gdb/
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
66
67 /* The sizes of floating point registers. */
68
69 enum
70 {
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73 };
74
75
76 static const char *mips_abi_string;
77
78 static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
82 "n64",
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87 };
88
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
93 static const char size_auto[] = "auto";
94 static const char size_32[] = "32";
95 static const char size_64[] = "64";
96
97 static const char *size_enums[] = {
98 size_auto,
99 size_32,
100 size_64,
101 0
102 };
103
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144 };
145
146 static int
147 n32n64_floatformat_always_valid (const struct floatformat *fmt,
148 const void *from)
149 {
150 return 1;
151 }
152
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164 static const struct floatformat floatformat_n32n64_long_double_big =
165 {
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170 };
171
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
174 {
175 return gdbarch_tdep (gdbarch)->regnum;
176 }
177
178 static int
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
180 {
181 return mips_regnum (gdbarch)->fp0 + 12;
182 }
183
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~(CORE_ADDR) 1);
206 }
207
208 /* Return the contents of register REGNUM as a signed integer. */
209
210 static LONGEST
211 read_signed_register (int regnum)
212 {
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
216 }
217
218 static LONGEST
219 read_signed_register_pid (int regnum, ptid_t ptid)
220 {
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236 }
237
238 /* Return the MIPS ABI associated with GDBARCH. */
239 enum mips_abi
240 mips_abi (struct gdbarch *gdbarch)
241 {
242 return gdbarch_tdep (gdbarch)->mips_abi;
243 }
244
245 int
246 mips_isa_regsize (struct gdbarch *gdbarch)
247 {
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250 }
251
252 /* Return the currently configured (or set) saved register size. */
253
254 static const char *mips_abi_regsize_string = size_auto;
255
256 unsigned int
257 mips_abi_regsize (struct gdbarch *gdbarch)
258 {
259 if (mips_abi_regsize_string == size_auto)
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
275 else if (mips_abi_regsize_string == size_64)
276 return 8;
277 else /* if (mips_abi_regsize_string == size_32) */
278 return 4;
279 }
280
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
290
291 static void
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293 {
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
300 }
301
302 static int
303 msymbol_is_special (struct minimal_symbol *msym)
304 {
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306 }
307
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313 static void
314 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
315 enum bfd_endian endian, gdb_byte *in,
316 const gdb_byte *out, int buf_offset)
317 {
318 int reg_offset = 0;
319 gdb_assert (reg_num >= NUM_REGS);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
325 reg_offset = register_size (current_gdbarch, reg_num) - length;
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
331 reg_offset = 0;
332 break;
333 default:
334 internal_error (__FILE__, __LINE__, _("bad switch"));
335 }
336 if (mips_debug)
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
340 if (mips_debug && out != NULL)
341 {
342 int i;
343 fprintf_unfiltered (gdb_stdlog, "out ");
344 for (i = 0; i < length; i++)
345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
346 }
347 if (in != NULL)
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
350 if (out != NULL)
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
353 if (mips_debug && in != NULL)
354 {
355 int i;
356 fprintf_unfiltered (gdb_stdlog, "in ");
357 for (i = 0; i < length; i++)
358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362 }
363
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368 static int
369 mips2_fp_compat (void)
370 {
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
375 return 0;
376
377 #if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
384 return 1;
385 #endif
386
387 return 0;
388 }
389
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
393
394 static const char *mips_stack_argsize_string = size_auto;
395
396 static unsigned int
397 mips_stack_argsize (struct gdbarch *gdbarch)
398 {
399 if (mips_stack_argsize_string == size_auto)
400 return mips_abi_regsize (gdbarch);
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
403 else /* if (mips_stack_argsize_string == size_32) */
404 return 4;
405 }
406
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
408
409 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
410
411 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
412
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
414
415 static struct type *mips_float_register_type (void);
416 static struct type *mips_double_register_type (void);
417
418 /* The list of available "set mips " and "show mips " commands */
419
420 static struct cmd_list_element *setmipscmdlist = NULL;
421 static struct cmd_list_element *showmipscmdlist = NULL;
422
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
426
427 enum
428 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
429
430 /* Generic MIPS. */
431
432 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 };
442
443 /* Names of IDT R3041 registers. */
444
445 static const char *mips_r3041_reg_names[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
454 };
455
456 /* Names of tx39 registers. */
457
458 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
467 };
468
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
476 };
477
478
479 /* Return the name of the register corresponding to REGNO. */
480 static const char *
481 mips_register_name (int regno)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum && rawnum < 32)
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
514 return mips_n32_n64_gpr_names[rawnum];
515 else
516 return mips_gpr_names[rawnum];
517 }
518 else if (32 <= rawnum && rawnum < NUM_REGS)
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
523 else
524 internal_error (__FILE__, __LINE__,
525 _("mips_register_name: bad register number %d"), rawnum);
526 }
527
528 /* Return the groups that a MIPS register can be categorised into. */
529
530 static int
531 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533 {
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
562 return 0;
563 }
564
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
568
569 static void
570 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, gdb_byte *buf)
572 {
573 int rawnum = cookednum % NUM_REGS;
574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
576 regcache_raw_read (regcache, rawnum, buf);
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
587 internal_error (__FILE__, __LINE__, _("bad register size"));
588 }
589
590 static void
591 mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
593 const gdb_byte *buf)
594 {
595 int rawnum = cookednum % NUM_REGS;
596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
598 regcache_raw_write (regcache, rawnum, buf);
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
609 internal_error (__FILE__, __LINE__, _("bad register size"));
610 }
611
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
614
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619 static unsigned int heuristic_fence_post = 0;
620
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
624
625 static int mips64_transfers_32bit_regs_p = 0;
626
627 static void
628 set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
630 {
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
637 {
638 mips64_transfers_32bit_regs_p = 0;
639 error (_("32-bit compatibility mode not supported"));
640 }
641 }
642
643 /* Convert to/from a register and the corresponding memory value. */
644
645 static int
646 mips_convert_register_p (int regnum, struct type *type)
647 {
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
649 && register_size (current_gdbarch, regnum) == 4
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
653 }
654
655 static void
656 mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, gdb_byte *to)
658 {
659 get_frame_register (frame, regnum + 0, to + 4);
660 get_frame_register (frame, regnum + 1, to + 0);
661 }
662
663 static void
664 mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const gdb_byte *from)
666 {
667 put_frame_register (frame, regnum + 0, from + 4);
668 put_frame_register (frame, regnum + 1, from + 0);
669 }
670
671 /* Return the GDB type object for the "standard" data type of data in
672 register REG. */
673
674 static struct type *
675 mips_register_type (struct gdbarch *gdbarch, int regnum)
676 {
677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
680 {
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
686 if (mips_isa_regsize (gdbarch) == 4)
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
691 if (mips_isa_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
697 internal_error (__FILE__, __LINE__, _("bad switch"));
698 }
699 }
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
709 else
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
732 }
733
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736 static CORE_ADDR
737 mips_read_sp (void)
738 {
739 return read_signed_register (MIPS_SP_REGNUM);
740 }
741
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
744
745 static int
746 mips_mask_address_p (struct gdbarch_tdep *tdep)
747 {
748 switch (mask_address_var)
749 {
750 case AUTO_BOOLEAN_TRUE:
751 return 1;
752 case AUTO_BOOLEAN_FALSE:
753 return 0;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 return tdep->default_mask_address_p;
757 default:
758 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
759 return -1;
760 }
761 }
762
763 static void
764 show_mask_address (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
766 {
767 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
768
769 deprecated_show_value_hack (file, from_tty, c, value);
770 switch (mask_address_var)
771 {
772 case AUTO_BOOLEAN_TRUE:
773 printf_filtered ("The 32 bit mips address mask is enabled\n");
774 break;
775 case AUTO_BOOLEAN_FALSE:
776 printf_filtered ("The 32 bit mips address mask is disabled\n");
777 break;
778 case AUTO_BOOLEAN_AUTO:
779 printf_filtered
780 ("The 32 bit address mask is set automatically. Currently %s\n",
781 mips_mask_address_p (tdep) ? "enabled" : "disabled");
782 break;
783 default:
784 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
785 break;
786 }
787 }
788
789 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
790
791 int
792 mips_pc_is_mips16 (CORE_ADDR memaddr)
793 {
794 struct minimal_symbol *sym;
795
796 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
797 if (is_mips16_addr (memaddr))
798 return 1;
799
800 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
801 the high bit of the info field. Use this to decide if the function is
802 MIPS16 or normal MIPS. */
803 sym = lookup_minimal_symbol_by_pc (memaddr);
804 if (sym)
805 return msymbol_is_special (sym);
806 else
807 return 0;
808 }
809
810 /* MIPS believes that the PC has a sign extended value. Perhaps the
811 all registers should be sign extended for simplicity? */
812
813 static CORE_ADDR
814 mips_read_pc (ptid_t ptid)
815 {
816 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
817 }
818
819 static CORE_ADDR
820 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
821 {
822 return frame_unwind_register_signed (next_frame,
823 NUM_REGS + mips_regnum (gdbarch)->pc);
824 }
825
826 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
827 dummy frame. The frame ID's base needs to match the TOS value
828 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
829 breakpoint. */
830
831 static struct frame_id
832 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
833 {
834 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
835 frame_pc_unwind (next_frame));
836 }
837
838 static void
839 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
840 {
841 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
842 }
843
844 /* Fetch and return instruction from the specified location. If the PC
845 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
846
847 static ULONGEST
848 mips_fetch_instruction (CORE_ADDR addr)
849 {
850 gdb_byte buf[MIPS_INSN32_SIZE];
851 int instlen;
852 int status;
853
854 if (mips_pc_is_mips16 (addr))
855 {
856 instlen = MIPS_INSN16_SIZE;
857 addr = unmake_mips16_addr (addr);
858 }
859 else
860 instlen = MIPS_INSN32_SIZE;
861 status = deprecated_read_memory_nobpt (addr, buf, instlen);
862 if (status)
863 memory_error (status, addr);
864 return extract_unsigned_integer (buf, instlen);
865 }
866
867 /* These the fields of 32 bit mips instructions */
868 #define mips32_op(x) (x >> 26)
869 #define itype_op(x) (x >> 26)
870 #define itype_rs(x) ((x >> 21) & 0x1f)
871 #define itype_rt(x) ((x >> 16) & 0x1f)
872 #define itype_immediate(x) (x & 0xffff)
873
874 #define jtype_op(x) (x >> 26)
875 #define jtype_target(x) (x & 0x03ffffff)
876
877 #define rtype_op(x) (x >> 26)
878 #define rtype_rs(x) ((x >> 21) & 0x1f)
879 #define rtype_rt(x) ((x >> 16) & 0x1f)
880 #define rtype_rd(x) ((x >> 11) & 0x1f)
881 #define rtype_shamt(x) ((x >> 6) & 0x1f)
882 #define rtype_funct(x) (x & 0x3f)
883
884 static LONGEST
885 mips32_relative_offset (ULONGEST inst)
886 {
887 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
888 }
889
890 /* Determine whate to set a single step breakpoint while considering
891 branch prediction */
892 static CORE_ADDR
893 mips32_next_pc (CORE_ADDR pc)
894 {
895 unsigned long inst;
896 int op;
897 inst = mips_fetch_instruction (pc);
898 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
899 {
900 if (itype_op (inst) >> 2 == 5)
901 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
902 {
903 op = (itype_op (inst) & 0x03);
904 switch (op)
905 {
906 case 0: /* BEQL */
907 goto equal_branch;
908 case 1: /* BNEL */
909 goto neq_branch;
910 case 2: /* BLEZL */
911 goto less_branch;
912 case 3: /* BGTZ */
913 goto greater_branch;
914 default:
915 pc += 4;
916 }
917 }
918 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
919 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
920 {
921 int tf = itype_rt (inst) & 0x01;
922 int cnum = itype_rt (inst) >> 2;
923 int fcrcs =
924 read_signed_register (mips_regnum (current_gdbarch)->
925 fp_control_status);
926 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
927
928 if (((cond >> cnum) & 0x01) == tf)
929 pc += mips32_relative_offset (inst) + 4;
930 else
931 pc += 8;
932 }
933 else
934 pc += 4; /* Not a branch, next instruction is easy */
935 }
936 else
937 { /* This gets way messy */
938
939 /* Further subdivide into SPECIAL, REGIMM and other */
940 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
941 {
942 case 0: /* SPECIAL */
943 op = rtype_funct (inst);
944 switch (op)
945 {
946 case 8: /* JR */
947 case 9: /* JALR */
948 /* Set PC to that address */
949 pc = read_signed_register (rtype_rs (inst));
950 break;
951 default:
952 pc += 4;
953 }
954
955 break; /* end SPECIAL */
956 case 1: /* REGIMM */
957 {
958 op = itype_rt (inst); /* branch condition */
959 switch (op)
960 {
961 case 0: /* BLTZ */
962 case 2: /* BLTZL */
963 case 16: /* BLTZAL */
964 case 18: /* BLTZALL */
965 less_branch:
966 if (read_signed_register (itype_rs (inst)) < 0)
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8; /* after the delay slot */
970 break;
971 case 1: /* BGEZ */
972 case 3: /* BGEZL */
973 case 17: /* BGEZAL */
974 case 19: /* BGEZALL */
975 if (read_signed_register (itype_rs (inst)) >= 0)
976 pc += mips32_relative_offset (inst) + 4;
977 else
978 pc += 8; /* after the delay slot */
979 break;
980 /* All of the other instructions in the REGIMM category */
981 default:
982 pc += 4;
983 }
984 }
985 break; /* end REGIMM */
986 case 2: /* J */
987 case 3: /* JAL */
988 {
989 unsigned long reg;
990 reg = jtype_target (inst) << 2;
991 /* Upper four bits get never changed... */
992 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
993 }
994 break;
995 /* FIXME case JALX : */
996 {
997 unsigned long reg;
998 reg = jtype_target (inst) << 2;
999 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1000 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1001 }
1002 break; /* The new PC will be alternate mode */
1003 case 4: /* BEQ, BEQL */
1004 equal_branch:
1005 if (read_signed_register (itype_rs (inst)) ==
1006 read_signed_register (itype_rt (inst)))
1007 pc += mips32_relative_offset (inst) + 4;
1008 else
1009 pc += 8;
1010 break;
1011 case 5: /* BNE, BNEL */
1012 neq_branch:
1013 if (read_signed_register (itype_rs (inst)) !=
1014 read_signed_register (itype_rt (inst)))
1015 pc += mips32_relative_offset (inst) + 4;
1016 else
1017 pc += 8;
1018 break;
1019 case 6: /* BLEZ, BLEZL */
1020 if (read_signed_register (itype_rs (inst)) <= 0)
1021 pc += mips32_relative_offset (inst) + 4;
1022 else
1023 pc += 8;
1024 break;
1025 case 7:
1026 default:
1027 greater_branch: /* BGTZ, BGTZL */
1028 if (read_signed_register (itype_rs (inst)) > 0)
1029 pc += mips32_relative_offset (inst) + 4;
1030 else
1031 pc += 8;
1032 break;
1033 } /* switch */
1034 } /* else */
1035 return pc;
1036 } /* mips32_next_pc */
1037
1038 /* Decoding the next place to set a breakpoint is irregular for the
1039 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1040 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1041 We dont want to set a single step instruction on the extend instruction
1042 either.
1043 */
1044
1045 /* Lots of mips16 instruction formats */
1046 /* Predicting jumps requires itype,ritype,i8type
1047 and their extensions extItype,extritype,extI8type
1048 */
1049 enum mips16_inst_fmts
1050 {
1051 itype, /* 0 immediate 5,10 */
1052 ritype, /* 1 5,3,8 */
1053 rrtype, /* 2 5,3,3,5 */
1054 rritype, /* 3 5,3,3,5 */
1055 rrrtype, /* 4 5,3,3,3,2 */
1056 rriatype, /* 5 5,3,3,1,4 */
1057 shifttype, /* 6 5,3,3,3,2 */
1058 i8type, /* 7 5,3,8 */
1059 i8movtype, /* 8 5,3,3,5 */
1060 i8mov32rtype, /* 9 5,3,5,3 */
1061 i64type, /* 10 5,3,8 */
1062 ri64type, /* 11 5,3,3,5 */
1063 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1064 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1065 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1066 extRRItype, /* 15 5,5,5,5,3,3,5 */
1067 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1068 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1069 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1070 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1071 extRi64type, /* 20 5,6,5,5,3,3,5 */
1072 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1073 };
1074 /* I am heaping all the fields of the formats into one structure and
1075 then, only the fields which are involved in instruction extension */
1076 struct upk_mips16
1077 {
1078 CORE_ADDR offset;
1079 unsigned int regx; /* Function in i8 type */
1080 unsigned int regy;
1081 };
1082
1083
1084 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1085 for the bits which make up the immediatate extension. */
1086
1087 static CORE_ADDR
1088 extended_offset (unsigned int extension)
1089 {
1090 CORE_ADDR value;
1091 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1092 value = value << 6;
1093 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1094 value = value << 5;
1095 value |= extension & 0x01f; /* extract 4:0 */
1096 return value;
1097 }
1098
1099 /* Only call this function if you know that this is an extendable
1100 instruction, It wont malfunction, but why make excess remote memory references?
