Many changes, most related to creating entry point information on a per-objfile
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2 Copyright 1988, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
3 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
4 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "language.h"
29
30 #ifdef USG
31 #include <sys/types.h>
32 #endif
33
34 #include <sys/param.h>
35 #include <sys/dir.h>
36 #include <signal.h>
37 #include <sys/ioctl.h>
38
39 #ifdef sgi
40 /* Must do it this way only for SGIs, as other mips platforms get their
41 JB_ symbols from machine/pcb.h (included via sys/user.h). */
42 #include <setjmp.h>
43 #endif
44
45 #include "gdbcore.h"
46
47 #ifndef MIPSMAGIC
48 #ifdef MIPSEL
49 #define MIPSMAGIC MIPSELMAGIC
50 #else
51 #define MIPSMAGIC MIPSEBMAGIC
52 #endif
53 #endif
54
55 #define VM_MIN_ADDRESS (unsigned)0x400000
56
57 #include <sys/user.h> /* After a.out.h */
58 #include <sys/file.h>
59 #include <sys/stat.h>
60
61 \f
62 #define PROC_LOW_ADDR(proc) ((proc)->adr) /* least address */
63 #define PROC_HIGH_ADDR(proc) ((proc)->pad2) /* upper address bound */
64 #define PROC_FRAME_OFFSET(proc) ((proc)->framesize)
65 #define PROC_FRAME_REG(proc) ((proc)->framereg)
66 #define PROC_REG_MASK(proc) ((proc)->regmask)
67 #define PROC_FREG_MASK(proc) ((proc)->fregmask)
68 #define PROC_REG_OFFSET(proc) ((proc)->regoffset)
69 #define PROC_FREG_OFFSET(proc) ((proc)->fregoffset)
70 #define PROC_PC_REG(proc) ((proc)->pcreg)
71 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->isym)
72 #define _PROC_MAGIC_ 0x0F0F0F0F
73 #define PROC_DESC_IS_DUMMY(proc) ((proc)->isym == _PROC_MAGIC_)
74 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->isym = _PROC_MAGIC_)
75
76 struct linked_proc_info
77 {
78 struct mips_extra_func_info info;
79 struct linked_proc_info *next;
80 } * linked_proc_desc_table = NULL;
81
82 \f
83 #define READ_FRAME_REG(fi, regno) read_next_frame_reg((fi)->next, regno)
84
85 int
86 read_next_frame_reg(fi, regno)
87 FRAME fi;
88 int regno;
89 {
90 #define SIGFRAME_BASE sizeof(struct sigcontext)
91 #define SIGFRAME_PC_OFF (-SIGFRAME_BASE+ 2*sizeof(int))
92 #define SIGFRAME_SP_OFF (-SIGFRAME_BASE+32*sizeof(int))
93 #define SIGFRAME_RA_OFF (-SIGFRAME_BASE+34*sizeof(int))
94 for (; fi; fi = fi->next)
95 if (in_sigtramp(fi->pc, 0)) {
96 /* No idea if this code works. --PB. */
97 int offset;
98 if (regno == PC_REGNUM) offset = SIGFRAME_PC_OFF;
99 else if (regno == RA_REGNUM) offset = SIGFRAME_RA_OFF;
100 else if (regno == SP_REGNUM) offset = SIGFRAME_SP_OFF;
101 else return 0;
102 return read_memory_integer(fi->frame + offset, 4);
103 }
104 else if (regno == SP_REGNUM) return fi->frame;
105 else if (fi->saved_regs->regs[regno])
106 return read_memory_integer(fi->saved_regs->regs[regno], 4);
107 return read_register(regno);
108 }
109
110 int
111 mips_frame_saved_pc(frame)
112 FRAME frame;
113 {
114 mips_extra_func_info_t proc_desc = (mips_extra_func_info_t)frame->proc_desc;
115 int pcreg = proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM;
116 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
117 return read_memory_integer(frame->frame - 4, 4);
118 #if 0
119 /* If in the procedure prologue, RA_REGNUM might not have been saved yet.
