNUM = %d\n",
4193 A0_REGNUM);
4194 fprintf_unfiltered (file,
4195 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4196 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4197 fprintf_unfiltered (file,
4198 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4199 XSTRING (ATTACH_DETACH));
4200 fprintf_unfiltered (file,
4201 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4202 BADVADDR_REGNUM);
4203 fprintf_unfiltered (file,
4204 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4205 fprintf_unfiltered (file,
4206 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4207 CAUSE_REGNUM);
4208 fprintf_unfiltered (file,
4209 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4210 CPLUS_MARKER);
4211 fprintf_unfiltered (file,
4212 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4213 DEFAULT_MIPS_TYPE);
4214 fprintf_unfiltered (file,
4215 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4216 XSTRING (DO_REGISTERS_INFO));
4217 fprintf_unfiltered (file,
4218 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4219 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4220 fprintf_unfiltered (file,
4221 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4222 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4223 fprintf_unfiltered (file,
4224 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4225 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4226 fprintf_unfiltered (file,
4227 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4228 FCRCS_REGNUM);
4229 fprintf_unfiltered (file,
4230 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4231 FCRIR_REGNUM);
4232 fprintf_unfiltered (file,
4233 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4234 FIRST_EMBED_REGNUM);
4235 fprintf_unfiltered (file,
4236 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4237 FPA0_REGNUM);
4238 fprintf_unfiltered (file,
4239 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4240 GDB_TARGET_IS_MIPS64);
4241 fprintf_unfiltered (file,
4242 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4243 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4244 fprintf_unfiltered (file,
4245 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4246 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4247 fprintf_unfiltered (file,
4248 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4249 GEN_REG_SAVE_MASK);
4250 fprintf_unfiltered (file,
4251 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4252 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4253 fprintf_unfiltered (file,
4254 "mips_dump_tdep: HI_REGNUM = %d\n",
4255 HI_REGNUM);
4256 fprintf_unfiltered (file,
4257 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4258 fprintf_unfiltered (file,
4259 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4260 fprintf_unfiltered (file,
4261 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4262 XSTRING (IGNORE_HELPER_CALL (PC)));
4263 fprintf_unfiltered (file,
4264 "mips_dump_tdep: INIT_FRAME_PC # %s\n",
4265 XSTRING (INIT_FRAME_PC (FROMLEAF, PREV)));
4266 fprintf_unfiltered (file,
4267 "mips_dump_tdep: INIT_FRAME_PC_FIRST # %s\n",
4268 XSTRING (INIT_FRAME_PC_FIRST (FROMLEAF, PREV)));
4269 fprintf_unfiltered (file,
4270 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4271 XSTRING (IN_SIGTRAMP (PC, NAME)));
4272 fprintf_unfiltered (file,
4273 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4274 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4275 fprintf_unfiltered (file,
4276 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4277 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4278 fprintf_unfiltered (file,
4279 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4280 fprintf_unfiltered (file,
4281 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4282 LAST_EMBED_REGNUM);
4283 fprintf_unfiltered (file,
4284 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4285 fprintf_unfiltered (file,
4286 "mips_dump_tdep: LO_REGNUM = %d\n",
4287 LO_REGNUM);
4288 #ifdef MACHINE_CPROC_FP_OFFSET
4289 fprintf_unfiltered (file,
4290 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4291 MACHINE_CPROC_FP_OFFSET);
4292 #endif
4293 #ifdef MACHINE_CPROC_PC_OFFSET
4294 fprintf_unfiltered (file,
4295 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4296 MACHINE_CPROC_PC_OFFSET);
4297 #endif
4298 #ifdef MACHINE_CPROC_SP_OFFSET
4299 fprintf_unfiltered (file,
4300 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4301 MACHINE_CPROC_SP_OFFSET);
4302 #endif
4303 fprintf_unfiltered (file,
4304 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4305 fprintf_unfiltered (file,