1101 If the immediate operands get sign extended or somthing, do it after
1102 the extension is performed.
1103 */
1104 /* FIXME: Every one of these cases needs to worry about sign extension
1105 when the offset is to be used in relative addressing */
1106
1107
1108 static unsigned int
1109 fetch_mips_16 (CORE_ADDR pc)
1110 {
1111 gdb_byte buf[8];
1112 pc &= 0xfffffffe; /* clear the low order bit */
1113 target_read_memory (pc, buf, 2);
1114 return extract_unsigned_integer (buf, 2);
1115 }
1116
1117 static void
1118 unpack_mips16 (CORE_ADDR pc,
1119 unsigned int extension,
1120 unsigned int inst,
1121 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1122 {
1123 CORE_ADDR offset;
1124 int regx;
1125 int regy;
1126 switch (insn_format)
1127 {
1128 case itype:
1129 {
1130 CORE_ADDR value;
1131 if (extension)
1132 {
1133 value = extended_offset (extension);
1134 value = value << 11; /* rom for the original value */
1135 value |= inst & 0x7ff; /* eleven bits from instruction */
1136 }
1137 else
1138 {
1139 value = inst & 0x7ff;
1140 /* FIXME : Consider sign extension */
1141 }
1142 offset = value;
1143 regx = -1;
1144 regy = -1;
1145 }
1146 break;
1147 case ritype:
1148 case i8type:
1149 { /* A register identifier and an offset */
1150 /* Most of the fields are the same as I type but the
1151 immediate value is of a different length */
1152 CORE_ADDR value;
1153 if (extension)
1154 {
1155 value = extended_offset (extension);
1156 value = value << 8; /* from the original instruction */
1157 value |= inst & 0xff; /* eleven bits from instruction */
1158 regx = (extension >> 8) & 0x07; /* or i8 funct */
1159 if (value & 0x4000) /* test the sign bit , bit 26 */
1160 {
1161 value &= ~0x3fff; /* remove the sign bit */
1162 value = -value;
1163 }
1164 }
1165 else
1166 {
1167 value = inst & 0xff; /* 8 bits */
1168 regx = (inst >> 8) & 0x07; /* or i8 funct */
1169 /* FIXME: Do sign extension , this format needs it */
1170 if (value & 0x80) /* THIS CONFUSES ME */
1171 {
1172 value &= 0xef; /* remove the sign bit */
1173 value = -value;
1174 }
1175 }
1176 offset = value;
1177 regy = -1;
1178 break;
1179 }
1180 case jalxtype:
1181 {
1182 unsigned long value;
1183 unsigned int nexthalf;
1184 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1185 value = value << 16;
1186 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1187 value |= nexthalf;
1188 offset = value;
1189 regx = -1;
1190 regy = -1;
1191 break;
1192 }
1193 default:
1194 internal_error (__FILE__, __LINE__, _("bad switch"));
1195 }
1196 upk->offset = offset;
1197 upk->regx = regx;
1198 upk->regy = regy;
1199 }
1200
1201
1202 static CORE_ADDR
1203 add_offset_16 (CORE_ADDR pc, int offset)
1204 {
1205 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1206 }
1207
1208 static CORE_ADDR
1209 extended_mips16_next_pc (CORE_ADDR pc,
1210 unsigned int extension, unsigned int insn)
1211 {
1212 int op = (insn >> 11);
1213 switch (op)
1214 {
1215 case 2: /* Branch */
1216 {
1217 CORE_ADDR offset;
1218 struct upk_mips16 upk;
1219 unpack_mips16 (pc, extension, insn, itype, &upk);
1220 offset = upk.offset;
1221 if (offset & 0x800)
1222 {
1223 offset &= 0xeff;
1224 offset = -offset;
1225 }
1226 pc += (offset << 1) + 2;
1227 break;
1228 }
1229 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1230 {
1231 struct upk_mips16 upk;
1232 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1233 pc = add_offset_16 (pc, upk.offset);
1234 if ((insn >> 10) & 0x01) /* Exchange mode */
1235 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1236 else
1237 pc |= 0x01;
1238 break;
1239 }
1240 case 4: /* beqz */
1241 {
1242 struct upk_mips16 upk;
1243 int reg;
1244 unpack_mips16 (pc, extension, insn, ritype, &upk);
1245 reg = read_signed_register (upk.regx);
1246 if (reg == 0)
1247 pc += (upk.offset << 1) + 2;
1248 else
1249 pc += 2;
1250 break;
1251 }
1252 case 5: /* bnez */
1253 {
1254 struct upk_mips16 upk;
1255 int reg;
1256 unpack_mips16 (pc, extension, insn, ritype, &upk);
1257 reg = read_signed_register (upk.regx);
1258 if (reg != 0)
1259 pc += (upk.offset << 1) + 2;
1260 else
1261 pc += 2;
1262 break;
1263 }
1264 case 12: /* I8 Formats btez btnez */
1265 {
1266 struct upk_mips16 upk;
1267 int reg;
1268 unpack_mips16 (pc, extension, insn, i8type, &upk);
1269 /* upk.regx contains the opcode */
1270 reg = read_signed_register (24); /* Test register is 24 */
1271 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1272 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1273 /* pc = add_offset_16(pc,upk.offset) ; */
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 29: /* RR Formats JR, JALR, JALR-RA */
1280 {
1281 struct upk_mips16 upk;
1282 /* upk.fmt = rrtype; */
1283 op = insn & 0x1f;
1284 if (op == 0)
1285 {
1286 int reg;
1287 upk.regx = (insn >> 8) & 0x07;
1288 upk.regy = (insn >> 5) & 0x07;
1289 switch (upk.regy)
1290 {
1291 case 0:
1292 reg = upk.regx;
1293 break;
1294 case 1:
1295 reg = 31;
1296 break; /* Function return instruction */
1297 case 2:
1298 reg = upk.regx;
1299 break;
1300 default:
1301 reg = 31;
1302 break; /* BOGUS Guess */
1303 }
1304 pc = read_signed_register (reg);
1305 }
1306 else
1307 pc += 2;
1308 break;
1309 }
1310 case 30:
1311 /* This is an instruction extension. Fetch the real instruction
1312 (which follows the extension) and decode things based on
1313 that. */
1314 {
1315 pc += 2;
1316 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1317 break;
1318 }
1319 default:
1320 {
1321 pc += 2;
1322 break;
1323 }
1324 }
1325 return pc;
1326 }
1327
1328 static CORE_ADDR
1329 mips16_next_pc (CORE_ADDR pc)
1330 {
1331 unsigned int insn = fetch_mips_16 (pc);
1332 return extended_mips16_next_pc (pc, 0, insn);
1333 }
1334
1335 /* The mips_next_pc function supports single_step when the remote
1336 target monitor or stub is not developed enough to do a single_step.
1337 It works by decoding the current instruction and predicting where a
1338 branch will go. This isnt hard because all the data is available.
1339 The MIPS32 and MIPS16 variants are quite different */
1340 CORE_ADDR
1341 mips_next_pc (CORE_ADDR pc)
1342 {
1343 if (pc & 0x01)
1344 return mips16_next_pc (pc);
1345 else
1346 return mips32_next_pc (pc);
1347 }
1348
1349 struct mips_frame_cache
1350 {
1351 CORE_ADDR base;
1352 struct trad_frame_saved_reg *saved_regs;
1353 };
1354
1355 /* Set a register's saved stack address in temp_saved_regs. If an
1356 address has already been set for this register, do nothing; this
1357 way we will only recognize the first save of a given register in a
1358 function prologue.
1359
1360 For simplicity, save the address in both [0 .. NUM_REGS) and
1361 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1362 is used as it is only second range (the ABI instead of ISA
1363 registers) that comes into play when finding saved registers in a
1364 frame. */
1365
1366 static void
1367 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1368 CORE_ADDR offset)
1369 {
1370 if (this_cache != NULL
1371 && this_cache->saved_regs[regnum].addr == -1)
1372 {
1373 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1374 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1375 }
1376 }
1377
1378
1379 /* Fetch the immediate value from a MIPS16 instruction.
1380 If the previous instruction was an EXTEND, use it to extend
1381 the upper bits of the immediate value. This is a helper function
1382 for mips16_scan_prologue. */
1383
1384 static int
1385 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1386 unsigned short inst, /* current instruction */
1387 int nbits, /* number of bits in imm field */
1388 int scale, /* scale factor to be applied to imm */
1389 int is_signed) /* is the imm field signed? */
1390 {
1391 int offset;
1392
1393 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1394 {
1395 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1396 if (offset & 0x8000) /* check for negative extend */
1397 offset = 0 - (0x10000 - (offset & 0xffff));
1398 return offset | (inst & 0x1f);
1399 }
1400 else
1401 {
1402 int max_imm = 1 << nbits;
1403 int mask = max_imm - 1;
1404 int sign_bit = max_imm >> 1;
1405
1406 offset = inst & mask;
1407 if (is_signed && (offset & sign_bit))
1408 offset = 0 - (max_imm - offset);
1409 return offset * scale;
1410 }
1411 }
1412
1413
1414 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1415 the associated FRAME_CACHE if not null.
1416 Return the address of the first instruction past the prologue. */
1417
1418 static CORE_ADDR
1419 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1420 struct frame_info *next_frame,
1421 struct mips_frame_cache *this_cache)
1422 {
1423 CORE_ADDR cur_pc;
1424 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1425 CORE_ADDR sp;
1426 long frame_offset = 0; /* Size of stack frame. */
1427 long frame_adjust = 0; /* Offset of FP from SP. */
1428 int frame_reg = MIPS_SP_REGNUM;
1429 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1430 unsigned inst = 0; /* current instruction */
1431 unsigned entry_inst = 0; /* the entry instruction */
1432 int reg, offset;
1433
1434 int extend_bytes = 0;
1435 int prev_extend_bytes;
1436 CORE_ADDR end_prologue_addr = 0;
1437
1438 /* Can be called when there's no process, and hence when there's no
1439 NEXT_FRAME. */
1440 if (next_frame != NULL)
1441 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1442 else
1443 sp = 0;
1444
1445 if (limit_pc > start_pc + 200)
1446 limit_pc = start_pc + 200;
1447
1448 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1449 {
1450 /* Save the previous instruction. If it's an EXTEND, we'll extract
1451 the immediate offset extension from it in mips16_get_imm. */
1452 prev_inst = inst;
1453
1454 /* Fetch and decode the instruction. */
1455 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1456
1457 /* Normally we ignore extend instructions. However, if it is
1458 not followed by a valid prologue instruction, then this
1459 instruction is not part of the prologue either. We must
1460 remember in this case to adjust the end_prologue_addr back
1461 over the extend. */
1462 if ((inst & 0xf800) == 0xf000) /* extend */
1463 {
1464 extend_bytes = MIPS_INSN16_SIZE;
1465 continue;
1466 }
1467
1468 prev_extend_bytes = extend_bytes;
1469 extend_bytes = 0;
1470
1471 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1472 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1473 {
1474 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1475 if (offset < 0) /* negative stack adjustment? */
1476 frame_offset -= offset;
1477 else
1478 /* Exit loop if a positive stack adjustment is found, which
1479 usually means that the stack cleanup code in the function
1480 epilogue is reached. */
1481 break;
1482 }
1483 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1484 {
1485 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1486 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1487 set_reg_offset (this_cache, reg, sp + offset);
1488 }
1489 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1490 {
1491 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1492 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1493 set_reg_offset (this_cache, reg, sp + offset);
1494 }
1495 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1496 {
1497 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1498 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1499 }
1500 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1501 {
1502 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1503 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1504 }
1505 else if (inst == 0x673d) /* move $s1, $sp */
1506 {
1507 frame_addr = sp;
1508 frame_reg = 17;
1509 }
1510 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 frame_addr = sp + offset;
1514 frame_reg = 17;
1515 frame_adjust = offset;
1516 }
1517 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1518 {
1519 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1520 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1521 set_reg_offset (this_cache, reg, frame_addr + offset);
1522 }
1523 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1524 {
1525 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1526 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1527 set_reg_offset (this_cache, reg, frame_addr + offset);
1528 }
1529 else if ((inst & 0xf81f) == 0xe809
1530 && (inst & 0x700) != 0x700) /* entry */
1531 entry_inst = inst; /* save for later processing */
1532 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1533 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1534 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1535 {
1536 /* This instruction is part of the prologue, but we don't
1537 need to do anything special to handle it. */
1538 }
1539 else
1540 {
1541 /* This instruction is not an instruction typically found
1542 in a prologue, so we must have reached the end of the
1543 prologue. */
1544 if (end_prologue_addr == 0)
1545 end_prologue_addr = cur_pc - prev_extend_bytes;
1546 }
1547 }
1548
1549 /* The entry instruction is typically the first instruction in a function,
1550 and it stores registers at offsets relative to the value of the old SP
1551 (before the prologue). But the value of the sp parameter to this
1552 function is the new SP (after the prologue has been executed). So we
1553 can't calculate those offsets until we've seen the entire prologue,
1554 and can calculate what the old SP must have been. */
1555 if (entry_inst != 0)
1556 {
1557 int areg_count = (entry_inst >> 8) & 7;
1558 int sreg_count = (entry_inst >> 6) & 3;
1559
1560 /* The entry instruction always subtracts 32 from the SP. */
1561 frame_offset += 32;
1562
1563 /* Now we can calculate what the SP must have been at the
1564 start of the function prologue. */
1565 sp += frame_offset;
1566
1567 /* Check if a0-a3 were saved in the caller's argument save area. */
1568 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1569 {
1570 set_reg_offset (this_cache, reg, sp + offset);
1571 offset += mips_abi_regsize (current_gdbarch);
1572 }
1573
1574 /* Check if the ra register was pushed on the stack. */
1575 offset = -4;
1576 if (entry_inst & 0x20)
1577 {
1578 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1579 offset -= mips_abi_regsize (current_gdbarch);
1580 }
1581
1582 /* Check if the s0 and s1 registers were pushed on the stack. */
1583 for (reg = 16; reg < sreg_count + 16; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset -= mips_abi_regsize (current_gdbarch);
1587 }
1588 }
1589
1590 if (this_cache != NULL)
1591 {
1592 this_cache->base =
1593 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1594 + frame_offset - frame_adjust);
1595 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1596 be able to get rid of the assignment below, evetually. But it's
1597 still needed for now. */
1598 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1599 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1600 }
1601
1602 /* If we didn't reach the end of the prologue when scanning the function
1603 instructions, then set end_prologue_addr to the address of the
1604 instruction immediately after the last one we scanned. */
1605 if (end_prologue_addr == 0)
1606 end_prologue_addr = cur_pc;
1607
1608 return end_prologue_addr;
1609 }
1610
1611 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1612 Procedures that use the 32-bit instruction set are handled by the
1613 mips_insn32 unwinder. */
1614
1615 static struct mips_frame_cache *
1616 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1617 {
1618 struct mips_frame_cache *cache;
1619
1620 if ((*this_cache) != NULL)
1621 return (*this_cache);
1622 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1623 (*this_cache) = cache;
1624 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1625
1626 /* Analyze the function prologue. */
1627 {
1628 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1629 CORE_ADDR start_addr;
1630
1631 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1632 if (start_addr == 0)
1633 start_addr = heuristic_proc_start (pc);
1634 /* We can't analyze the prologue if we couldn't find the begining
1635 of the function. */
1636 if (start_addr == 0)
1637 return cache;
1638
1639 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1640 }
1641
1642 /* SP_REGNUM, contains the value and not the address. */
1643 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1644
1645 return (*this_cache);
1646 }
1647
1648 static void
1649 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1650 struct frame_id *this_id)
1651 {
1652 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1653 this_cache);
1654 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1655 }
1656
1657 static void
1658 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1659 void **this_cache,
1660 int regnum, int *optimizedp,
1661 enum lval_type *lvalp, CORE_ADDR *addrp,
1662 int *realnump, gdb_byte *valuep)
1663 {
1664 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1665 this_cache);
1666 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1667 optimizedp, lvalp, addrp, realnump, valuep);
1668 }
1669
1670 static const struct frame_unwind mips_insn16_frame_unwind =
1671 {
1672 NORMAL_FRAME,
1673 mips_insn16_frame_this_id,
1674 mips_insn16_frame_prev_register
1675 };
1676
1677 static const struct frame_unwind *
1678 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1679 {
1680 CORE_ADDR pc = frame_pc_unwind (next_frame);
1681 if (mips_pc_is_mips16 (pc))
1682 return &mips_insn16_frame_unwind;
1683 return NULL;
1684 }
1685
1686 static CORE_ADDR
1687 mips_insn16_frame_base_address (struct frame_info *next_frame,
1688 void **this_cache)
1689 {
1690 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1691 this_cache);
1692 return info->base;
1693 }
1694
1695 static const struct frame_base mips_insn16_frame_base =
1696 {
1697 &mips_insn16_frame_unwind,
1698 mips_insn16_frame_base_address,
1699 mips_insn16_frame_base_address,
1700 mips_insn16_frame_base_address
1701 };
1702
1703 static const struct frame_base *
1704 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1705 {
1706 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1707 return &mips_insn16_frame_base;
1708 else
1709 return NULL;
1710 }
1711
1712 /* Mark all the registers as unset in the saved_regs array
1713 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1714
1715 void
1716 reset_saved_regs (struct mips_frame_cache *this_cache)
1717 {
1718 if (this_cache == NULL || this_cache->saved_regs == NULL)
1719 return;
1720
1721 {
1722 const int num_regs = NUM_REGS;
1723 int i;
1724
1725 for (i = 0; i < num_regs; i++)
1726 {
1727 this_cache->saved_regs[i].addr = -1;
1728 }
1729 }
1730 }
1731
1732 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1733 the associated FRAME_CACHE if not null.