120 * Assume non-leaf functions start with:
121 * addiu $sp,$sp,-frame_size
122 * sw $ra,ra_offset($sp)
123 * This if the pc is pointing at either of these instructions,
124 * then $ra hasn't been trashed.
125 * If the pc has advanced beyond these two instructions,
126 * then $ra has been saved.
127 * critical, and much more complex. Handling $ra is enough to get
128 * a stack trace, but some register values with be wrong.
129 */
130 if (frame->proc_desc && frame->pc < PROC_LOW_ADDR(proc_desc) + 8)
131 return read_register(pcreg);
132 #endif
133 return read_next_frame_reg(frame, pcreg);
134 }
135
136 static struct mips_extra_func_info temp_proc_desc;
137 static struct frame_saved_regs temp_saved_regs;
138
139 CORE_ADDR heuristic_proc_start(pc)
140 CORE_ADDR pc;
141 {
142
143 CORE_ADDR start_pc = pc;
144 CORE_ADDR fence = start_pc - 200;
145 if (fence < VM_MIN_ADDRESS) fence = VM_MIN_ADDRESS;
146 /* search back for previous return */
147 for (start_pc -= 4; ; start_pc -= 4)
148 if (start_pc < fence) return 0;
149 else if (ABOUT_TO_RETURN(start_pc))
150 break;
151
152 start_pc += 8; /* skip return, and its delay slot */
153 #if 0
154 /* skip nops (usually 1) 0 - is this */
155 while (start_pc < pc && read_memory_integer (start_pc, 4) == 0)
156 start_pc += 4;
157 #endif
158 return start_pc;
159 }
160
161 mips_extra_func_info_t
162 heuristic_proc_desc(start_pc, limit_pc, next_frame)
163 CORE_ADDR start_pc, limit_pc;
164 FRAME next_frame;
165 {
166 CORE_ADDR sp = next_frame ? next_frame->frame : read_register (SP_REGNUM);
167 CORE_ADDR cur_pc;
168 int frame_size;
169 int has_frame_reg = 0;
170 int reg30; /* Value of $r30. Used by gcc for frame-pointer */
171 unsigned long reg_mask = 0;
172
173 if (start_pc == 0) return NULL;
174 bzero(&temp_proc_desc, sizeof(temp_proc_desc));
175 bzero(&temp_saved_regs, sizeof(struct frame_saved_regs));
176 if (start_pc + 200 < limit_pc) limit_pc = start_pc + 200;
177 restart:
178 frame_size = 0;
179 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4) {
180 unsigned long word;
181 int status;
182
183 status = read_memory_nobpt (cur_pc, &word, 4);
184 if (status) memory_error (status, cur_pc);
185 SWAP_TARGET_AND_HOST (&word, sizeof (word));
186 if ((word & 0xFFFF0000) == 0x27bd0000) /* addiu $sp,$sp,-i */
187 frame_size += (-word) & 0xFFFF;
188 else if ((word & 0xFFFF0000) == 0x23bd0000) /* addu $sp,$sp,-i */
189 frame_size += (-word) & 0xFFFF;
190 else if ((word & 0xFFE00000) == 0xafa00000) { /* sw reg,offset($sp) */
191 int reg = (word & 0x001F0000) >> 16;
192 reg_mask |= 1 << reg;
193 temp_saved_regs.regs[reg] = sp + (short)word;
194 }
195 else if ((word & 0xFFFF0000) == 0x27be0000) { /* addiu $30,$sp,size */
196 if ((unsigned short)word != frame_size)
197 reg30 = sp + (unsigned short)word;
198 else if (!has_frame_reg) {
199 int alloca_adjust;
200 has_frame_reg = 1;
201 reg30 = read_next_frame_reg(next_frame, 30);
202 alloca_adjust = reg30 - (sp + (unsigned short)word);
203 if (alloca_adjust > 0) {
204 /* FP > SP + frame_size. This may be because
205 /* of an alloca or somethings similar.
206 * Fix sp to "pre-alloca" value, and try again.