4306 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4307 fprintf_unfiltered (file,
4308 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4309 MIPS16_INSTLEN);
4310 fprintf_unfiltered (file,
4311 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4312 fprintf_unfiltered (file,
4313 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4314 fprintf_unfiltered (file,
4315 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4316 fprintf_unfiltered (file,
4317 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4318 MIPS_INSTLEN);
4319 fprintf_unfiltered (file,
4320 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d\n",
4321 MIPS_LAST_ARG_REGNUM);
4322 fprintf_unfiltered (file,
4323 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4324 MIPS_NUMREGS);
4325 fprintf_unfiltered (file,
4326 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4327 fprintf_unfiltered (file,
4328 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4329 MIPS_SAVED_REGSIZE);
4330 fprintf_unfiltered (file,
4331 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4332 fprintf_unfiltered (file,
4333 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4334 XSTRING (MSYMBOL_SIZE (MSYM)));
4335 fprintf_unfiltered (file,
4336 "mips_dump_tdep: OP_LDFPR = used?\n");
4337 fprintf_unfiltered (file,
4338 "mips_dump_tdep: OP_LDGPR = used?\n");
4339 fprintf_unfiltered (file,
4340 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4341 fprintf_unfiltered (file,
4342 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4343 fprintf_unfiltered (file,
4344 "mips_dump_tdep: PRID_REGNUM = %d\n",
4345 PRID_REGNUM);
4346 fprintf_unfiltered (file,
4347 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4348 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4349 fprintf_unfiltered (file,
4350 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4351 fprintf_unfiltered (file,
4352 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4353 fprintf_unfiltered (file,
4354 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4355 fprintf_unfiltered (file,
4356 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4357 fprintf_unfiltered (file,
4358 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4359 fprintf_unfiltered (file,
4360 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4361 fprintf_unfiltered (file,
4362 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4363 fprintf_unfiltered (file,
4364 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4365 fprintf_unfiltered (file,
4366 "mips_dump_tdep: PROC_PC_REG = function?\n");
4367 fprintf_unfiltered (file,
4368 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4369 fprintf_unfiltered (file,
4370 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4371 fprintf_unfiltered (file,
4372 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4373 fprintf_unfiltered (file,
4374 "mips_dump_tdep: PS_REGNUM = %d\n",
4375 PS_REGNUM);
4376 fprintf_unfiltered (file,
4377 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4378 PUSH_FP_REGNUM);
4379 fprintf_unfiltered (file,
4380 "mips_dump_tdep: RA_REGNUM = %d\n",
4381 RA_REGNUM);
4382 fprintf_unfiltered (file,
4383 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4384 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4387 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4388 fprintf_unfiltered (file,
4389 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4390 fprintf_unfiltered (file,
4391 "mips_dump_tdep: ROUND_DOWN = function?\n");
4392 fprintf_unfiltered (file,
4393 "mips_dump_tdep: ROUND_UP = function?\n");
4394 #ifdef SAVED_BYTES
4395 fprintf_unfiltered (file,
4396 "mips_dump_tdep: SAVED_BYTES = %d\n",
4397 SAVED_BYTES);
4398 #endif
4399 #ifdef SAVED_FP
4400 fprintf_unfiltered (file,
4401 "mips_dump_tdep: SAVED_FP = %d\n",
4402 SAVED_FP);
4403 #endif
4404 #ifdef SAVED_PC
4405 fprintf_unfiltered (file,
4406 "mips_dump_tdep: SAVED_PC = %d\n",
4407 SAVED_PC);
4408 #endif
4409 fprintf_unfiltered (file,
4410 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4411 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4412 fprintf_unfiltered (file,
4413 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4414 fprintf_unfiltered (file,
4415 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4416 SIGFRAME_BASE);
4417 fprintf_unfiltered (file,
4418 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4419 SIGFRAME_FPREGSAVE_OFF);
4420 fprintf_unfiltered (file,
4421 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4422 SIGFRAME_PC_OFF);
4423 fprintf_unfiltered (file,
4424 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4425 SIGFRAME_REGSAVE_OFF);