1734 Return the address of the first instruction past the prologue. */
1735
1736 static CORE_ADDR
1737 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1738 struct frame_info *next_frame,
1739 struct mips_frame_cache *this_cache)
1740 {
1741 CORE_ADDR cur_pc;
1742 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1743 CORE_ADDR sp;
1744 long frame_offset;
1745 int frame_reg = MIPS_SP_REGNUM;
1746
1747 CORE_ADDR end_prologue_addr = 0;
1748 int seen_sp_adjust = 0;
1749 int load_immediate_bytes = 0;
1750
1751 /* Can be called when there's no process, and hence when there's no
1752 NEXT_FRAME. */
1753 if (next_frame != NULL)
1754 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1755 else
1756 sp = 0;
1757
1758 if (limit_pc > start_pc + 200)
1759 limit_pc = start_pc + 200;
1760
1761 restart:
1762
1763 frame_offset = 0;
1764 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1765 {
1766 unsigned long inst, high_word, low_word;
1767 int reg;
1768
1769 /* Fetch the instruction. */
1770 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1771
1772 /* Save some code by pre-extracting some useful fields. */
1773 high_word = (inst >> 16) & 0xffff;
1774 low_word = inst & 0xffff;
1775 reg = high_word & 0x1f;
1776
1777 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1778 || high_word == 0x23bd /* addi $sp,$sp,-i */
1779 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1780 {
1781 if (low_word & 0x8000) /* negative stack adjustment? */
1782 frame_offset += 0x10000 - low_word;
1783 else
1784 /* Exit loop if a positive stack adjustment is found, which
1785 usually means that the stack cleanup code in the function
1786 epilogue is reached. */
1787 break;
1788 seen_sp_adjust = 1;
1789 }
1790 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1791 {
1792 set_reg_offset (this_cache, reg, sp + low_word);
1793 }
1794 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1795 {
1796 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1797 set_reg_offset (this_cache, reg, sp + low_word);
1798 }
1799 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1800 {
1801 /* Old gcc frame, r30 is virtual frame pointer. */
1802 if ((long) low_word != frame_offset)
1803 frame_addr = sp + low_word;
1804 else if (frame_reg == MIPS_SP_REGNUM)
1805 {
1806 unsigned alloca_adjust;
1807
1808 frame_reg = 30;
1809 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1810 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1811 if (alloca_adjust > 0)
1812 {
1813 /* FP > SP + frame_size. This may be because of
1814 an alloca or somethings similar. Fix sp to
1815 "pre-alloca" value, and try again. */
1816 sp += alloca_adjust;
1817 /* Need to reset the status of all registers. Otherwise,
1818 we will hit a guard that prevents the new address
1819 for each register to be recomputed during the second
1820 pass. */
1821 reset_saved_regs (this_cache);
1822 goto restart;
1823 }
1824 }
1825 }
1826 /* move $30,$sp. With different versions of gas this will be either
1827 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1828 Accept any one of these. */
1829 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1830 {
1831 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1832 if (frame_reg == MIPS_SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
1835
1836 frame_reg = 30;
1837 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1838 alloca_adjust = (unsigned) (frame_addr - sp);
1839 if (alloca_adjust > 0)
1840 {
1841 /* FP > SP + frame_size. This may be because of
1842 an alloca or somethings similar. Fix sp to
1843 "pre-alloca" value, and try again. */
1844 sp = frame_addr;
1845 /* Need to reset the status of all registers. Otherwise,
1846 we will hit a guard that prevents the new address
1847 for each register to be recomputed during the second
1848 pass. */
1849 reset_saved_regs (this_cache);
1850 goto restart;
1851 }
1852 }
1853 }
1854 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1855 {
1856 set_reg_offset (this_cache, reg, frame_addr + low_word);
1857 }
1858 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1859 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1860 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1861 || high_word == 0x3c1c /* lui $gp,n */
1862 || high_word == 0x279c /* addiu $gp,$gp,n */
1863 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1864 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1865 )
1866 {
1867 /* These instructions are part of the prologue, but we don't
1868 need to do anything special to handle them. */
1869 }
1870 /* The instructions below load $at or $t0 with an immediate
1871 value in preparation for a stack adjustment via
1872 subu $sp,$sp,[$at,$t0]. These instructions could also
1873 initialize a local variable, so we accept them only before
1874 a stack adjustment instruction was seen. */
1875 else if (!seen_sp_adjust
1876 && (high_word == 0x3c01 /* lui $at,n */
1877 || high_word == 0x3c08 /* lui $t0,n */
1878 || high_word == 0x3421 /* ori $at,$at,n */
1879 || high_word == 0x3508 /* ori $t0,$t0,n */
1880 || high_word == 0x3401 /* ori $at,$zero,n */
1881 || high_word == 0x3408 /* ori $t0,$zero,n */
1882 ))
1883 {
1884 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1885 }
1886 else
1887 {
1888 /* This instruction is not an instruction typically found
1889 in a prologue, so we must have reached the end of the
1890 prologue. */
1891 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1892 loop now? Why would we need to continue scanning the function
1893 instructions? */
1894 if (end_prologue_addr == 0)
1895 end_prologue_addr = cur_pc;
1896 }
1897 }
1898
1899 if (this_cache != NULL)
1900 {
1901 this_cache->base =
1902 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1903 + frame_offset);
1904 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1905 this assignment below, eventually. But it's still needed
1906 for now. */
1907 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1908 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1909 }
1910
1911 /* If we didn't reach the end of the prologue when scanning the function
1912 instructions, then set end_prologue_addr to the address of the
1913 instruction immediately after the last one we scanned. */
1914 /* brobecker/2004-10-10: I don't think this would ever happen, but
1915 we may as well be careful and do our best if we have a null
1916 end_prologue_addr. */
1917 if (end_prologue_addr == 0)
1918 end_prologue_addr = cur_pc;
1919
1920 /* In a frameless function, we might have incorrectly
1921 skipped some load immediate instructions. Undo the skipping
1922 if the load immediate was not followed by a stack adjustment. */
1923 if (load_immediate_bytes && !seen_sp_adjust)
1924 end_prologue_addr -= load_immediate_bytes;
1925
1926 return end_prologue_addr;
1927 }
1928
1929 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1930 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1931 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1932 unwinder. */
1933
1934 static struct mips_frame_cache *
1935 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1936 {
1937 struct mips_frame_cache *cache;
1938
1939 if ((*this_cache) != NULL)
1940 return (*this_cache);
1941
1942 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1943 (*this_cache) = cache;
1944 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1945
1946 /* Analyze the function prologue. */
1947 {
1948 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1949 CORE_ADDR start_addr;
1950
1951 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1952 if (start_addr == 0)
1953 start_addr = heuristic_proc_start (pc);
1954 /* We can't analyze the prologue if we couldn't find the begining
1955 of the function. */
1956 if (start_addr == 0)
1957 return cache;
1958
1959 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1960 }
1961
1962 /* SP_REGNUM, contains the value and not the address. */
1963 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1964
1965 return (*this_cache);
1966 }
1967
1968 static void
1969 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1970 struct frame_id *this_id)
1971 {
1972 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1973 this_cache);
1974 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1975 }
1976
1977 static void
1978 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1979 void **this_cache,
1980 int regnum, int *optimizedp,
1981 enum lval_type *lvalp, CORE_ADDR *addrp,
1982 int *realnump, gdb_byte *valuep)
1983 {
1984 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1985 this_cache);
1986 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1987 optimizedp, lvalp, addrp, realnump, valuep);
1988 }
1989
1990 static const struct frame_unwind mips_insn32_frame_unwind =
1991 {
1992 NORMAL_FRAME,
1993 mips_insn32_frame_this_id,
1994 mips_insn32_frame_prev_register
1995 };
1996
1997 static const struct frame_unwind *
1998 mips_insn32_frame_sniffer (struct frame_info *next_frame)
1999 {
2000 CORE_ADDR pc = frame_pc_unwind (next_frame);
2001 if (! mips_pc_is_mips16 (pc))
2002 return &mips_insn32_frame_unwind;
2003 return NULL;
2004 }
2005
2006 static CORE_ADDR
2007 mips_insn32_frame_base_address (struct frame_info *next_frame,
2008 void **this_cache)
2009 {
2010 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2011 this_cache);
2012 return info->base;
2013 }
2014
2015 static const struct frame_base mips_insn32_frame_base =
2016 {
2017 &mips_insn32_frame_unwind,
2018 mips_insn32_frame_base_address,
2019 mips_insn32_frame_base_address,
2020 mips_insn32_frame_base_address
2021 };
2022
2023 static const struct frame_base *
2024 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2025 {
2026 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2027 return &mips_insn32_frame_base;
2028 else
2029 return NULL;
2030 }
2031
2032 static struct trad_frame_cache *
2033 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2034 {
2035 CORE_ADDR pc;
2036 CORE_ADDR start_addr;
2037 CORE_ADDR stack_addr;
2038 struct trad_frame_cache *this_trad_cache;
2039
2040 if ((*this_cache) != NULL)
2041 return (*this_cache);
2042 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2043 (*this_cache) = this_trad_cache;
2044
2045 /* The return address is in the link register. */
2046 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2047
2048 /* Frame ID, since it's a frameless / stackless function, no stack
2049 space is allocated and SP on entry is the current SP. */
2050 pc = frame_pc_unwind (next_frame);
2051 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2052 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2053 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2054
2055 /* Assume that the frame's base is the same as the
2056 stack-pointer. */
2057 trad_frame_set_this_base (this_trad_cache, stack_addr);
2058
2059 return this_trad_cache;
2060 }
2061
2062 static void
2063 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2064 struct frame_id *this_id)
2065 {
2066 struct trad_frame_cache *this_trad_cache
2067 = mips_stub_frame_cache (next_frame, this_cache);
2068 trad_frame_get_id (this_trad_cache, this_id);
2069 }
2070
2071 static void
2072 mips_stub_frame_prev_register (struct frame_info *next_frame,
2073 void **this_cache,
2074 int regnum, int *optimizedp,
2075 enum lval_type *lvalp, CORE_ADDR *addrp,
2076 int *realnump, gdb_byte *valuep)
2077 {
2078 struct trad_frame_cache *this_trad_cache
2079 = mips_stub_frame_cache (next_frame, this_cache);
2080 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2081 lvalp, addrp, realnump, valuep);
2082 }
2083
2084 static const struct frame_unwind mips_stub_frame_unwind =
2085 {
2086 NORMAL_FRAME,
2087 mips_stub_frame_this_id,
2088 mips_stub_frame_prev_register
2089 };
2090
2091 static const struct frame_unwind *
2092 mips_stub_frame_sniffer (struct frame_info *next_frame)
2093 {
2094 struct obj_section *s;
2095 CORE_ADDR pc = frame_pc_unwind (next_frame);
2096
2097 if (in_plt_section (pc, NULL))
2098 return &mips_stub_frame_unwind;
2099
2100 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2101 s = find_pc_section (pc);
2102
2103 if (s != NULL
2104 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2105 ".MIPS.stubs") == 0)
2106 return &mips_stub_frame_unwind;
2107
2108 return NULL;
2109 }
2110
2111 static CORE_ADDR
2112 mips_stub_frame_base_address (struct frame_info *next_frame,
2113 void **this_cache)
2114 {
2115 struct trad_frame_cache *this_trad_cache
2116 = mips_stub_frame_cache (next_frame, this_cache);
2117 return trad_frame_get_this_base (this_trad_cache);
2118 }
2119
2120 static const struct frame_base mips_stub_frame_base =
2121 {
2122 &mips_stub_frame_unwind,
2123 mips_stub_frame_base_address,
2124 mips_stub_frame_base_address,
2125 mips_stub_frame_base_address
2126 };
2127
2128 static const struct frame_base *
2129 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2130 {
2131 if (mips_stub_frame_sniffer (next_frame) != NULL)
2132 return &mips_stub_frame_base;
2133 else
2134 return NULL;
2135 }
2136
2137 static CORE_ADDR
2138 read_next_frame_reg (struct frame_info *fi, int regno)
2139 {
2140 /* Always a pseudo. */
2141 gdb_assert (regno >= NUM_REGS);
2142 if (fi == NULL)
2143 {
2144 LONGEST val;
2145 regcache_cooked_read_signed (current_regcache, regno, &val);
2146 return val;
2147 }
2148 else
2149 return frame_unwind_register_signed (fi, regno);
2150
2151 }
2152
2153 /* mips_addr_bits_remove - remove useless address bits */
2154
2155 static CORE_ADDR
2156 mips_addr_bits_remove (CORE_ADDR addr)
2157 {
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2159 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2160 /* This hack is a work-around for existing boards using PMON, the
2161 simulator, and any other 64-bit targets that doesn't have true
2162 64-bit addressing. On these targets, the upper 32 bits of
2163 addresses are ignored by the hardware. Thus, the PC or SP are
2164 likely to have been sign extended to all 1s by instruction
2165 sequences that load 32-bit addresses. For example, a typical
2166 piece of code that loads an address is this:
2167
2168 lui $r2, <upper 16 bits>
2169 ori $r2, <lower 16 bits>
2170
2171 But the lui sign-extends the value such that the upper 32 bits
2172 may be all 1s. The workaround is simply to mask off these
2173 bits. In the future, gcc may be changed to support true 64-bit
2174 addressing, and this masking will have to be disabled. */
2175 return addr &= 0xffffffffUL;
2176 else
2177 return addr;
2178 }
2179
2180 /* mips_software_single_step() is called just before we want to resume
2181 the inferior, if we want to single-step it but there is no hardware
2182 or kernel single-step support (MIPS on GNU/Linux for example). We find
2183 the target of the coming instruction and breakpoint it.