207 */
208 sp += alloca_adjust;
209 goto restart;
210 }
211 }
212 }
213 else if ((word & 0xFFE00000) == 0xafc00000) { /* sw reg,offset($30) */
214 int reg = (word & 0x001F0000) >> 16;
215 reg_mask |= 1 << reg;
216 temp_saved_regs.regs[reg] = reg30 + (short)word;
217 }
218 }
219 if (has_frame_reg) {
220 PROC_FRAME_REG(&temp_proc_desc) = 30;
221 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
222 }
223 else {
224 PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM;
225 PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size;
226 }
227 PROC_REG_MASK(&temp_proc_desc) = reg_mask;
228 PROC_PC_REG(&temp_proc_desc) = RA_REGNUM;
229 return &temp_proc_desc;
230 }
231
232 mips_extra_func_info_t
233 find_proc_desc(pc, next_frame)
234 CORE_ADDR pc;
235 FRAME next_frame;
236 {
237 mips_extra_func_info_t proc_desc;
238 extern struct block *block_for_pc();
239 struct block *b = block_for_pc(pc);
240
241 struct symbol *sym =
242 b ? lookup_symbol(".gdbinfo.", b, LABEL_NAMESPACE, 0, NULL) : NULL;
243 if (sym != NULL)
244 {
245 /* IF this is the topmost frame AND
246 * (this proc does not have debugging information OR
247 * the PC is in the procedure prologue)
248 * THEN create a "hueristic" proc_desc (by analyzing
249 * the actual code) to replace the "official" proc_desc.
250 */
251 proc_desc = (struct mips_extra_func_info *)sym->value.value;
252 if (next_frame == NULL) {
253 struct symtab_and_line val;
254 struct symbol *proc_symbol =
255 PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
256 if (proc_symbol) {
257 val = find_pc_line (BLOCK_START
258 (SYMBOL_BLOCK_VALUE(proc_symbol)),
259 0);
260 val.pc = val.end ? val.end : pc;
261 }
262 if (!proc_symbol || pc < val.pc) {
263 mips_extra_func_info_t found_heuristic =
264 heuristic_proc_desc(PROC_LOW_ADDR(proc_desc),
265 pc, next_frame);
266 if (found_heuristic) proc_desc = found_heuristic;
267 }
268 }
269 }
270 else
271 {
272 register struct linked_proc_info *link;
273 for (link = linked_proc_desc_table; link; link = link->next)
274 if (PROC_LOW_ADDR(&link->info) <= pc
275 && PROC_HIGH_ADDR(&link->info) > pc)
276 return &link->info;
277 proc_desc =
278 heuristic_proc_desc(heuristic_proc_start(pc), pc, next_frame);
279 }
280 return proc_desc;
281 }
282
283 mips_extra_func_info_t cached_proc_desc;
284
285 FRAME_ADDR mips_frame_chain(frame)
286 FRAME frame;
287 {
288 mips_extra_func_info_t proc_desc;
289 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
290 if (current_objfile -> ei.entry_file_lowpc)
291 { /* has at least the __start symbol */
292 if (saved_pc == 0 || inside_entry_file (saved_pc)) return 0;
293 }
294 else
295 { /* This hack depends on the internals of __start. */
296 /* We also assume the breakpoints are *not* inserted */
297 if (saved_pc == 0
298 || read_memory_integer (saved_pc + 8, 4) & 0xFC00003F == 0xD)
299 return 0; /* break */
300 }
301 proc_desc = find_proc_desc(saved_pc, frame);
302 if (!proc_desc) return 0;
303 cached_proc_desc = proc_desc;
304 return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc))
305 + PROC_FRAME_OFFSET(proc_desc);
306 }
307
308 void
309 init_extra_frame_info(fci)
310 struct frame_info *fci;
311 {
312 extern struct obstack frame_cache_obstack;
313 /* Use proc_desc calculated in frame_chain */
314 mips_extra_func_info_t proc_desc = fci->next ? cached_proc_desc :