4426 fprintf_unfiltered (file,
4427 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4428 SIGFRAME_REG_SIZE);
4429 fprintf_unfiltered (file,
4430 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4431 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4432 fprintf_unfiltered (file,
4433 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4434 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4435 fprintf_unfiltered (file,
4436 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4437 SOFTWARE_SINGLE_STEP_P);
4438 fprintf_unfiltered (file,
4439 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4440 SOFTWARE_SINGLE_STEP_P);
4441 fprintf_unfiltered (file,
4442 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4443 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4444 #ifdef STACK_END_ADDR
4445 fprintf_unfiltered (file,
4446 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4447 STACK_END_ADDR);
4448 #endif
4449 fprintf_unfiltered (file,
4450 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4451 XSTRING (STEP_SKIPS_DELAY (PC)));
4452 fprintf_unfiltered (file,
4453 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4454 STEP_SKIPS_DELAY_P);
4455 fprintf_unfiltered (file,
4456 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4457 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4458 fprintf_unfiltered (file,
4459 "mips_dump_tdep: T9_REGNUM = %d\n",
4460 T9_REGNUM);
4461 fprintf_unfiltered (file,
4462 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4463 fprintf_unfiltered (file,
4464 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4465 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4466 fprintf_unfiltered (file,
4467 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4468 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4469 fprintf_unfiltered (file,
4470 "mips_dump_tdep: TARGET_MIPS = used?\n");
4471 fprintf_unfiltered (file,
4472 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4473 XSTRING (TM_PRINT_INSN_MACH));
4474 #ifdef TRACE_CLEAR
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4477 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4478 #endif
4479 #ifdef TRACE_FLAVOR
4480 fprintf_unfiltered (file,
4481 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4482 TRACE_FLAVOR);
4483 #endif
4484 #ifdef TRACE_FLAVOR_SIZE
4485 fprintf_unfiltered (file,
4486 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4487 TRACE_FLAVOR_SIZE);
4488 #endif
4489 #ifdef TRACE_SET
4490 fprintf_unfiltered (file,
4491 "mips_dump_tdep: TRACE_SET # %s\n",
4492 XSTRING (TRACE_SET (X,STATE)));
4493 #endif
4494 fprintf_unfiltered (file,
4495 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4496 #ifdef UNUSED_REGNUM
4497 fprintf_unfiltered (file,
4498 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4499 UNUSED_REGNUM);
4500 #endif
4501 fprintf_unfiltered (file,
4502 "mips_dump_tdep: V0_REGNUM = %d\n",
4503 V0_REGNUM);
4504 fprintf_unfiltered (file,
4505 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4506 (long) VM_MIN_ADDRESS);
4507 #ifdef VX_NUM_REGS
4508 fprintf_unfiltered (file,
4509 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4510 VX_NUM_REGS);
4511 #endif
4512 fprintf_unfiltered (file,
4513 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4514 ZERO_REGNUM);
4515 fprintf_unfiltered (file,
4516 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4517 _PROC_MAGIC_);
4518 }
4519
4520 void
4521 _initialize_mips_tdep ()
4522 {
4523 static struct cmd_list_element *mipsfpulist = NULL;
4524 struct cmd_list_element *c;
4525
4526 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
4527 if (!tm_print_insn) /* Someone may have already set it */
4528 tm_print_insn = gdb_print_insn_mips;
4529
4530 /* Add root prefix command for all "set mips"/"show mips" commands */
4531 add_prefix_cmd ("mips", no_class, set_mips_command,
4532 "Various MIPS specific commands.",
4533 &setmipscmdlist, "set mips ", 0, &setlist);
4534
4535 add_prefix_cmd ("mips", no_class, show_mips_command,
4536 "Various MIPS specific commands.",
4537 &showmipscmdlist, "show mips ", 0, &showlist);
4538
4539 /* Allow the user to override the saved register size. */
4540 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4541 class_obscure,
4542 size_enums,
4543 &mips_saved_regsize_string, "\
4544 Set size of general purpose registers saved on the stack.\n\
4545 This option can be set to one of:\n\
4546 32 - Force GDB to treat saved GP registers as 32-bit\n\
4547 64 - Force GDB to treat saved GP registers as 64-bit\n\
4548 auto - Allow GDB to use the target's default setting or autodetect the\n\