2184
2185 single_step is also called just after the inferior stops. If we had
2186 set up a simulated single-step, we undo our damage. */
2187
2188 void
2189 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2190 {
2191 CORE_ADDR pc, next_pc;
2192
2193 if (insert_breakpoints_p)
2194 {
2195 pc = read_register (mips_regnum (current_gdbarch)->pc);
2196 next_pc = mips_next_pc (pc);
2197
2198 insert_single_step_breakpoint (next_pc);
2199 }
2200 else
2201 remove_single_step_breakpoints ();
2202 }
2203
2204 /* Test whether the PC points to the return instruction at the
2205 end of a function. */
2206
2207 static int
2208 mips_about_to_return (CORE_ADDR pc)
2209 {
2210 if (mips_pc_is_mips16 (pc))
2211 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2212 generates a "jr $ra"; other times it generates code to load
2213 the return address from the stack to an accessible register (such
2214 as $a3), then a "jr" using that register. This second case
2215 is almost impossible to distinguish from an indirect jump
2216 used for switch statements, so we don't even try. */
2217 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2218 else
2219 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2220 }
2221
2222
2223 /* This fencepost looks highly suspicious to me. Removing it also
2224 seems suspicious as it could affect remote debugging across serial
2225 lines. */
2226
2227 static CORE_ADDR
2228 heuristic_proc_start (CORE_ADDR pc)
2229 {
2230 CORE_ADDR start_pc;
2231 CORE_ADDR fence;
2232 int instlen;
2233 int seen_adjsp = 0;
2234
2235 pc = ADDR_BITS_REMOVE (pc);
2236 start_pc = pc;
2237 fence = start_pc - heuristic_fence_post;
2238 if (start_pc == 0)
2239 return 0;
2240
2241 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2242 fence = VM_MIN_ADDRESS;
2243
2244 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2245
2246 /* search back for previous return */
2247 for (start_pc -= instlen;; start_pc -= instlen)
2248 if (start_pc < fence)
2249 {
2250 /* It's not clear to me why we reach this point when
2251 stop_soon, but with this test, at least we
2252 don't print out warnings for every child forked (eg, on
2253 decstation). 22apr93 rich@cygnus.com. */
2254 if (stop_soon == NO_STOP_QUIETLY)
2255 {
2256 static int blurb_printed = 0;
2257
2258 warning (_("GDB can't find the start of the function at 0x%s."),
2259 paddr_nz (pc));
2260
2261 if (!blurb_printed)
2262 {
2263 /* This actually happens frequently in embedded
2264 development, when you first connect to a board
2265 and your stack pointer and pc are nowhere in
2266 particular. This message needs to give people
2267 in that situation enough information to
2268 determine that it's no big deal. */
2269 printf_filtered ("\n\
2270 GDB is unable to find the start of the function at 0x%s\n\
2271 and thus can't determine the size of that function's stack frame.\n\
2272 This means that GDB may be unable to access that stack frame, or\n\
2273 the frames below it.\n\
2274 This problem is most likely caused by an invalid program counter or\n\
2275 stack pointer.\n\
2276 However, if you think GDB should simply search farther back\n\
2277 from 0x%s for code which looks like the beginning of a\n\
2278 function, you can increase the range of the search using the `set\n\
2279 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2280 blurb_printed = 1;
2281 }
2282 }
2283
2284 return 0;
2285 }
2286 else if (mips_pc_is_mips16 (start_pc))
2287 {
2288 unsigned short inst;
2289
2290 /* On MIPS16, any one of the following is likely to be the
2291 start of a function:
2292 entry
2293 addiu sp,-n
2294 daddiu sp,-n
2295 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2296 inst = mips_fetch_instruction (start_pc);
2297 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2298 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2299 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2300 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2301 break;
2302 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2303 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2304 seen_adjsp = 1;
2305 else
2306 seen_adjsp = 0;
2307 }
2308 else if (mips_about_to_return (start_pc))
2309 {
2310 /* Skip return and its delay slot. */
2311 start_pc += 2 * MIPS_INSN32_SIZE;
2312 break;
2313 }
2314
2315 return start_pc;
2316 }
2317
2318 struct mips_objfile_private
2319 {
2320 bfd_size_type size;
2321 char *contents;
2322 };
2323
2324 /* According to the current ABI, should the type be passed in a
2325 floating-point register (assuming that there is space)? When there
2326 is no FPU, FP are not even considered as possibile candidates for
2327 FP registers and, consequently this returns false - forces FP
2328 arguments into integer registers. */
2329
2330 static int
2331 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2332 {
2333 return ((typecode == TYPE_CODE_FLT
2334 || (MIPS_EABI
2335 && (typecode == TYPE_CODE_STRUCT
2336 || typecode == TYPE_CODE_UNION)
2337 && TYPE_NFIELDS (arg_type) == 1
2338 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2339 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2340 }
2341
2342 /* On o32, argument passing in GPRs depends on the alignment of the type being
2343 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2344
2345 static int
2346 mips_type_needs_double_align (struct type *type)
2347 {
2348 enum type_code typecode = TYPE_CODE (type);
2349
2350 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2351 return 1;
2352 else if (typecode == TYPE_CODE_STRUCT)
2353 {
2354 if (TYPE_NFIELDS (type) < 1)
2355 return 0;
2356 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2357 }
2358 else if (typecode == TYPE_CODE_UNION)
2359 {
2360 int i, n;
2361
2362 n = TYPE_NFIELDS (type);
2363 for (i = 0; i < n; i++)
2364 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2365 return 1;
2366 return 0;
2367 }
2368 return 0;
2369 }
2370
2371 /* Adjust the address downward (direction of stack growth) so that it
2372 is correctly aligned for a new stack frame. */
2373 static CORE_ADDR
2374 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2375 {
2376 return align_down (addr, 16);
2377 }
2378
2379 static CORE_ADDR
2380 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2381 struct regcache *regcache, CORE_ADDR bp_addr,
2382 int nargs, struct value **args, CORE_ADDR sp,
2383 int struct_return, CORE_ADDR struct_addr)
2384 {
2385 int argreg;
2386 int float_argreg;
2387 int argnum;
2388 int len = 0;
2389 int stack_offset = 0;
2390 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2391 CORE_ADDR func_addr = find_function_addr (function, NULL);
2392
2393 /* For shared libraries, "t9" needs to point at the function
2394 address. */
2395 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2396
2397 /* Set the return address register to point to the entry point of
2398 the program, where a breakpoint lies in wait. */
2399 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2400
2401 /* First ensure that the stack and structure return address (if any)
2402 are properly aligned. The stack has to be at least 64-bit
2403 aligned even on 32-bit machines, because doubles must be 64-bit
2404 aligned. For n32 and n64, stack frames need to be 128-bit
2405 aligned, so we round to this widest known alignment. */
2406
2407 sp = align_down (sp, 16);
2408 struct_addr = align_down (struct_addr, 16);
2409
2410 /* Now make space on the stack for the args. We allocate more
2411 than necessary for EABI, because the first few arguments are
2412 passed in registers, but that's OK. */
2413 for (argnum = 0; argnum < nargs; argnum++)
2414 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2415 mips_stack_argsize (gdbarch));
2416 sp -= align_up (len, 16);
2417
2418 if (mips_debug)
2419 fprintf_unfiltered (gdb_stdlog,
2420 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2421 paddr_nz (sp), (long) align_up (len, 16));
2422
2423 /* Initialize the integer and float register pointers. */
2424 argreg = MIPS_A0_REGNUM;
2425 float_argreg = mips_fpa0_regnum (current_gdbarch);
2426
2427 /* The struct_return pointer occupies the first parameter-passing reg. */
2428 if (struct_return)
2429 {
2430 if (mips_debug)
2431 fprintf_unfiltered (gdb_stdlog,
2432 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2433 argreg, paddr_nz (struct_addr));
2434 write_register (argreg++, struct_addr);
2435 }
2436
2437 /* Now load as many as possible of the first arguments into
2438 registers, and push the rest onto the stack. Loop thru args
2439 from first to last. */
2440 for (argnum = 0; argnum < nargs; argnum++)
2441 {
2442 const gdb_byte *val;
2443 gdb_byte valbuf[MAX_REGISTER_SIZE];
2444 struct value *arg = args[argnum];
2445 struct type *arg_type = check_typedef (value_type (arg));
2446 int len = TYPE_LENGTH (arg_type);
2447 enum type_code typecode = TYPE_CODE (arg_type);
2448
2449 if (mips_debug)
2450 fprintf_unfiltered (gdb_stdlog,
2451 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2452 argnum + 1, len, (int) typecode);
2453
2454 /* The EABI passes structures that do not fit in a register by
2455 reference. */
2456 if (len > mips_abi_regsize (gdbarch)
2457 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2458 {
2459 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2460 VALUE_ADDRESS (arg));
2461 typecode = TYPE_CODE_PTR;
2462 len = mips_abi_regsize (gdbarch);
2463 val = valbuf;
2464 if (mips_debug)
2465 fprintf_unfiltered (gdb_stdlog, " push");
2466 }
2467 else
2468 val = value_contents (arg);
2469
2470 /* 32-bit ABIs always start floating point arguments in an
2471 even-numbered floating point register. Round the FP register
2472 up before the check to see if there are any FP registers
2473 left. Non MIPS_EABI targets also pass the FP in the integer
2474 registers so also round up normal registers. */
2475 if (mips_abi_regsize (gdbarch) < 8
2476 && fp_register_arg_p (typecode, arg_type))
2477 {
2478 if ((float_argreg & 1))
2479 float_argreg++;
2480 }
2481
2482 /* Floating point arguments passed in registers have to be
2483 treated specially. On 32-bit architectures, doubles
2484 are passed in register pairs; the even register gets
2485 the low word, and the odd register gets the high word.
2486 On non-EABI processors, the first two floating point arguments are
2487 also copied to general registers, because MIPS16 functions
2488 don't use float registers for arguments. This duplication of
2489 arguments in general registers can't hurt non-MIPS16 functions
2490 because those registers are normally skipped. */
2491 /* MIPS_EABI squeezes a struct that contains a single floating
2492 point value into an FP register instead of pushing it onto the
2493 stack. */
2494 if (fp_register_arg_p (typecode, arg_type)
2495 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2496 {
2497 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
2498 {
2499 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2500 unsigned long regval;
2501
2502 /* Write the low word of the double to the even register(s). */
2503 regval = extract_unsigned_integer (val + low_offset, 4);
2504 if (mips_debug)
2505 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2506 float_argreg, phex (regval, 4));
2507 write_register (float_argreg++, regval);
2508
2509 /* Write the high word of the double to the odd register(s). */
2510 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2511 if (mips_debug)
2512 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2513 float_argreg, phex (regval, 4));
2514 write_register (float_argreg++, regval);
2515 }
2516 else
2517 {
2518 /* This is a floating point value that fits entirely
2519 in a single register. */
2520 /* On 32 bit ABI's the float_argreg is further adjusted
2521 above to ensure that it is even register aligned. */
2522 LONGEST regval = extract_unsigned_integer (val, len);
2523 if (mips_debug)
2524 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2525 float_argreg, phex (regval, len));
2526 write_register (float_argreg++, regval);
2527 }
2528 }
2529 else
2530 {
2531 /* Copy the argument to general registers or the stack in
2532 register-sized pieces. Large arguments are split between
2533 registers and stack. */
2534 /* Note: structs whose size is not a multiple of
2535 mips_abi_regsize() are treated specially: Irix cc passes
2536 them in registers where gcc sometimes puts them on the
2537 stack. For maximum compatibility, we will put them in
2538 both places. */
2539 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2540 && (len % mips_abi_regsize (gdbarch) != 0));
2541
2542 /* Note: Floating-point values that didn't fit into an FP
2543 register are only written to memory. */
2544 while (len > 0)
2545 {
2546 /* Remember if the argument was written to the stack. */
2547 int stack_used_p = 0;
2548 int partial_len = (len < mips_abi_regsize (gdbarch)
2549 ? len : mips_abi_regsize (gdbarch));
2550
2551 if (mips_debug)
2552 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2553 partial_len);
2554
2555 /* Write this portion of the argument to the stack. */
2556 if (argreg > MIPS_LAST_ARG_REGNUM
2557 || odd_sized_struct
2558 || fp_register_arg_p (typecode, arg_type))
2559 {
2560 /* Should shorter than int integer values be
2561 promoted to int before being stored? */
2562 int longword_offset = 0;
2563 CORE_ADDR addr;
2564 stack_used_p = 1;
2565 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2566 {
2567 if (mips_stack_argsize (gdbarch) == 8
2568 && (typecode == TYPE_CODE_INT
2569 || typecode == TYPE_CODE_PTR
2570 || typecode == TYPE_CODE_FLT) && len <= 4)
2571 longword_offset = mips_stack_argsize (gdbarch) - len;
2572 else if ((typecode == TYPE_CODE_STRUCT
2573 || typecode == TYPE_CODE_UNION)
2574 && (TYPE_LENGTH (arg_type)
2575 < mips_stack_argsize (gdbarch)))
2576 longword_offset = mips_stack_argsize (gdbarch) - len;
2577 }
2578
2579 if (mips_debug)
2580 {
2581 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2582 paddr_nz (stack_offset));
2583 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2584 paddr_nz (longword_offset));
2585 }
2586
2587 addr = sp + stack_offset + longword_offset;
2588
2589 if (mips_debug)
2590 {
2591 int i;
2592 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2593 paddr_nz (addr));
2594 for (i = 0; i < partial_len; i++)
2595 {
2596 fprintf_unfiltered (gdb_stdlog, "%02x",
2597 val[i] & 0xff);
2598 }
2599 }
2600 write_memory (addr, val, partial_len);
2601 }
2602
2603 /* Note!!! This is NOT an else clause. Odd sized
2604 structs may go thru BOTH paths. Floating point
2605 arguments will not. */
2606 /* Write this portion of the argument to a general
2607 purpose register. */
2608 if (argreg <= MIPS_LAST_ARG_REGNUM
2609 && !fp_register_arg_p (typecode, arg_type))
2610 {
2611 LONGEST regval =
2612 extract_unsigned_integer (val, partial_len);
2613
2614 if (mips_debug)
2615 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2616 argreg,
2617 phex (regval,
2618 mips_abi_regsize (gdbarch)));
2619 write_register (argreg, regval);
2620 argreg++;
2621 }
2622
2623 len -= partial_len;
2624 val += partial_len;
2625
2626 /* Compute the the offset into the stack at which we
2627 will copy the next parameter.
2628
2629 In the new EABI (and the NABI32), the stack_offset
2630 only needs to be adjusted when it has been used. */
2631
2632 if (stack_used_p)
2633 stack_offset += align_up (partial_len,
2634 mips_stack_argsize (gdbarch));
2635 }
2636 }
2637 if (mips_debug)
2638 fprintf_unfiltered (gdb_stdlog, "\n");
2639 }
2640
2641 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2642
2643 /* Return adjusted stack pointer. */
2644 return sp;
2645 }
2646
2647 /* Determin the return value convention being used. */
2648
2649 static enum return_value_convention
2650 mips_eabi_return_value (struct gdbarch *gdbarch,
2651 struct type *type, struct regcache *regcache,
2652 gdb_byte *readbuf, const gdb_byte *writebuf)
2653 {
2654 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2655 return RETURN_VALUE_STRUCT_CONVENTION;
2656 if (readbuf)
2657 memset (readbuf, 0, TYPE_LENGTH (type));
2658 return RETURN_VALUE_REGISTER_CONVENTION;
2659 }
2660
2661
2662 /* N32/N64 ABI stuff. */
2663
2664 static CORE_ADDR
2665 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2666 struct regcache *regcache, CORE_ADDR bp_addr,
2667 int nargs, struct value **args, CORE_ADDR sp,
2668 int struct_return, CORE_ADDR struct_addr)
2669 {
2670 int argreg;
2671 int float_argreg;
2672 int argnum;
2673 int len = 0;
2674 int stack_offset = 0;
2675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2676 CORE_ADDR func_addr = find_function_addr (function, NULL);
2677
2678 /* For shared libraries, "t9" needs to point at the function
2679 address. */
2680 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2681
2682 /* Set the return address register to point to the entry point of
2683 the program, where a breakpoint lies in wait. */
2684 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2685
2686 /* First ensure that the stack and structure return address (if any)
2687 are properly aligned. The stack has to be at least 64-bit
2688 aligned even on 32-bit machines, because doubles must be 64-bit
2689 aligned. For n32 and n64, stack frames need to be 128-bit
2690 aligned, so we round to this widest known alignment. */
2691
2692 sp = align_down (sp, 16);
2693 struct_addr = align_down (struct_addr, 16);
2694
2695 /* Now make space on the stack for the args. */
2696 for (argnum = 0; argnum < nargs; argnum++)
2697 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2698 mips_stack_argsize (gdbarch));
2699 sp -= align_up (len, 16);
2700
2701 if (mips_debug)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2704 paddr_nz (sp), (long) align_up (len, 16));
2705
2706 /* Initialize the integer and float register pointers. */
2707 argreg = MIPS_A0_REGNUM;
2708 float_argreg = mips_fpa0_regnum (current_gdbarch);
2709
2710 /* The struct_return pointer occupies the first parameter-passing reg. */
2711 if (struct_return)
2712 {
2713 if (mips_debug)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2716 argreg, paddr_nz (struct_addr));
2717 write_register (argreg++, struct_addr);
2718 }
2719
2720 /* Now load as many as possible of the first arguments into
2721 registers, and push the rest onto the stack. Loop thru args
2722 from first to last. */
2723 for (argnum = 0; argnum < nargs; argnum++)
2724 {
2725 const gdb_byte *val;
2726 struct value *arg = args[argnum];
2727 struct type *arg_type = check_typedef (value_type (arg));
2728 int len = TYPE_LENGTH (arg_type);
2729 enum type_code typecode = TYPE_CODE (arg_type);
2730
2731 if (mips_debug)
2732 fprintf_unfiltered (gdb_stdlog,
2733 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2734 argnum + 1, len, (int) typecode);
2735
2736 val = value_contents (arg);
2737
2738 if (fp_register_arg_p (typecode, arg_type)
2739 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2740 {
2741 /* This is a floating point value that fits entirely
2742 in a single register. */
2743 /* On 32 bit ABI's the float_argreg is further adjusted
2744 above to ensure that it is even register aligned. */
2745 LONGEST regval = extract_unsigned_integer (val, len);
2746 if (mips_debug)
2747 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2748 float_argreg, phex (regval, len));
2749 write_register (float_argreg++, regval);
2750
2751 if (mips_debug)
2752 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2753 argreg, phex (regval, len));
2754 write_register (argreg, regval);
2755 argreg += 1;
2756 }
2757 else
2758 {
2759 /* Copy the argument to general registers or the stack in
2760 register-sized pieces. Large arguments are split between
2761 registers and stack. */
2762 /* Note: structs whose size is not a multiple of
2763 mips_abi_regsize() are treated specially: Irix cc passes
2764 them in registers where gcc sometimes puts them on the
2765 stack. For maximum compatibility, we will put them in
2766 both places. */
2767 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2768 && (len % mips_abi_regsize (gdbarch) != 0));
2769 /* Note: Floating-point values that didn't fit into an FP
2770 register are only written to memory. */
2771 while (len > 0)
2772 {
2773 /* Rememer if the argument was written to the stack. */
2774 int stack_used_p = 0;
2775 int partial_len = (len < mips_abi_regsize (gdbarch)
2776 ? len : mips_abi_regsize (gdbarch));
2777
2778 if (mips_debug)
2779 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2780 partial_len);
2781
2782 /* Write this portion of the argument to the stack. */
2783 if (argreg > MIPS_LAST_ARG_REGNUM
2784 || odd_sized_struct
2785 || fp_register_arg_p (typecode, arg_type))
2786 {
2787 /* Should shorter than int integer values be
2788 promoted to int before being stored? */
2789 int longword_offset = 0;
2790 CORE_ADDR addr;
2791 stack_used_p = 1;
2792 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2793 {
2794 if (mips_stack_argsize (gdbarch) == 8
2795 && (typecode == TYPE_CODE_INT
2796 || typecode == TYPE_CODE_PTR
2797 || typecode == TYPE_CODE_FLT) && len <= 4)
2798 longword_offset = mips_stack_argsize (gdbarch) - len;
2799 }
2800
2801 if (mips_debug)
2802 {
2803 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2804 paddr_nz (stack_offset));
2805 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2806 paddr_nz (longword_offset));
2807 }
2808
2809 addr = sp + stack_offset + longword_offset;
2810
2811 if (mips_debug)
2812 {
2813 int i;
2814 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2815 paddr_nz (addr));
2816 for (i = 0; i < partial_len; i++)
2817 {
2818 fprintf_unfiltered (gdb_stdlog, "%02x",
2819 val[i] & 0xff);
2820 }
2821 }
2822 write_memory (addr, val, partial_len);
2823 }
2824
2825 /* Note!!! This is NOT an else clause. Odd sized
2826 structs may go thru BOTH paths. Floating point
2827 arguments will not. */
2828 /* Write this portion of the argument to a general
2829 purpose register. */
2830 if (argreg <= MIPS_LAST_ARG_REGNUM
2831 && !fp_register_arg_p (typecode, arg_type))
2832 {
2833 LONGEST regval =
2834 extract_unsigned_integer (val, partial_len);
2835
2836 /* A non-floating-point argument being passed in a
2837 general register. If a struct or union, and if
2838 the remaining length is smaller than the register
2839 size, we have to adjust the register value on
2840 big endian targets.