315 find_proc_desc(fci->pc, fci->next);
316 fci->saved_regs = (struct frame_saved_regs*)
317 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
318 bzero(fci->saved_regs, sizeof(struct frame_saved_regs));
319 fci->proc_desc =
320 proc_desc == &temp_proc_desc ? (char*)NULL : (char*)proc_desc;
321 if (proc_desc)
322 {
323 int ireg;
324 CORE_ADDR reg_position;
325 unsigned long mask;
326 /* r0 bit means kernel trap */
327 int kernel_trap = PROC_REG_MASK(proc_desc) & 1;
328
329 /* Fixup frame-pointer - only needed for top frame */
330 /* This may not be quite right, if procedure has a real frame register */
331 if (fci->pc == PROC_LOW_ADDR(proc_desc))
332 fci->frame = read_register (SP_REGNUM);
333 else
334 fci->frame = READ_FRAME_REG(fci, PROC_FRAME_REG(proc_desc))
335 + PROC_FRAME_OFFSET(proc_desc);
336
337 if (proc_desc == &temp_proc_desc)
338 *fci->saved_regs = temp_saved_regs;
339 else
340 {
341 /* find which general-purpose registers were saved */
342 reg_position = fci->frame + PROC_REG_OFFSET(proc_desc);
343 mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
344 for (ireg= 31; mask; --ireg, mask <<= 1)
345 if (mask & 0x80000000)
346 {
347 fci->saved_regs->regs[ireg] = reg_position;
348 reg_position -= 4;
349 }
350 /* find which floating-point registers were saved */
351 reg_position = fci->frame + PROC_FREG_OFFSET(proc_desc);
352 /* The freg_offset points to where the first *double* register is saved.
353 * So skip to the high-order word. */
354 reg_position += 4;
355 mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
356 for (ireg = 31; mask; --ireg, mask <<= 1)
357 if (mask & 0x80000000)
358 {
359 fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
360 reg_position -= 4;
361 }
362 }
363
364 /* hack: if argument regs are saved, guess these contain args */
365 if ((PROC_REG_MASK(proc_desc) & 0xF0) == 0) fci->num_args = -1;
366 else if ((PROC_REG_MASK(proc_desc) & 0x80) == 0) fci->num_args = 4;
367 else if ((PROC_REG_MASK(proc_desc) & 0x40) == 0) fci->num_args = 3;
368 else if ((PROC_REG_MASK(proc_desc) & 0x20) == 0) fci->num_args = 2;
369 else if ((PROC_REG_MASK(proc_desc) & 0x10) == 0) fci->num_args = 1;
370
371 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM];
372 }
373 if (fci->next == 0)
374 supply_register(FP_REGNUM, &fci->frame);
375 }
376
377
378 CORE_ADDR mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
379 int nargs;
380 value *args;
381 CORE_ADDR sp;
382 int struct_return;
383 CORE_ADDR struct_addr;
384 {
385 CORE_ADDR buf;
386 register i;
387 int accumulate_size = struct_return ? 4 : 0;
388 struct mips_arg { char *contents; int len; int offset; };
389 struct mips_arg *mips_args =
390 (struct mips_arg*)alloca(nargs * sizeof(struct mips_arg));
391 register struct mips_arg *m_arg;
392 for (i = 0, m_arg = mips_args; i < nargs; i++, m_arg++) {
393 extern value value_arg_coerce();
394 value arg = value_arg_coerce (args[i]);
395 m_arg->len = TYPE_LENGTH (VALUE_TYPE (arg));
396 /* This entire mips-specific routine is because doubles must be aligned
397 * on 8-byte boundaries. It still isn't quite right, because MIPS decided
398 * to align 'struct {int a, b}' on 4-byte boundaries (even though this
399 * breaks their varargs implementation...). A correct solution
400 * requires an simulation of gcc's 'alignof' (and use of 'alignof'
401 * in stdarg.h/varargs.h).