4549 saved GP register size from information contained in the executable.\n\
4550 (default: auto)",
4551 &setmipscmdlist),
4552 &showmipscmdlist);
4553
4554 /* Allow the user to override the argument stack size. */
4555 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4556 class_obscure,
4557 size_enums,
4558 &mips_stack_argsize_string, "\
4559 Set the amount of stack space reserved for each argument.\n\
4560 This option can be set to one of:\n\
4561 32 - Force GDB to allocate 32-bit chunks per argument\n\
4562 64 - Force GDB to allocate 64-bit chunks per argument\n\
4563 auto - Allow GDB to determine the correct setting from the current\n\
4564 target and executable (default)",
4565 &setmipscmdlist),
4566 &showmipscmdlist);
4567
4568 /* Let the user turn off floating point and set the fence post for
4569 heuristic_proc_start. */
4570
4571 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4572 "Set use of MIPS floating-point coprocessor.",
4573 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4574 add_cmd ("single", class_support, set_mipsfpu_single_command,
4575 "Select single-precision MIPS floating-point coprocessor.",
4576 &mipsfpulist);
4577 add_cmd ("double", class_support, set_mipsfpu_double_command,
4578 "Select double-precision MIPS floating-point coprocessor .",
4579 &mipsfpulist);
4580 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4581 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4582 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4583 add_cmd ("none", class_support, set_mipsfpu_none_command,
4584 "Select no MIPS floating-point coprocessor.",
4585 &mipsfpulist);
4586 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4587 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4588 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4589 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4590 "Select MIPS floating-point coprocessor automatically.",
4591 &mipsfpulist);
4592 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4593 "Show current use of MIPS floating-point coprocessor target.",
4594 &showlist);
4595
4596 #if !GDB_MULTI_ARCH
4597 c = add_set_cmd ("processor", class_support, var_string_noescape,
4598 (char *) &tmp_mips_processor_type,
4599 "Set the type of MIPS processor in use.\n\
4600 Set this to be able to access processor-type-specific registers.\n\
4601 ",
4602 &setlist);
4603 c->function.cfunc = mips_set_processor_type_command;
4604 c = add_show_from_set (c, &showlist);
4605 c->function.cfunc = mips_show_processor_type_command;
4606
4607 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
4608 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
4609 #endif
4610
4611 /* We really would like to have both "0" and "unlimited" work, but
4612 command.c doesn't deal with that. So make it a var_zinteger
4613 because the user can always use "999999" or some such for unlimited. */
4614 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4615 (char *) &heuristic_fence_post,
4616 "\
4617 Set the distance searched for the start of a function.\n\
4618 If you are debugging a stripped executable, GDB needs to search through the\n\
4619 program for the start of a function. This command sets the distance of the\n\
4620 search. The only need to set it is when debugging a stripped executable.",
4621 &setlist);
4622 /* We need to throw away the frame cache when we set this, since it
4623 might change our ability to get backtraces. */
4624 c->function.sfunc = reinit_frame_cache_sfunc;
4625 add_show_from_set (c, &showlist);
4626
4627 /* Allow the user to control whether the upper bits of 64-bit
4628 addresses should be zeroed. */
4629 add_show_from_set
4630 (add_set_cmd ("mask-address", no_class, var_boolean, (char *) &mask_address_p,
4631 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4632 Use \"on\" to enable the masking, and \"off\" to disable it.\n\
4633 Without an argument, zeroing of upper address bits is enabled.", &setlist),
4634 &showlist);
4635
4636 /* Allow the user to control the size of 32 bit registers within the
4637 raw remote packet. */
4638 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4639 class_obscure,
4640 var_boolean,
4641 (char *)&mips64_transfers_32bit_regs_p, "\
4642 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4643 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4644 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
4645 64 bits for others. Use \"off\" to disable compatibility mode",
4646 &setlist),
4647 &showlist);
4648 }
This page took 0.134066 seconds and 4 git commands to generate.