2841
2842 It does not seem to be necessary to do the
2843 same for integral types.
2844
2845 cagney/2001-07-23: gdb/179: Also, GCC, when
2846 outputting LE O32 with sizeof (struct) <
2847 mips_abi_regsize(), generates a left shift as
2848 part of storing the argument in a register a
2849 register (the left shift isn't generated when
2850 sizeof (struct) >= mips_abi_regsize()). Since
2851 it is quite possible that this is GCC
2852 contradicting the LE/O32 ABI, GDB has not been
2853 adjusted to accommodate this. Either someone
2854 needs to demonstrate that the LE/O32 ABI
2855 specifies such a left shift OR this new ABI gets
2856 identified as such and GDB gets tweaked
2857 accordingly. */
2858
2859 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2860 && partial_len < mips_abi_regsize (gdbarch)
2861 && (typecode == TYPE_CODE_STRUCT ||
2862 typecode == TYPE_CODE_UNION))
2863 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2864 TARGET_CHAR_BIT);
2865
2866 if (mips_debug)
2867 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2868 argreg,
2869 phex (regval,
2870 mips_abi_regsize (gdbarch)));
2871 write_register (argreg, regval);
2872 argreg++;
2873 }
2874
2875 len -= partial_len;
2876 val += partial_len;
2877
2878 /* Compute the the offset into the stack at which we
2879 will copy the next parameter.
2880
2881 In N32 (N64?), the stack_offset only needs to be
2882 adjusted when it has been used. */
2883
2884 if (stack_used_p)
2885 stack_offset += align_up (partial_len,
2886 mips_stack_argsize (gdbarch));
2887 }
2888 }
2889 if (mips_debug)
2890 fprintf_unfiltered (gdb_stdlog, "\n");
2891 }
2892
2893 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2894
2895 /* Return adjusted stack pointer. */
2896 return sp;
2897 }
2898
2899 static enum return_value_convention
2900 mips_n32n64_return_value (struct gdbarch *gdbarch,
2901 struct type *type, struct regcache *regcache,
2902 gdb_byte *readbuf, const gdb_byte *writebuf)
2903 {
2904 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2905 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2906 || TYPE_CODE (type) == TYPE_CODE_UNION
2907 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2908 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2909 return RETURN_VALUE_STRUCT_CONVENTION;
2910 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2911 && TYPE_LENGTH (type) == 16
2912 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2913 {
2914 /* A 128-bit floating-point value fills both $f0 and $f2. The
2915 two registers are used in the same as memory order, so the
2916 eight bytes with the lower memory address are in $f0. */
2917 if (mips_debug)
2918 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2919 mips_xfer_register (regcache,
2920 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2921 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2922 mips_xfer_register (regcache,
2923 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2924 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2925 writebuf ? writebuf + 8 : writebuf, 0);
2926 return RETURN_VALUE_REGISTER_CONVENTION;
2927 }
2928 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2929 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2930 {
2931 /* A floating-point value belongs in the least significant part
2932 of FP0. */
2933 if (mips_debug)
2934 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2935 mips_xfer_register (regcache,
2936 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2937 TYPE_LENGTH (type),
2938 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2939 return RETURN_VALUE_REGISTER_CONVENTION;
2940 }
2941 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2942 && TYPE_NFIELDS (type) <= 2
2943 && TYPE_NFIELDS (type) >= 1
2944 && ((TYPE_NFIELDS (type) == 1
2945 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2946 == TYPE_CODE_FLT))
2947 || (TYPE_NFIELDS (type) == 2
2948 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2949 == TYPE_CODE_FLT)
2950 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2951 == TYPE_CODE_FLT)))
2952 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2953 {
2954 /* A struct that contains one or two floats. Each value is part
2955 in the least significant part of their floating point
2956 register.. */
2957 int regnum;
2958 int field;
2959 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2960 field < TYPE_NFIELDS (type); field++, regnum += 2)
2961 {
2962 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2963 / TARGET_CHAR_BIT);
2964 if (mips_debug)
2965 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2966 offset);
2967 mips_xfer_register (regcache, NUM_REGS + regnum,
2968 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2969 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2970 }
2971 return RETURN_VALUE_REGISTER_CONVENTION;
2972 }
2973 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2974 || TYPE_CODE (type) == TYPE_CODE_UNION)
2975 {
2976 /* A structure or union. Extract the left justified value,
2977 regardless of the byte order. I.e. DO NOT USE
2978 mips_xfer_lower. */
2979 int offset;
2980 int regnum;
2981 for (offset = 0, regnum = MIPS_V0_REGNUM;
2982 offset < TYPE_LENGTH (type);
2983 offset += register_size (current_gdbarch, regnum), regnum++)
2984 {
2985 int xfer = register_size (current_gdbarch, regnum);
2986 if (offset + xfer > TYPE_LENGTH (type))
2987 xfer = TYPE_LENGTH (type) - offset;
2988 if (mips_debug)
2989 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2990 offset, xfer, regnum);
2991 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2992 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2993 }
2994 return RETURN_VALUE_REGISTER_CONVENTION;
2995 }
2996 else
2997 {
2998 /* A scalar extract each part but least-significant-byte
2999 justified. */
3000 int offset;
3001 int regnum;
3002 for (offset = 0, regnum = MIPS_V0_REGNUM;
3003 offset < TYPE_LENGTH (type);
3004 offset += register_size (current_gdbarch, regnum), regnum++)
3005 {
3006 int xfer = register_size (current_gdbarch, regnum);
3007 if (offset + xfer > TYPE_LENGTH (type))
3008 xfer = TYPE_LENGTH (type) - offset;
3009 if (mips_debug)
3010 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3011 offset, xfer, regnum);
3012 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3013 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3014 }
3015 return RETURN_VALUE_REGISTER_CONVENTION;
3016 }
3017 }
3018
3019 /* O32 ABI stuff. */
3020
3021 static CORE_ADDR
3022 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3023 struct regcache *regcache, CORE_ADDR bp_addr,
3024 int nargs, struct value **args, CORE_ADDR sp,
3025 int struct_return, CORE_ADDR struct_addr)
3026 {
3027 int argreg;
3028 int float_argreg;
3029 int argnum;
3030 int len = 0;
3031 int stack_offset = 0;
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033 CORE_ADDR func_addr = find_function_addr (function, NULL);
3034
3035 /* For shared libraries, "t9" needs to point at the function
3036 address. */
3037 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3038
3039 /* Set the return address register to point to the entry point of
3040 the program, where a breakpoint lies in wait. */
3041 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3042
3043 /* First ensure that the stack and structure return address (if any)
3044 are properly aligned. The stack has to be at least 64-bit
3045 aligned even on 32-bit machines, because doubles must be 64-bit
3046 aligned. For n32 and n64, stack frames need to be 128-bit
3047 aligned, so we round to this widest known alignment. */
3048
3049 sp = align_down (sp, 16);
3050 struct_addr = align_down (struct_addr, 16);
3051
3052 /* Now make space on the stack for the args. */
3053 for (argnum = 0; argnum < nargs; argnum++)
3054 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3055 mips_stack_argsize (gdbarch));
3056 sp -= align_up (len, 16);
3057
3058 if (mips_debug)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3061 paddr_nz (sp), (long) align_up (len, 16));
3062
3063 /* Initialize the integer and float register pointers. */
3064 argreg = MIPS_A0_REGNUM;
3065 float_argreg = mips_fpa0_regnum (current_gdbarch);
3066
3067 /* The struct_return pointer occupies the first parameter-passing reg. */
3068 if (struct_return)
3069 {
3070 if (mips_debug)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3073 argreg, paddr_nz (struct_addr));
3074 write_register (argreg++, struct_addr);
3075 stack_offset += mips_stack_argsize (gdbarch);
3076 }
3077
3078 /* Now load as many as possible of the first arguments into
3079 registers, and push the rest onto the stack. Loop thru args
3080 from first to last. */
3081 for (argnum = 0; argnum < nargs; argnum++)
3082 {
3083 const gdb_byte *val;
3084 struct value *arg = args[argnum];
3085 struct type *arg_type = check_typedef (value_type (arg));
3086 int len = TYPE_LENGTH (arg_type);
3087 enum type_code typecode = TYPE_CODE (arg_type);
3088
3089 if (mips_debug)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "mips_o32_push_dummy_call: %d len=%d type=%d",
3092 argnum + 1, len, (int) typecode);
3093
3094 val = value_contents (arg);
3095
3096 /* 32-bit ABIs always start floating point arguments in an
3097 even-numbered floating point register. Round the FP register
3098 up before the check to see if there are any FP registers
3099 left. O32/O64 targets also pass the FP in the integer
3100 registers so also round up normal registers. */
3101 if (mips_abi_regsize (gdbarch) < 8
3102 && fp_register_arg_p (typecode, arg_type))
3103 {
3104 if ((float_argreg & 1))
3105 float_argreg++;
3106 }
3107
3108 /* Floating point arguments passed in registers have to be
3109 treated specially. On 32-bit architectures, doubles
3110 are passed in register pairs; the even register gets
3111 the low word, and the odd register gets the high word.
3112 On O32/O64, the first two floating point arguments are
3113 also copied to general registers, because MIPS16 functions
3114 don't use float registers for arguments. This duplication of
3115 arguments in general registers can't hurt non-MIPS16 functions
3116 because those registers are normally skipped. */
3117
3118 if (fp_register_arg_p (typecode, arg_type)
3119 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3120 {
3121 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3122 {
3123 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3124 unsigned long regval;
3125
3126 /* Write the low word of the double to the even register(s). */
3127 regval = extract_unsigned_integer (val + low_offset, 4);
3128 if (mips_debug)
3129 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3130 float_argreg, phex (regval, 4));
3131 write_register (float_argreg++, regval);
3132 if (mips_debug)
3133 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3134 argreg, phex (regval, 4));
3135 write_register (argreg++, regval);
3136
3137 /* Write the high word of the double to the odd register(s). */
3138 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3139 if (mips_debug)
3140 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3141 float_argreg, phex (regval, 4));
3142 write_register (float_argreg++, regval);
3143
3144 if (mips_debug)
3145 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3146 argreg, phex (regval, 4));
3147 write_register (argreg++, regval);
3148 }
3149 else
3150 {
3151 /* This is a floating point value that fits entirely
3152 in a single register. */
3153 /* On 32 bit ABI's the float_argreg is further adjusted
3154 above to ensure that it is even register aligned. */
3155 LONGEST regval = extract_unsigned_integer (val, len);
3156 if (mips_debug)
3157 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3158 float_argreg, phex (regval, len));
3159 write_register (float_argreg++, regval);
3160 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3161 registers for each argument. The below is (my
3162 guess) to ensure that the corresponding integer
3163 register has reserved the same space. */
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3166 argreg, phex (regval, len));
3167 write_register (argreg, regval);
3168 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3169 }
3170 /* Reserve space for the FP register. */
3171 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3172 }
3173 else
3174 {
3175 /* Copy the argument to general registers or the stack in
3176 register-sized pieces. Large arguments are split between
3177 registers and stack. */
3178 /* Note: structs whose size is not a multiple of
3179 mips_abi_regsize() are treated specially: Irix cc passes
3180 them in registers where gcc sometimes puts them on the
3181 stack. For maximum compatibility, we will put them in
3182 both places. */
3183 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3184 && (len % mips_abi_regsize (gdbarch) != 0));
3185 /* Structures should be aligned to eight bytes (even arg registers)
3186 on MIPS_ABI_O32, if their first member has double precision. */
3187 if (mips_abi_regsize (gdbarch) < 8
3188 && mips_type_needs_double_align (arg_type))
3189 {
3190 if ((argreg & 1))
3191 argreg++;
3192 }
3193 /* Note: Floating-point values that didn't fit into an FP
3194 register are only written to memory. */
3195 while (len > 0)
3196 {
3197 /* Remember if the argument was written to the stack. */
3198 int stack_used_p = 0;
3199 int partial_len = (len < mips_abi_regsize (gdbarch)
3200 ? len : mips_abi_regsize (gdbarch));
3201
3202 if (mips_debug)
3203 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3204 partial_len);
3205
3206 /* Write this portion of the argument to the stack. */
3207 if (argreg > MIPS_LAST_ARG_REGNUM
3208 || odd_sized_struct
3209 || fp_register_arg_p (typecode, arg_type))
3210 {
3211 /* Should shorter than int integer values be
3212 promoted to int before being stored? */
3213 int longword_offset = 0;
3214 CORE_ADDR addr;
3215 stack_used_p = 1;
3216 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3217 {
3218 if (mips_stack_argsize (gdbarch) == 8
3219 && (typecode == TYPE_CODE_INT
3220 || typecode == TYPE_CODE_PTR
3221 || typecode == TYPE_CODE_FLT) && len <= 4)
3222 longword_offset = mips_stack_argsize (gdbarch) - len;
3223 }
3224
3225 if (mips_debug)
3226 {
3227 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3228 paddr_nz (stack_offset));
3229 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3230 paddr_nz (longword_offset));
3231 }
3232
3233 addr = sp + stack_offset + longword_offset;
3234
3235 if (mips_debug)
3236 {
3237 int i;
3238 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3239 paddr_nz (addr));
3240 for (i = 0; i < partial_len; i++)
3241 {
3242 fprintf_unfiltered (gdb_stdlog, "%02x",
3243 val[i] & 0xff);
3244 }
3245 }
3246 write_memory (addr, val, partial_len);
3247 }
3248
3249 /* Note!!! This is NOT an else clause. Odd sized
3250 structs may go thru BOTH paths. Floating point
3251 arguments will not. */
3252 /* Write this portion of the argument to a general
3253 purpose register. */
3254 if (argreg <= MIPS_LAST_ARG_REGNUM
3255 && !fp_register_arg_p (typecode, arg_type))
3256 {
3257 LONGEST regval = extract_signed_integer (val, partial_len);
3258 /* Value may need to be sign extended, because
3259 mips_isa_regsize() != mips_abi_regsize(). */
3260
3261 /* A non-floating-point argument being passed in a
3262 general register. If a struct or union, and if
3263 the remaining length is smaller than the register
3264 size, we have to adjust the register value on
3265 big endian targets.