402 */
403 if (m_arg->len > 4) accumulate_size = (accumulate_size + 7) & -8;
404 m_arg->offset = accumulate_size;
405 accumulate_size = (accumulate_size + m_arg->len + 3) & -4;
406 m_arg->contents = VALUE_CONTENTS(arg);
407 }
408 accumulate_size = (accumulate_size + 7) & (-8);
409 if (accumulate_size < 16) accumulate_size = 16;
410 sp -= accumulate_size;
411 for (i = nargs; m_arg--, --i >= 0; )
412 write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
413 if (struct_return) {
414 buf = struct_addr;
415 write_memory(sp, &buf, sizeof(CORE_ADDR));
416 }
417 return sp;
418 }
419
420 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
421 #define MASK(i,j) ((1 << (j)+1)-1 ^ (1 << (i))-1)
422
423 void
424 mips_push_dummy_frame()
425 {
426 int ireg;
427 struct linked_proc_info *link = (struct linked_proc_info*)
428 xmalloc(sizeof(struct linked_proc_info));
429 mips_extra_func_info_t proc_desc = &link->info;
430 CORE_ADDR sp = read_register (SP_REGNUM);
431 CORE_ADDR save_address;
432 REGISTER_TYPE buffer;
433 link->next = linked_proc_desc_table;
434 linked_proc_desc_table = link;
435 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
436 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<31)
437 #define GEN_REG_SAVE_COUNT 22
438 #define FLOAT_REG_SAVE_MASK MASK(0,19)
439 #define FLOAT_REG_SAVE_COUNT 20
440 #define SPECIAL_REG_SAVE_COUNT 4
441 /*
442 * The registers we must save are all those not preserved across
443 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
444 * In addition, we must save the PC, and PUSH_FP_REGNUM.
445 * (Ideally, we should also save MDLO/-HI and FP Control/Status reg.)
446 *
447 * Dummy frame layout:
448 * (high memory)
449 * Saved PC
450 * Saved MMHI, MMLO, FPC_CSR
451 * Saved R31
452 * Saved R28
453 * ...
454 * Saved R1
455 * Saved D18 (i.e. F19, F18)
456 * ...
457 * Saved D0 (i.e. F1, F0)
458 * CALL_DUMMY (subroutine stub; see m-mips.h)
459 * Parameter build area (not yet implemented)
460 * (low memory)
461 */
462 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
463 PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK;
464 PROC_REG_OFFSET(proc_desc) = /* offset of (Saved R31) from FP */
465 -sizeof(long) - 4 * SPECIAL_REG_SAVE_COUNT;
466 PROC_FREG_OFFSET(proc_desc) = /* offset of (Saved D18) from FP */
467 -sizeof(double) - 4 * (SPECIAL_REG_SAVE_COUNT + GEN_REG_SAVE_COUNT);
468 /* save general registers */
469 save_address = sp + PROC_REG_OFFSET(proc_desc);
470 for (ireg = 32; --ireg >= 0; )
471 if (PROC_REG_MASK(proc_desc) & (1 << ireg))
472 {
473 buffer = read_register (ireg);
474 write_memory (save_address, &buffer, sizeof(REGISTER_TYPE));
475 save_address -= 4;
476 }
477 /* save floating-points registers */
478 save_address = sp + PROC_FREG_OFFSET(proc_desc);
479 for (ireg = 32; --ireg >= 0; )
480 if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
481 {
482 buffer = read_register (ireg + FP0_REGNUM);
483 write_memory (save_address, &buffer, 4);
484 save_address -= 4;
485 }
486 write_register (PUSH_FP_REGNUM, sp);
487 PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
488 PROC_FRAME_OFFSET(proc_desc) = 0;
489 buffer = read_register (PC_REGNUM);
490 write_memory (sp - 4, &buffer, sizeof(REGISTER_TYPE));
491 buffer = read_register (HI_REGNUM);
492 write_memory (sp - 8, &buffer, sizeof(REGISTER_TYPE));
493 buffer = read_register (LO_REGNUM);
494 write_memory (sp - 12, &buffer, sizeof(REGISTER_TYPE));
495 buffer = read_register (FCRCS_REGNUM);
496 write_memory (sp - 16, &buffer, sizeof(REGISTER_TYPE));
497 sp -= 4 * (GEN_REG_SAVE_COUNT+FLOAT_REG_SAVE_COUNT+SPECIAL_REG_SAVE_COUNT);
498 write_register (SP_REGNUM, sp);
499 PROC_LOW_ADDR(proc_desc) = sp - CALL_DUMMY_SIZE + CALL_DUMMY_START_OFFSET;
500 PROC_HIGH_ADDR(proc_desc) = sp;
501 SET_PROC_DESC_IS_DUMMY(proc_desc);
502 PROC_PC_REG(proc_desc) = RA_REGNUM;
503 }
504
505 void
506 mips_pop_frame()
507 { register int regnum;
508 FRAME frame = get_current_frame ();
509 CORE_ADDR new_sp = frame->frame;
510 mips_extra_func_info_t proc_desc = (mips_extra_func_info_t)frame->proc_desc;
511 if (PROC_DESC_IS_DUMMY(proc_desc))
512 {
513 struct linked_proc_info **ptr = &linked_proc_desc_table;;
514 for (; &ptr[0]->info != proc_desc; ptr = &ptr[0]->next )
515 if (ptr[0] == NULL) abort();
516 *ptr = ptr[0]->next;
517 free (ptr[0]);
518 write_register (HI_REGNUM, read_memory_integer(new_sp - 8, 4));
519 write_register (LO_REGNUM, read_memory_integer(new_sp - 12, 4));
520 write_register (FCRCS_REGNUM, read_memory_integer(new_sp - 16, 4));
521 }
522 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
523 if (frame->proc_desc) {
524 for (regnum = 32; --regnum >= 0; )
525 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
526 write_register (regnum,
527 read_memory_integer (frame->saved_regs->regs[regnum], 4));
528 for (regnum = 32; --regnum >= 0; )
529 if (PROC_FREG_MASK(proc_desc) & (1 << regnum))
530 write_register (regnum + FP0_REGNUM,
531 read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], 4));
532 }
533 write_register (SP_REGNUM, new_sp);
534 flush_cached_frames ();
535 set_current_frame (create_new_frame (new_sp, read_pc ()));
536 }
537
538 static
539 mips_print_register(regnum, all)
540 int regnum, all;
541 {
542 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
543 REGISTER_TYPE val;
544
545 /* Get the data in raw format. */
546 if (read_relative_register_raw_bytes (regnum, raw_buffer))
547 {
548 printf_filtered ("%s: [Invalid]", reg_names[regnum]);
549 return;
550 }
551
552 /* If an even floating pointer register, also print as double. */
553 if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+32
554 && !((regnum-FP0_REGNUM) & 1)) {
555 read_relative_register_raw_bytes (regnum+1, raw_buffer+4);
556 printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
557 val_print (builtin_type_double, raw_buffer, 0,
558 stdout, 0, 1, 0, Val_pretty_default);
559 printf_filtered ("); ");
560 }
561 fputs_filtered (reg_names[regnum], stdout);
562 #ifndef NUMERIC_REG_NAMES
563 if (regnum < 32)
564 printf_filtered ("(r%d): ", regnum);
565 else
566 #endif
567 printf_filtered (": ");
568
569 /* If virtual format is floating, print it that way. */
570 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
571 && ! INVALID_FLOAT (raw_buffer, REGISTER_VIRTUAL_SIZE(regnum))) {
572 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
573 stdout, 0, 1, 0, Val_pretty_default);
574 }
575 /* Else print as integer in hex. */
576 else
577 {
578 long val;
579
580 bcopy (raw_buffer, &val, sizeof (long));
581 SWAP_TARGET_AND_HOST ((char *)&val, sizeof (long));
582 if (val == 0)
583 printf_filtered ("0");
584 else if (all)
585 printf_filtered (local_hex_format(), val);
586 else
587 printf_filtered ("%s=%d", local_hex_string(val), val);
588 }
589 }
590
591 /* Replacement for generic do_registers_info. */
592 mips_do_registers_info (regnum, fpregs)
593 int regnum;
594 int fpregs;
595 {
596 if (regnum != -1) {
597 mips_print_register (regnum, 0);
598 printf_filtered ("\n");
599 }
600 else {
601 for (regnum = 0; regnum < NUM_REGS; ) {
602 if ((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM) {
603 regnum++;
604 continue;
605 }
606 mips_print_register (regnum, 1);
607 regnum++;
608 if ((regnum & 3) == 0 || regnum == NUM_REGS)
609 printf_filtered (";\n");
610 else
611 printf_filtered ("; ");
612 }
613 }
614 }
615 /* Return number of args passed to a frame. described by FIP.