3266
3267 It does not seem to be necessary to do the
3268 same for integral types.
3269
3270 Also don't do this adjustment on O64 binaries.
3271
3272 cagney/2001-07-23: gdb/179: Also, GCC, when
3273 outputting LE O32 with sizeof (struct) <
3274 mips_abi_regsize(), generates a left shift as
3275 part of storing the argument in a register a
3276 register (the left shift isn't generated when
3277 sizeof (struct) >= mips_abi_regsize()). Since
3278 it is quite possible that this is GCC
3279 contradicting the LE/O32 ABI, GDB has not been
3280 adjusted to accommodate this. Either someone
3281 needs to demonstrate that the LE/O32 ABI
3282 specifies such a left shift OR this new ABI gets
3283 identified as such and GDB gets tweaked
3284 accordingly. */
3285
3286 if (mips_abi_regsize (gdbarch) < 8
3287 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3288 && partial_len < mips_abi_regsize (gdbarch)
3289 && (typecode == TYPE_CODE_STRUCT ||
3290 typecode == TYPE_CODE_UNION))
3291 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3292 TARGET_CHAR_BIT);
3293
3294 if (mips_debug)
3295 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3296 argreg,
3297 phex (regval,
3298 mips_abi_regsize (gdbarch)));
3299 write_register (argreg, regval);
3300 argreg++;
3301
3302 /* Prevent subsequent floating point arguments from
3303 being passed in floating point registers. */
3304 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3305 }
3306
3307 len -= partial_len;
3308 val += partial_len;
3309
3310 /* Compute the the offset into the stack at which we
3311 will copy the next parameter.
3312
3313 In older ABIs, the caller reserved space for
3314 registers that contained arguments. This was loosely
3315 refered to as their "home". Consequently, space is
3316 always allocated. */
3317
3318 stack_offset += align_up (partial_len,
3319 mips_stack_argsize (gdbarch));
3320 }
3321 }
3322 if (mips_debug)
3323 fprintf_unfiltered (gdb_stdlog, "\n");
3324 }
3325
3326 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3327
3328 /* Return adjusted stack pointer. */
3329 return sp;
3330 }
3331
3332 static enum return_value_convention
3333 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3334 struct regcache *regcache,
3335 gdb_byte *readbuf, const gdb_byte *writebuf)
3336 {
3337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3338
3339 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3340 || TYPE_CODE (type) == TYPE_CODE_UNION
3341 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3342 return RETURN_VALUE_STRUCT_CONVENTION;
3343 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3344 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3345 {
3346 /* A single-precision floating-point value. It fits in the
3347 least significant part of FP0. */
3348 if (mips_debug)
3349 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3350 mips_xfer_register (regcache,
3351 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3352 TYPE_LENGTH (type),
3353 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3354 return RETURN_VALUE_REGISTER_CONVENTION;
3355 }
3356 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3357 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3358 {
3359 /* A double-precision floating-point value. The most
3360 significant part goes in FP1, and the least significant in
3361 FP0. */
3362 if (mips_debug)
3363 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3364 switch (TARGET_BYTE_ORDER)
3365 {
3366 case BFD_ENDIAN_LITTLE:
3367 mips_xfer_register (regcache,
3368 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3369 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3370 mips_xfer_register (regcache,
3371 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3372 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3373 break;
3374 case BFD_ENDIAN_BIG:
3375 mips_xfer_register (regcache,
3376 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3377 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3378 mips_xfer_register (regcache,
3379 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3380 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3381 break;
3382 default:
3383 internal_error (__FILE__, __LINE__, _("bad switch"));
3384 }
3385 return RETURN_VALUE_REGISTER_CONVENTION;
3386 }
3387 #if 0
3388 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3389 && TYPE_NFIELDS (type) <= 2
3390 && TYPE_NFIELDS (type) >= 1
3391 && ((TYPE_NFIELDS (type) == 1
3392 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3393 == TYPE_CODE_FLT))
3394 || (TYPE_NFIELDS (type) == 2
3395 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3396 == TYPE_CODE_FLT)
3397 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3398 == TYPE_CODE_FLT)))
3399 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3400 {
3401 /* A struct that contains one or two floats. Each value is part
3402 in the least significant part of their floating point
3403 register.. */
3404 gdb_byte reg[MAX_REGISTER_SIZE];
3405 int regnum;
3406 int field;
3407 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3408 field < TYPE_NFIELDS (type); field++, regnum += 2)
3409 {
3410 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3411 / TARGET_CHAR_BIT);
3412 if (mips_debug)
3413 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3414 offset);
3415 mips_xfer_register (regcache, NUM_REGS + regnum,
3416 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3417 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3418 }
3419 return RETURN_VALUE_REGISTER_CONVENTION;
3420 }
3421 #endif
3422 #if 0
3423 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3424 || TYPE_CODE (type) == TYPE_CODE_UNION)
3425 {
3426 /* A structure or union. Extract the left justified value,
3427 regardless of the byte order. I.e. DO NOT USE
3428 mips_xfer_lower. */
3429 int offset;
3430 int regnum;
3431 for (offset = 0, regnum = MIPS_V0_REGNUM;
3432 offset < TYPE_LENGTH (type);
3433 offset += register_size (current_gdbarch, regnum), regnum++)
3434 {
3435 int xfer = register_size (current_gdbarch, regnum);
3436 if (offset + xfer > TYPE_LENGTH (type))
3437 xfer = TYPE_LENGTH (type) - offset;
3438 if (mips_debug)
3439 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3440 offset, xfer, regnum);
3441 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3442 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3443 }
3444 return RETURN_VALUE_REGISTER_CONVENTION;
3445 }
3446 #endif
3447 else
3448 {
3449 /* A scalar extract each part but least-significant-byte
3450 justified. o32 thinks registers are 4 byte, regardless of
3451 the ISA. mips_stack_argsize controls this. */
3452 int offset;
3453 int regnum;
3454 for (offset = 0, regnum = MIPS_V0_REGNUM;
3455 offset < TYPE_LENGTH (type);
3456 offset += mips_stack_argsize (gdbarch), regnum++)
3457 {
3458 int xfer = mips_stack_argsize (gdbarch);
3459 if (offset + xfer > TYPE_LENGTH (type))
3460 xfer = TYPE_LENGTH (type) - offset;
3461 if (mips_debug)
3462 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3463 offset, xfer, regnum);
3464 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3465 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3466 }
3467 return RETURN_VALUE_REGISTER_CONVENTION;
3468 }
3469 }
3470
3471 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3472 ABI. */
3473
3474 static CORE_ADDR
3475 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3476 struct regcache *regcache, CORE_ADDR bp_addr,
3477 int nargs,
3478 struct value **args, CORE_ADDR sp,
3479 int struct_return, CORE_ADDR struct_addr)
3480 {
3481 int argreg;
3482 int float_argreg;
3483 int argnum;
3484 int len = 0;
3485 int stack_offset = 0;
3486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3487 CORE_ADDR func_addr = find_function_addr (function, NULL);
3488
3489 /* For shared libraries, "t9" needs to point at the function
3490 address. */
3491 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3492
3493 /* Set the return address register to point to the entry point of
3494 the program, where a breakpoint lies in wait. */
3495 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3496
3497 /* First ensure that the stack and structure return address (if any)
3498 are properly aligned. The stack has to be at least 64-bit
3499 aligned even on 32-bit machines, because doubles must be 64-bit
3500 aligned. For n32 and n64, stack frames need to be 128-bit
3501 aligned, so we round to this widest known alignment. */
3502
3503 sp = align_down (sp, 16);
3504 struct_addr = align_down (struct_addr, 16);
3505
3506 /* Now make space on the stack for the args. */
3507 for (argnum = 0; argnum < nargs; argnum++)
3508 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3509 mips_stack_argsize (gdbarch));
3510 sp -= align_up (len, 16);
3511
3512 if (mips_debug)
3513 fprintf_unfiltered (gdb_stdlog,
3514 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3515 paddr_nz (sp), (long) align_up (len, 16));
3516
3517 /* Initialize the integer and float register pointers. */
3518 argreg = MIPS_A0_REGNUM;
3519 float_argreg = mips_fpa0_regnum (current_gdbarch);
3520
3521 /* The struct_return pointer occupies the first parameter-passing reg. */
3522 if (struct_return)
3523 {
3524 if (mips_debug)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3527 argreg, paddr_nz (struct_addr));
3528 write_register (argreg++, struct_addr);
3529 stack_offset += mips_stack_argsize (gdbarch);
3530 }
3531
3532 /* Now load as many as possible of the first arguments into
3533 registers, and push the rest onto the stack. Loop thru args
3534 from first to last. */
3535 for (argnum = 0; argnum < nargs; argnum++)
3536 {
3537 const gdb_byte *val;
3538 struct value *arg = args[argnum];
3539 struct type *arg_type = check_typedef (value_type (arg));
3540 int len = TYPE_LENGTH (arg_type);
3541 enum type_code typecode = TYPE_CODE (arg_type);
3542
3543 if (mips_debug)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "mips_o64_push_dummy_call: %d len=%d type=%d",
3546 argnum + 1, len, (int) typecode);
3547
3548 val = value_contents (arg);
3549
3550 /* 32-bit ABIs always start floating point arguments in an
3551 even-numbered floating point register. Round the FP register
3552 up before the check to see if there are any FP registers
3553 left. O32/O64 targets also pass the FP in the integer
3554 registers so also round up normal registers. */
3555 if (mips_abi_regsize (gdbarch) < 8
3556 && fp_register_arg_p (typecode, arg_type))
3557 {
3558 if ((float_argreg & 1))
3559 float_argreg++;
3560 }
3561
3562 /* Floating point arguments passed in registers have to be
3563 treated specially. On 32-bit architectures, doubles
3564 are passed in register pairs; the even register gets
3565 the low word, and the odd register gets the high word.
3566 On O32/O64, the first two floating point arguments are
3567 also copied to general registers, because MIPS16 functions
3568 don't use float registers for arguments. This duplication of
3569 arguments in general registers can't hurt non-MIPS16 functions
3570 because those registers are normally skipped. */
3571
3572 if (fp_register_arg_p (typecode, arg_type)
3573 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3574 {
3575 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3576 {
3577 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3578 unsigned long regval;
3579
3580 /* Write the low word of the double to the even register(s). */
3581 regval = extract_unsigned_integer (val + low_offset, 4);
3582 if (mips_debug)
3583 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3584 float_argreg, phex (regval, 4));
3585 write_register (float_argreg++, regval);
3586 if (mips_debug)
3587 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3588 argreg, phex (regval, 4));
3589 write_register (argreg++, regval);
3590
3591 /* Write the high word of the double to the odd register(s). */
3592 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3593 if (mips_debug)
3594 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3595 float_argreg, phex (regval, 4));
3596 write_register (float_argreg++, regval);
3597
3598 if (mips_debug)
3599 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3600 argreg, phex (regval, 4));
3601 write_register (argreg++, regval);
3602 }
3603 else
3604 {
3605 /* This is a floating point value that fits entirely
3606 in a single register. */
3607 /* On 32 bit ABI's the float_argreg is further adjusted
3608 above to ensure that it is even register aligned. */
3609 LONGEST regval = extract_unsigned_integer (val, len);
3610 if (mips_debug)
3611 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3612 float_argreg, phex (regval, len));
3613 write_register (float_argreg++, regval);
3614 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3615 registers for each argument. The below is (my
3616 guess) to ensure that the corresponding integer
3617 register has reserved the same space. */
3618 if (mips_debug)
3619 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3620 argreg, phex (regval, len));
3621 write_register (argreg, regval);
3622 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3623 }
3624 /* Reserve space for the FP register. */
3625 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3626 }
3627 else
3628 {
3629 /* Copy the argument to general registers or the stack in
3630 register-sized pieces. Large arguments are split between
3631 registers and stack. */
3632 /* Note: structs whose size is not a multiple of
3633 mips_abi_regsize() are treated specially: Irix cc passes
3634 them in registers where gcc sometimes puts them on the
3635 stack. For maximum compatibility, we will put them in
3636 both places. */
3637 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3638 && (len % mips_abi_regsize (gdbarch) != 0));
3639 /* Structures should be aligned to eight bytes (even arg registers)
3640 on MIPS_ABI_O32, if their first member has double precision. */
3641 if (mips_abi_regsize (gdbarch) < 8
3642 && mips_type_needs_double_align (arg_type))
3643 {
3644 if ((argreg & 1))
3645 argreg++;
3646 }
3647 /* Note: Floating-point values that didn't fit into an FP
3648 register are only written to memory. */
3649 while (len > 0)
3650 {
3651 /* Remember if the argument was written to the stack. */
3652 int stack_used_p = 0;
3653 int partial_len = (len < mips_abi_regsize (gdbarch)
3654 ? len : mips_abi_regsize (gdbarch));
3655
3656 if (mips_debug)
3657 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3658 partial_len);
3659
3660 /* Write this portion of the argument to the stack. */
3661 if (argreg > MIPS_LAST_ARG_REGNUM
3662 || odd_sized_struct
3663 || fp_register_arg_p (typecode, arg_type))
3664 {
3665 /* Should shorter than int integer values be
3666 promoted to int before being stored? */
3667 int longword_offset = 0;
3668 CORE_ADDR addr;
3669 stack_used_p = 1;
3670 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3671 {
3672 if (mips_stack_argsize (gdbarch) == 8
3673 && (typecode == TYPE_CODE_INT
3674 || typecode == TYPE_CODE_PTR
3675 || typecode == TYPE_CODE_FLT) && len <= 4)
3676 longword_offset = mips_stack_argsize (gdbarch) - len;
3677 }
3678
3679 if (mips_debug)
3680 {
3681 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3682 paddr_nz (stack_offset));
3683 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3684 paddr_nz (longword_offset));
3685 }
3686
3687 addr = sp + stack_offset + longword_offset;
3688
3689 if (mips_debug)
3690 {
3691 int i;
3692 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3693 paddr_nz (addr));
3694 for (i = 0; i < partial_len; i++)
3695 {
3696 fprintf_unfiltered (gdb_stdlog, "%02x",
3697 val[i] & 0xff);
3698 }
3699 }
3700 write_memory (addr, val, partial_len);
3701 }
3702
3703 /* Note!!! This is NOT an else clause. Odd sized
3704 structs may go thru BOTH paths. Floating point
3705 arguments will not. */
3706 /* Write this portion of the argument to a general
3707 purpose register. */
3708 if (argreg <= MIPS_LAST_ARG_REGNUM
3709 && !fp_register_arg_p (typecode, arg_type))
3710 {
3711 LONGEST regval = extract_signed_integer (val, partial_len);
3712 /* Value may need to be sign extended, because
3713 mips_isa_regsize() != mips_abi_regsize(). */
3714
3715 /* A non-floating-point argument being passed in a
3716 general register. If a struct or union, and if
3717 the remaining length is smaller than the register
3718 size, we have to adjust the register value on
3719 big endian targets.
3720
3721 It does not seem to be necessary to do the
3722 same for integral types.
3723
3724 Also don't do this adjustment on O64 binaries.
3725
3726 cagney/2001-07-23: gdb/179: Also, GCC, when
3727 outputting LE O32 with sizeof (struct) <
3728 mips_abi_regsize(), generates a left shift as
3729 part of storing the argument in a register a
3730 register (the left shift isn't generated when
3731 sizeof (struct) >= mips_abi_regsize()). Since
3732 it is quite possible that this is GCC
3733 contradicting the LE/O32 ABI, GDB has not been
3734 adjusted to accommodate this. Either someone
3735 needs to demonstrate that the LE/O32 ABI
3736 specifies such a left shift OR this new ABI gets
3737 identified as such and GDB gets tweaked
3738 accordingly. */
3739
3740 if (mips_abi_regsize (gdbarch) < 8
3741 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3742 && partial_len < mips_abi_regsize (gdbarch)
3743 && (typecode == TYPE_CODE_STRUCT ||
3744 typecode == TYPE_CODE_UNION))
3745 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3746 TARGET_CHAR_BIT);
3747
3748 if (mips_debug)
3749 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3750 argreg,
3751 phex (regval,
3752 mips_abi_regsize (gdbarch)));
3753 write_register (argreg, regval);
3754 argreg++;
3755
3756 /* Prevent subsequent floating point arguments from
3757 being passed in floating point registers. */
3758 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3759 }
3760
3761 len -= partial_len;
3762 val += partial_len;
3763
3764 /* Compute the the offset into the stack at which we
3765 will copy the next parameter.