616 Can return -1, meaning no way to tell. */
617
618 mips_frame_num_args(fip)
619 FRAME fip;
620 {
621 #if 0
622 struct chain_info_t *p;
623
624 p = mips_find_cached_frame(FRAME_FP(fip));
625 if (p->valid)
626 return p->the_info.numargs;
627 #endif
628 return -1;
629 }
630
631 \f
632 /* Bad floats: Returns 0 if P points to a valid IEEE floating point number,
633 1 if P points to a denormalized number or a NaN. LEN says whether this is
634 a single-precision or double-precision float */
635 #define SINGLE_EXP_BITS 8
636 #define DOUBLE_EXP_BITS 11
637 int
638 isa_NAN(p, len)
639 int *p, len;
640 {
641 int exponent;
642 if (len == 4)
643 {
644 exponent = *p;
645 exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1);
646 return ((exponent == -1) || (! exponent && *p));
647 }
648 else if (len == 8)
649 {
650 exponent = *(p+1);
651 exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1);
652 return ((exponent == -1) || (! exponent && *p * *(p+1)));
653 }
654 else return 1;
655 }
656 \f
657 /*
658 * Implemented for Irix 4.x by Garrett A. Wollman
659 */
660 #ifdef USE_PROC_FS /* Target-dependent /proc support */
661
662 #include <sys/time.h>
663 #include <sys/procfs.h>
664
665 typedef unsigned int greg_t; /* why isn't this defined? */
666
667 /*
668 * See the comment in m68k-tdep.c regarding the utility of these functions.
669 */
670
671 void
672 supply_gregset (gregsetp)
673 gregset_t *gregsetp;
674 {
675 register int regno;
676 register greg_t *regp = (greg_t *)(gregsetp->gp_regs);
677
678 /* FIXME: somewhere, there should be a #define for the meaning
679 of this magic number 32; we should use that. */
680 for(regno = 0; regno < 32; regno++)
681 supply_register (regno, (char *)(regp + regno));
682
683 supply_register (PC_REGNUM, (char *)&(gregsetp->gp_pc));
684 supply_register (HI_REGNUM, (char *)&(gregsetp->gp_mdhi));
685 supply_register (LO_REGNUM, (char *)&(gregsetp->gp_mdlo));
686 supply_register (PS_REGNUM, (char *)&(gregsetp->gp_cause));
687 }
688
689 void
690 fill_gregset (gregsetp, regno)
691 gregset_t *gregsetp;
692 int regno;
693 {
694 int regi;
695 register greg_t *regp = (greg_t *)(gregsetp->gp_regs);
696 extern char registers[];
697
698 /* same FIXME as above wrt 32*/
699 for (regi = 0; regi < 32; regi++)
700 if ((regno == -1) || (regno == regi))
701 *(regp + regno) = *(greg_t *) &registers[REGISTER_BYTE (regi)];
702
703 if ((regno == -1) || (regno == PC_REGNUM))
704 gregsetp->gp_pc = *(greg_t *) &registers[REGISTER_BYTE (PC_REGNUM)];
705
706 if ((regno == -1) || (regno == PS_REGNUM))
707 gregsetp->gp_cause = *(greg_t *) &registers[REGISTER_BYTE (PS_REGNUM)];
708
709 if ((regno == -1) || (regno == HI_REGNUM))
710 gregsetp->gp_mdhi = *(greg_t *) &registers[REGISTER_BYTE (HI_REGNUM)];
711
712 if ((regno == -1) || (regno == LO_REGNUM))
713 gregsetp->gp_mdlo = *(greg_t *) &registers[REGISTER_BYTE (LO_REGNUM)];
714 }
715
716 /*
717 * Now we do the same thing for floating-point registers.
718 * We don't bother to condition on FP0_REGNUM since any
719 * reasonable MIPS configuration has an R3010 in it.
720 *
721 * Again, see the comments in m68k-tdep.c.
722 */
723
724 void
725 supply_fpregset (fpregsetp)
726 fpregset_t *fpregsetp;
727 {
728 register int regno;
729
730 for (regno = 0; regno < 32; regno++)
731 supply_register (FP0_REGNUM + regno,
732 (char *)&fpregsetp->fp_r.fp_regs[regno]);
733
734 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
735
736 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
737 }
738
739 void
740 fill_fpregset (fpregsetp, regno)
741 fpregset_t *fpregsetp;
742 int regno;
743 {
744 int regi;
745 char *from, *to;
746 extern char registers[];
747
748 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
749 {
750 if ((regno == -1) || (regno == regi))
751 {
752 from = (char *) &registers[REGISTER_BYTE (regi)];
753 to = (char *) &(fpregsetp->fp_r.fp_regs[regi]);
754 bcopy(from, to, REGISTER_RAW_SIZE (regno));
755 }
756 }
757
758 if ((regno == -1) || (regno == FCRCS_REGNUM))
759 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
760 }
761
762 #endif /* USE_PROC_FS */
763 \f
764 /* To skip prologues, I use this predicate. Returns either PC
765 itself if the code at PC does not look like a function prologue,
766 PC+4 if it does (our caller does not need anything more fancy). */
767
768 CORE_ADDR mips_skip_prologue(pc)
769 CORE_ADDR pc;
770 {
771 struct symbol *f;
772 struct block *b;
773 unsigned long inst;
774 int offset;
775
776 /* For -g modules and most functions anyways the
777 first instruction adjusts the stack.
778 But we allow some number of stores before the stack adjustment.
779 (These are emitted by varags functions compiled by gcc-2.0. */
780 for (offset = 0; offset < 100; offset += 4) {
781 inst = read_memory_integer(pc + offset, 4);
782 if ((inst & 0xffff0000) == 0x27bd0000) /* addiu $sp,$sp,offset */
783 return pc + offset + 4;
784 if ((inst & 0xFFE00000) != 0xAFA00000) /* sw reg,n($sp) */
785 break;
786 }
787
788 /* Well, it looks like a frameless. Let's make sure.
789 Note that we are not called on the current PC,
790 but on the function`s start PC, and I have definitely
791 seen optimized code that adjusts the SP quite later */
792 b = block_for_pc(pc);
793 if (!b) return pc;
794
795 f = lookup_symbol(".gdbinfo.", b, LABEL_NAMESPACE, 0, NULL);
796 if (!f) return pc;
797 /* Ideally, I would like to use the adjusted info
798 from mips_frame_info(), but for all practical
799 purposes it will not matter (and it would require
800 a different definition of SKIP_PROLOGUE())
801
802 Actually, it would not hurt to skip the storing
803 of arguments on the stack as well. */
804 if (((struct mips_extra_func_info *)f->value.value)->framesize)
805 return pc + 4;
806
807 return pc;
808 }
809
810 /* Figure out where the longjmp will land.
811 We expect the first arg to be a pointer to the jmp_buf structure from which
812 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
813 This routine returns true on success. */
814
815 int
816 get_longjmp_target(pc)
817 CORE_ADDR *pc;
818 {
819 CORE_ADDR jb_addr;
820
821 jb_addr = read_register(A0_REGNUM);
822
823 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, pc,
824 sizeof(CORE_ADDR)))
825 return 0;
826
827 SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR));
828
829 return 1;
830 }
This page took 0.048372 seconds and 5 git commands to generate.