3766
3767 In older ABIs, the caller reserved space for
3768 registers that contained arguments. This was loosely
3769 refered to as their "home". Consequently, space is
3770 always allocated. */
3771
3772 stack_offset += align_up (partial_len,
3773 mips_stack_argsize (gdbarch));
3774 }
3775 }
3776 if (mips_debug)
3777 fprintf_unfiltered (gdb_stdlog, "\n");
3778 }
3779
3780 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3781
3782 /* Return adjusted stack pointer. */
3783 return sp;
3784 }
3785
3786 static enum return_value_convention
3787 mips_o64_return_value (struct gdbarch *gdbarch,
3788 struct type *type, struct regcache *regcache,
3789 gdb_byte *readbuf, const gdb_byte *writebuf)
3790 {
3791 return RETURN_VALUE_STRUCT_CONVENTION;
3792 }
3793
3794 /* Floating point register management.
3795
3796 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3797 64bit operations, these early MIPS cpus treat fp register pairs
3798 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3799 registers and offer a compatibility mode that emulates the MIPS2 fp
3800 model. When operating in MIPS2 fp compat mode, later cpu's split
3801 double precision floats into two 32-bit chunks and store them in
3802 consecutive fp regs. To display 64-bit floats stored in this
3803 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3804 Throw in user-configurable endianness and you have a real mess.
3805
3806 The way this works is:
3807 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3808 double-precision value will be split across two logical registers.
3809 The lower-numbered logical register will hold the low-order bits,
3810 regardless of the processor's endianness.
3811 - If we are on a 64-bit processor, and we are looking for a
3812 single-precision value, it will be in the low ordered bits
3813 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3814 save slot in memory.
3815 - If we are in 64-bit mode, everything is straightforward.
3816
3817 Note that this code only deals with "live" registers at the top of the
3818 stack. We will attempt to deal with saved registers later, when
3819 the raw/cooked register interface is in place. (We need a general
3820 interface that can deal with dynamic saved register sizes -- fp
3821 regs could be 32 bits wide in one frame and 64 on the frame above
3822 and below). */
3823
3824 static struct type *
3825 mips_float_register_type (void)
3826 {
3827 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3828 return builtin_type_ieee_single_big;
3829 else
3830 return builtin_type_ieee_single_little;
3831 }
3832
3833 static struct type *
3834 mips_double_register_type (void)
3835 {
3836 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3837 return builtin_type_ieee_double_big;
3838 else
3839 return builtin_type_ieee_double_little;
3840 }
3841
3842 /* Copy a 32-bit single-precision value from the current frame
3843 into rare_buffer. */
3844
3845 static void
3846 mips_read_fp_register_single (struct frame_info *frame, int regno,
3847 gdb_byte *rare_buffer)
3848 {
3849 int raw_size = register_size (current_gdbarch, regno);
3850 gdb_byte *raw_buffer = alloca (raw_size);
3851
3852 if (!frame_register_read (frame, regno, raw_buffer))
3853 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3854 if (raw_size == 8)
3855 {
3856 /* We have a 64-bit value for this register. Find the low-order
3857 32 bits. */
3858 int offset;
3859
3860 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3861 offset = 4;
3862 else
3863 offset = 0;
3864
3865 memcpy (rare_buffer, raw_buffer + offset, 4);
3866 }
3867 else
3868 {
3869 memcpy (rare_buffer, raw_buffer, 4);
3870 }
3871 }
3872
3873 /* Copy a 64-bit double-precision value from the current frame into
3874 rare_buffer. This may include getting half of it from the next
3875 register. */
3876
3877 static void
3878 mips_read_fp_register_double (struct frame_info *frame, int regno,
3879 gdb_byte *rare_buffer)
3880 {
3881 int raw_size = register_size (current_gdbarch, regno);
3882
3883 if (raw_size == 8 && !mips2_fp_compat ())
3884 {
3885 /* We have a 64-bit value for this register, and we should use
3886 all 64 bits. */
3887 if (!frame_register_read (frame, regno, rare_buffer))
3888 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3889 }
3890 else
3891 {
3892 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3893 internal_error (__FILE__, __LINE__,
3894 _("mips_read_fp_register_double: bad access to "
3895 "odd-numbered FP register"));
3896
3897 /* mips_read_fp_register_single will find the correct 32 bits from
3898 each register. */
3899 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3900 {
3901 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3902 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3903 }
3904 else
3905 {
3906 mips_read_fp_register_single (frame, regno, rare_buffer);
3907 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3908 }
3909 }
3910 }
3911
3912 static void
3913 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3914 int regnum)
3915 { /* do values for FP (float) regs */
3916 gdb_byte *raw_buffer;
3917 double doub, flt1; /* doubles extracted from raw hex data */
3918 int inv1, inv2;
3919
3920 raw_buffer = alloca (2 * register_size (current_gdbarch,
3921 mips_regnum (current_gdbarch)->fp0));
3922
3923 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3924 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3925 "");
3926
3927 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3928 {
3929 /* 4-byte registers: Print hex and floating. Also print even
3930 numbered registers as doubles. */
3931 mips_read_fp_register_single (frame, regnum, raw_buffer);
3932 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3933
3934 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3935 file);
3936
3937 fprintf_filtered (file, " flt: ");
3938 if (inv1)
3939 fprintf_filtered (file, " <invalid float> ");
3940 else
3941 fprintf_filtered (file, "%-17.9g", flt1);
3942
3943 if (regnum % 2 == 0)
3944 {
3945 mips_read_fp_register_double (frame, regnum, raw_buffer);
3946 doub = unpack_double (mips_double_register_type (), raw_buffer,
3947 &inv2);
3948
3949 fprintf_filtered (file, " dbl: ");
3950 if (inv2)
3951 fprintf_filtered (file, "<invalid double>");
3952 else
3953 fprintf_filtered (file, "%-24.17g", doub);
3954 }
3955 }
3956 else
3957 {
3958 /* Eight byte registers: print each one as hex, float and double. */
3959 mips_read_fp_register_single (frame, regnum, raw_buffer);
3960 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3961
3962 mips_read_fp_register_double (frame, regnum, raw_buffer);
3963 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3964
3965
3966 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3967 file);
3968
3969 fprintf_filtered (file, " flt: ");
3970 if (inv1)
3971 fprintf_filtered (file, "<invalid float>");
3972 else
3973 fprintf_filtered (file, "%-17.9g", flt1);
3974
3975 fprintf_filtered (file, " dbl: ");
3976 if (inv2)
3977 fprintf_filtered (file, "<invalid double>");
3978 else
3979 fprintf_filtered (file, "%-24.17g", doub);
3980 }
3981 }
3982
3983 static void
3984 mips_print_register (struct ui_file *file, struct frame_info *frame,
3985 int regnum, int all)
3986 {
3987 struct gdbarch *gdbarch = get_frame_arch (frame);
3988 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
3989 int offset;
3990
3991 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
3992 {
3993 mips_print_fp_register (file, frame, regnum);
3994 return;
3995 }
3996
3997 /* Get the data in raw format. */
3998 if (!frame_register_read (frame, regnum, raw_buffer))
3999 {
4000 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4001 return;
4002 }
4003
4004 fputs_filtered (REGISTER_NAME (regnum), file);
4005
4006 /* The problem with printing numeric register names (r26, etc.) is that
4007 the user can't use them on input. Probably the best solution is to
4008 fix it so that either the numeric or the funky (a2, etc.) names
4009 are accepted on input. */
4010 if (regnum < MIPS_NUMREGS)
4011 fprintf_filtered (file, "(r%d): ", regnum);
4012 else
4013 fprintf_filtered (file, ": ");
4014
4015 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4016 offset =
4017 register_size (current_gdbarch,
4018 regnum) - register_size (current_gdbarch, regnum);
4019 else
4020 offset = 0;
4021
4022 print_scalar_formatted (raw_buffer + offset,
4023 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4024 file);
4025 }
4026
4027 /* Replacement for generic do_registers_info.
4028 Print regs in pretty columns. */
4029
4030 static int
4031 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4032 int regnum)
4033 {
4034 fprintf_filtered (file, " ");
4035 mips_print_fp_register (file, frame, regnum);
4036 fprintf_filtered (file, "\n");
4037 return regnum + 1;
4038 }
4039
4040
4041 /* Print a row's worth of GP (int) registers, with name labels above */
4042
4043 static int
4044 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4045 int start_regnum)
4046 {
4047 struct gdbarch *gdbarch = get_frame_arch (frame);
4048 /* do values for GP (int) regs */
4049 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4050 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4051 int col, byte;
4052 int regnum;
4053
4054 /* For GP registers, we print a separate row of names above the vals */
4055 for (col = 0, regnum = start_regnum;
4056 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4057 {
4058 if (*REGISTER_NAME (regnum) == '\0')
4059 continue; /* unused register */
4060 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4061 TYPE_CODE_FLT)
4062 break; /* end the row: reached FP register */
4063 if (col == 0)
4064 fprintf_filtered (file, " ");
4065 fprintf_filtered (file,
4066 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4067 REGISTER_NAME (regnum));
4068 col++;
4069 }
4070
4071 if (col == 0)
4072 return regnum;
4073
4074 /* print the R0 to R31 names */
4075 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4076 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4077 else
4078 fprintf_filtered (file, "\n ");
4079
4080 /* now print the values in hex, 4 or 8 to the row */
4081 for (col = 0, regnum = start_regnum;
4082 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4083 {
4084 if (*REGISTER_NAME (regnum) == '\0')
4085 continue; /* unused register */
4086 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4087 TYPE_CODE_FLT)
4088 break; /* end row: reached FP register */
4089 /* OK: get the data in raw format. */
4090 if (!frame_register_read (frame, regnum, raw_buffer))
4091 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4092 /* pad small registers */
4093 for (byte = 0;
4094 byte < (mips_abi_regsize (current_gdbarch)
4095 - register_size (current_gdbarch, regnum)); byte++)
4096 printf_filtered (" ");
4097 /* Now print the register value in hex, endian order. */
4098 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4099 for (byte =
4100 register_size (current_gdbarch,
4101 regnum) - register_size (current_gdbarch, regnum);
4102 byte < register_size (current_gdbarch, regnum); byte++)
4103 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4104 else
4105 for (byte = register_size (current_gdbarch, regnum) - 1;
4106 byte >= 0; byte--)
4107 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4108 fprintf_filtered (file, " ");
4109 col++;
4110 }
4111 if (col > 0) /* ie. if we actually printed anything... */
4112 fprintf_filtered (file, "\n");
4113
4114 return regnum;
4115 }
4116
4117 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4118
4119 static void
4120 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4121 struct frame_info *frame, int regnum, int all)
4122 {
4123 if (regnum != -1) /* do one specified register */
4124 {
4125 gdb_assert (regnum >= NUM_REGS);
4126 if (*(REGISTER_NAME (regnum)) == '\0')
4127 error (_("Not a valid register for the current processor type"));
4128
4129 mips_print_register (file, frame, regnum, 0);
4130 fprintf_filtered (file, "\n");
4131 }
4132 else
4133 /* do all (or most) registers */
4134 {
4135 regnum = NUM_REGS;
4136 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4137 {
4138 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4139 TYPE_CODE_FLT)
4140 {
4141 if (all) /* true for "INFO ALL-REGISTERS" command */
4142 regnum = print_fp_register_row (file, frame, regnum);
4143 else
4144 regnum += MIPS_NUMREGS; /* skip floating point regs */
4145 }
4146 else
4147 regnum = print_gp_register_row (file, frame, regnum);
4148 }
4149 }
4150 }
4151
4152 /* Is this a branch with a delay slot? */
4153
4154 static int
4155 is_delayed (unsigned long insn)
4156 {
4157 int i;
4158 for (i = 0; i < NUMOPCODES; ++i)
4159 if (mips_opcodes[i].pinfo != INSN_MACRO
4160 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4161 break;
4162 return (i < NUMOPCODES
4163 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4164 | INSN_COND_BRANCH_DELAY
4165 | INSN_COND_BRANCH_LIKELY)));
4166 }
4167
4168 int
4169 mips_single_step_through_delay (struct gdbarch *gdbarch,
4170 struct frame_info *frame)
4171 {
4172 CORE_ADDR pc = get_frame_pc (frame);
4173 gdb_byte buf[MIPS_INSN32_SIZE];
4174
4175 /* There is no branch delay slot on MIPS16. */
4176 if (mips_pc_is_mips16 (pc))
4177 return 0;
4178
4179 if (!breakpoint_here_p (pc + 4))
4180 return 0;
4181
4182 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4183 /* If error reading memory, guess that it is not a delayed
4184 branch. */
4185 return 0;
4186 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4187 }
4188
4189 /* To skip prologues, I use this predicate. Returns either PC itself
4190 if the code at PC does not look like a function prologue; otherwise
4191 returns an address that (if we're lucky) follows the prologue. If
4192 LENIENT, then we must skip everything which is involved in setting
4193 up the frame (it's OK to skip more, just so long as we don't skip
4194 anything which might clobber the registers which are being saved.
4195 We must skip more in the case where part of the prologue is in the
4196 delay slot of a non-prologue instruction). */
4197
4198 static CORE_ADDR
4199 mips_skip_prologue (CORE_ADDR pc)
4200 {
4201 CORE_ADDR limit_pc;
4202 CORE_ADDR func_addr;
4203
4204 /* See if we can determine the end of the prologue via the symbol table.
4205 If so, then return either PC, or the PC after the prologue, whichever
4206 is greater. */
4207 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4208 {
4209 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4210 if (post_prologue_pc != 0)
4211 return max (pc, post_prologue_pc);
4212 }
4213
4214 /* Can't determine prologue from the symbol table, need to examine
4215 instructions. */
4216
4217 /* Find an upper limit on the function prologue using the debug
4218 information. If the debug information could not be used to provide
4219 that bound, then use an arbitrary large number as the upper bound. */
4220 limit_pc = skip_prologue_using_sal (pc);
4221 if (limit_pc == 0)
4222 limit_pc = pc + 100; /* Magic. */
4223
4224 if (mips_pc_is_mips16 (pc))
4225 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4226 else
4227 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4228 }
4229
4230 /* Root of all "set mips "/"show mips " commands. This will eventually be
4231 used for all MIPS-specific commands. */
4232
4233 static void
4234 show_mips_command (char *args, int from_tty)
4235 {
4236 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4237 }
4238
4239 static void
4240 set_mips_command (char *args, int from_tty)
4241 {
4242 printf_unfiltered
4243 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4244 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4245 }
4246
4247 /* Commands to show/set the MIPS FPU type. */
4248
4249 static void
4250 show_mipsfpu_command (char *args, int from_tty)
4251 {
4252 char *fpu;
4253 switch (MIPS_FPU_TYPE)
4254 {
4255 case MIPS_FPU_SINGLE:
4256 fpu = "single-precision";
4257 break;
4258 case MIPS_FPU_DOUBLE:
4259 fpu = "double-precision";
4260 break;
4261 case MIPS_FPU_NONE:
4262 fpu = "absent (none)";
4263 break;
4264 default:
4265 internal_error (__FILE__, __LINE__, _("bad switch"));
4266 }
4267 if (mips_fpu_type_auto)
4268 printf_unfiltered
4269 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4270 fpu);
4271 else
4272 printf_unfiltered
4273 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4274 }
4275
4276
4277 static void
4278 set_mipsfpu_command (char *args, int from_tty)
4279 {
4280 printf_unfiltered
4281 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4282 show_mipsfpu_command (args, from_tty);
4283 }
4284
4285 static void
4286 set_mipsfpu_single_command (char *args, int from_tty)
4287 {
4288 struct gdbarch_info info;
4289 gdbarch_info_init (&info);
4290 mips_fpu_type = MIPS_FPU_SINGLE;
4291 mips_fpu_type_auto = 0;
4292 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4293 instead of relying on globals. Doing that would let generic code
4294 handle the search for this specific architecture. */
4295 if (!gdbarch_update_p (info))
4296 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4297 }
4298
4299 static void
4300 set_mipsfpu_double_command (char *args, int from_tty)
4301 {
4302 struct gdbarch_info info;
4303 gdbarch_info_init (&info);
4304 mips_fpu_type = MIPS_FPU_DOUBLE;
4305 mips_fpu_type_auto = 0;
4306 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4307 instead of relying on globals. Doing that would let generic code
4308 handle the search for this specific architecture. */
4309 if (!gdbarch_update_p (info))
4310 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4311 }
4312
4313 static void
4314 set_mipsfpu_none_command (char *args, int from_tty)
4315 {
4316 struct gdbarch_info info;
4317 gdbarch_info_init (&info);
4318 mips_fpu_type = MIPS_FPU_NONE;
4319 mips_fpu_type_auto = 0;
4320 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4321 instead of relying on globals. Doing that would let generic code
4322 handle the search for this specific architecture. */
4323 if (!gdbarch_update_p (info))
4324 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4325 }
4326
4327 static void
4328 set_mipsfpu_auto_command (char *args, int from_tty)
4329 {
4330 mips_fpu_type_auto = 1;
4331 }
4332
4333 /* Attempt to identify the particular processor model by reading the
4334 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4335 the relevant processor still exists (it dates back to '94) and
4336 secondly this is not the way to do this. The processor type should
4337 be set by forcing an architecture change. */
4338
4339 void
4340 deprecated_mips_set_processor_regs_hack (void)
4341 {
4342 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4343 CORE_ADDR prid;
4344
4345 prid = read_register (MIPS_PRID_REGNUM);
4346
4347 if ((prid & ~0xf) == 0x700)
4348 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4349 }
4350
4351 /* Just like reinit_frame_cache, but with the right arguments to be
4352 callable as an sfunc. */
4353
4354 static void
4355 reinit_frame_cache_sfunc (char *args, int from_tty,
4356 struct cmd_list_element *c)
4357 {
4358 reinit_frame_cache ();
4359 }
4360
4361 static int
4362 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4363 {
4364 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4365
4366 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4367 disassembler needs to be able to locally determine the ISA, and
4368 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4369 work. */
4370 if (mips_pc_is_mips16 (memaddr))
4371 info->mach = bfd_mach_mips16;
4372
4373 /* Round down the instruction address to the appropriate boundary. */
4374 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4375
4376 /* Set the disassembler options. */
4377 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4378 {
4379 /* Set up the disassembler info, so that we get the right
4380 register names from libopcodes. */
4381 if (tdep->mips_abi == MIPS_ABI_N32)
4382 info->disassembler_options = "gpr-names=n32";
4383 else
4384 info->disassembler_options = "gpr-names=64";
4385 info->flavour = bfd_target_elf_flavour;
4386 }
4387 else
4388 /* This string is not recognized explicitly by the disassembler,
4389 but it tells the disassembler to not try to guess the ABI from
4390 the bfd elf headers, such that, if the user overrides the ABI
4391 of a program linked as NewABI, the disassembly will follow the
4392 register naming conventions specified by the user. */
4393 info->disassembler_options = "gpr-names=32";
4394
4395 /* Call the appropriate disassembler based on the target endian-ness. */
4396 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4397 return print_insn_big_mips (memaddr, info);
4398 else
4399 return print_insn_little_mips (memaddr, info);
4400 }
4401
4402 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4403 counter value to determine whether a 16- or 32-bit breakpoint should be
4404 used. It returns a pointer to a string of bytes that encode a breakpoint
4405 instruction, stores the length of the string to *lenptr, and adjusts pc
4406 (if necessary) to point to the actual memory location where the
4407 breakpoint should be inserted. */
4408
4409 static const gdb_byte *
4410 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4411 {
4412 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4413 {
4414 if (mips_pc_is_mips16 (*pcptr))
4415 {
4416 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4417 *pcptr = unmake_mips16_addr (*pcptr);
4418 *lenptr = sizeof (mips16_big_breakpoint);
4419 return mips16_big_breakpoint;
4420 }
4421 else
4422 {
4423 /* The IDT board uses an unusual breakpoint value, and
4424 sometimes gets confused when it sees the usual MIPS
4425 breakpoint instruction. */
4426 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4427 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4428 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4429
4430 *lenptr = sizeof (big_breakpoint);
4431
4432 if (strcmp (target_shortname, "mips") == 0)
4433 return idt_big_breakpoint;
4434 else if (strcmp (target_shortname, "ddb") == 0
4435 || strcmp (target_shortname, "pmon") == 0
4436 || strcmp (target_shortname, "lsi") == 0)
4437 return pmon_big_breakpoint;
4438 else
4439 return big_breakpoint;
4440 }
4441 }
4442 else
4443 {
4444 if (mips_pc_is_mips16 (*pcptr))
4445 {
4446 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4447 *pcptr = unmake_mips16_addr (*pcptr);
4448 *lenptr = sizeof (mips16_little_breakpoint);
4449 return mips16_little_breakpoint;
4450 }
4451 else
4452 {
4453 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4454 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4455 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4456
4457 *lenptr = sizeof (little_breakpoint);
4458
4459 if (strcmp (target_shortname, "mips") == 0)
4460 return idt_little_breakpoint;
4461 else if (strcmp (target_shortname, "ddb") == 0
4462 || strcmp (target_shortname, "pmon") == 0
4463 || strcmp (target_shortname, "lsi") == 0)
4464 return pmon_little_breakpoint;
4465 else
4466 return little_breakpoint;
4467 }
4468 }
4469 }
4470
4471 /* If PC is in a mips16 call or return stub, return the address of the target
4472 PC, which is either the callee or the caller. There are several
4473 cases which must be handled:
4474
4475 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4476 target PC is in $31 ($ra).
4477 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4478 and the target PC is in $2.
4479 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4480 before the jal instruction, this is effectively a call stub
4481 and the the target PC is in $2. Otherwise this is effectively
4482 a return stub and the target PC is in $18.
4483
4484 See the source code for the stubs in gcc/config/mips/mips16.S for
4485 gory details. */
4486
4487 static CORE_ADDR
4488 mips_skip_trampoline_code (CORE_ADDR pc)
4489 {
4490 char *name;
4491 CORE_ADDR start_addr;
4492
4493 /* Find the starting address and name of the function containing the PC. */
4494 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4495 return 0;
4496
4497 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4498 target PC is in $31 ($ra). */
4499 if (strcmp (name, "__mips16_ret_sf") == 0
4500 || strcmp (name, "__mips16_ret_df") == 0)
4501 return read_signed_register (MIPS_RA_REGNUM);
4502
4503 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4504 {
4505 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4506 and the target PC is in $2. */
4507 if (name[19] >= '0' && name[19] <= '9')
4508 return read_signed_register (2);
4509
4510 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4511 before the jal instruction, this is effectively a call stub
4512 and the the target PC is in $2. Otherwise this is effectively
4513 a return stub and the target PC is in $18. */
4514 else if (name[19] == 's' || name[19] == 'd')
4515 {
4516 if (pc == start_addr)
4517 {
4518 /* Check if the target of the stub is a compiler-generated
4519 stub. Such a stub for a function bar might have a name
4520 like __fn_stub_bar, and might look like this:
4521 mfc1 $4,$f13
4522 mfc1 $5,$f12
4523 mfc1 $6,$f15
4524 mfc1 $7,$f14
4525 la $1,bar (becomes a lui/addiu pair)
4526 jr $1
4527 So scan down to the lui/addi and extract the target
4528 address from those two instructions. */
4529
4530 CORE_ADDR target_pc = read_signed_register (2);
4531 ULONGEST inst;
4532 int i;
4533
4534 /* See if the name of the target function is __fn_stub_*. */
4535 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4536 0)
4537 return target_pc;
4538 if (strncmp (name, "__fn_stub_", 10) != 0
4539 && strcmp (name, "etext") != 0
4540 && strcmp (name, "_etext") != 0)
4541 return target_pc;
4542
4543 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4544 The limit on the search is arbitrarily set to 20
4545 instructions. FIXME. */
4546 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4547 {
4548 inst = mips_fetch_instruction (target_pc);
4549 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4550 pc = (inst << 16) & 0xffff0000; /* high word */
4551 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4552 return pc | (inst & 0xffff); /* low word */
4553 }
4554
4555 /* Couldn't find the lui/addui pair, so return stub address. */
4556 return target_pc;
4557 }
4558 else
4559 /* This is the 'return' part of a call stub. The return
4560 address is in $r18. */
4561 return read_signed_register (18);
4562 }
4563 }
4564 return 0; /* not a stub */
4565 }
4566
4567 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4568 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4569
4570 static int
4571 mips_stab_reg_to_regnum (int num)
4572 {
4573 int regnum;
4574 if (num >= 0 && num < 32)
4575 regnum = num;
4576 else if (num >= 38 && num < 70)
4577 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4578 else if (num == 70)
4579 regnum = mips_regnum (current_gdbarch)->hi;
4580 else if (num == 71)
4581 regnum = mips_regnum (current_gdbarch)->lo;
4582 else
4583 /* This will hopefully (eventually) provoke a warning. Should
4584 we be calling complaint() here? */
4585 return NUM_REGS + NUM_PSEUDO_REGS;
4586 return NUM_REGS + regnum;
4587 }
4588
4589
4590 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4591 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4592
4593 static int
4594 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4595 {
4596 int regnum;
4597 if (num >= 0 && num < 32)
4598 regnum = num;
4599 else if (num >= 32 && num < 64)
4600 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4601 else if (num == 64)
4602 regnum = mips_regnum (current_gdbarch)->hi;
4603 else if (num == 65)
4604 regnum = mips_regnum (current_gdbarch)->lo;
4605 else
4606 /* This will hopefully (eventually) provoke a warning. Should we
4607 be calling complaint() here? */
4608 return NUM_REGS + NUM_PSEUDO_REGS;
4609 return NUM_REGS + regnum;
4610 }
4611
4612 static int
4613 mips_register_sim_regno (int regnum)
4614 {
4615 /* Only makes sense to supply raw registers. */
4616 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4617 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4618 decide if it is valid. Should instead define a standard sim/gdb
4619 register numbering scheme. */
4620 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4621 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4622 return regnum;
4623 else
4624 return LEGACY_SIM_REGNO_IGNORE;
4625 }
4626
4627
4628 /* Convert an integer into an address. By first converting the value
4629 into a pointer and then extracting it signed, the address is
4630 guarenteed to be correctly sign extended. */
4631
4632 static CORE_ADDR
4633 mips_integer_to_address (struct gdbarch *gdbarch,
4634 struct type *type, const gdb_byte *buf)
4635 {
4636 gdb_byte *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4637 LONGEST val = unpack_long (type, buf);
4638 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4639 return extract_signed_integer (tmp,
4640 TYPE_LENGTH (builtin_type_void_data_ptr));
4641 }
4642
4643 static void
4644 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4645 {
4646 enum mips_abi *abip = (enum mips_abi *) obj;
4647 const char *name = bfd_get_section_name (abfd, sect);
4648
4649 if (*abip != MIPS_ABI_UNKNOWN)
4650 return;
4651
4652 if (strncmp (name, ".mdebug.", 8) != 0)
4653 return;
4654
4655 if (strcmp (name, ".mdebug.abi32") == 0)
4656 *abip = MIPS_ABI_O32;
4657 else if (strcmp (name, ".mdebug.abiN32") == 0)
4658 *abip = MIPS_ABI_N32;
4659 else if (strcmp (name, ".mdebug.abi64") == 0)
4660 *abip = MIPS_ABI_N64;
4661 else if (strcmp (name, ".mdebug.abiO64") == 0)
4662 *abip = MIPS_ABI_O64;
4663 else if (strcmp (name, ".mdebug.eabi32") == 0)
4664 *abip = MIPS_ABI_EABI32;
4665 else if (strcmp (name, ".mdebug.eabi64") == 0)
4666 *abip = MIPS_ABI_EABI64;
4667 else
4668 warning (_("unsupported ABI %s."), name + 8);
4669 }
4670
4671 static enum mips_abi
4672 global_mips_abi (void)
4673 {
4674 int i;
4675
4676 for (i = 0; mips_abi_strings[i] != NULL; i++)
4677 if (mips_abi_strings[i] == mips_abi_string)
4678 return (enum mips_abi) i;
4679
4680 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4681 }
4682
4683 static struct gdbarch *
4684 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4685 {
4686 struct gdbarch *gdbarch;
4687 struct gdbarch_tdep *tdep;
4688 int elf_flags;
4689 enum mips_abi mips_abi, found_abi, wanted_abi;
4690 int num_regs;
4691 enum mips_fpu_type fpu_type;
4692
4693 /* First of all, extract the elf_flags, if available. */
4694 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4695 elf_flags = elf_elfheader (info.abfd)->e_flags;
4696 else if (arches != NULL)
4697 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4698 else
4699 elf_flags = 0;
4700 if (gdbarch_debug)
4701 fprintf_unfiltered (gdb_stdlog,
4702 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4703
4704 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4705 switch ((elf_flags & EF_MIPS_ABI))
4706 {
4707 case E_MIPS_ABI_O32:
4708 found_abi = MIPS_ABI_O32;
4709 break;
4710 case E_MIPS_ABI_O64:
4711 found_abi = MIPS_ABI_O64;
4712 break;
4713 case E_MIPS_ABI_EABI32:
4714 found_abi = MIPS_ABI_EABI32;
4715 break;
4716 case E_MIPS_ABI_EABI64:
4717 found_abi = MIPS_ABI_EABI64;
4718 break;
4719 default:
4720 if ((elf_flags & EF_MIPS_ABI2))
4721 found_abi = MIPS_ABI_N32;
4722 else
4723 found_abi = MIPS_ABI_UNKNOWN;
4724 break;
4725 }
4726
4727 /* GCC creates a pseudo-section whose name describes the ABI. */
4728 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4729 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4730
4731 /* If we have no useful BFD information, use the ABI from the last
4732 MIPS architecture (if there is one). */
4733 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4734 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4735
4736 /* Try the architecture for any hint of the correct ABI. */
4737 if (found_abi == MIPS_ABI_UNKNOWN
4738 && info.bfd_arch_info != NULL
4739 && info.bfd_arch_info->arch == bfd_arch_mips)
4740 {
4741 switch (info.bfd_arch_info->mach)
4742 {
4743 case bfd_mach_mips3900:
4744 found_abi = MIPS_ABI_EABI32;
4745 break;
4746 case bfd_mach_mips4100:
4747 case bfd_mach_mips5000:
4748 found_abi = MIPS_ABI_EABI64;
4749 break;
4750 case bfd_mach_mips8000:
4751 case bfd_mach_mips10000:
4752 /* On Irix, ELF64 executables use the N64 ABI. The
4753 pseudo-sections which describe the ABI aren't present
4754 on IRIX. (Even for executables created by gcc.) */
4755 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4756 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4757 found_abi = MIPS_ABI_N64;
4758 else
4759 found_abi = MIPS_ABI_N32;
4760 break;
4761 }
4762 }
4763
4764 /* Default 64-bit objects to N64 instead of O32. */
4765 if (found_abi == MIPS_ABI_UNKNOWN
4766 && info.abfd != NULL
4767 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4768 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4769 found_abi = MIPS_ABI_N64;
4770
4771 if (gdbarch_debug)
4772 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4773 found_abi);
4774
4775 /* What has the user specified from the command line? */
4776 wanted_abi = global_mips_abi ();
4777 if (gdbarch_debug)
4778 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4779 wanted_abi);
4780
4781 /* Now that we have found what the ABI for this binary would be,
4782 check whether the user is overriding it. */
4783 if (wanted_abi != MIPS_ABI_UNKNOWN)
4784 mips_abi = wanted_abi;
4785 else if (found_abi != MIPS_ABI_UNKNOWN)
4786 mips_abi = found_abi;
4787 else
4788 mips_abi = MIPS_ABI_O32;
4789 if (gdbarch_debug)
4790 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4791 mips_abi);
4792
4793 /* Also used when doing an architecture lookup. */
4794 if (gdbarch_debug)
4795 fprintf_unfiltered (gdb_stdlog,
4796 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4797 mips64_transfers_32bit_regs_p);
4798
4799 /* Determine the MIPS FPU type. */
4800 if (!mips_fpu_type_auto)
4801 fpu_type = mips_fpu_type;
4802 else if (info.bfd_arch_info != NULL
4803 && info.bfd_arch_info->arch == bfd_arch_mips)
4804 switch (info.bfd_arch_info->mach)
4805 {
4806 case bfd_mach_mips3900:
4807 case bfd_mach_mips4100:
4808 case bfd_mach_mips4111:
4809 case bfd_mach_mips4120:
4810 fpu_type = MIPS_FPU_NONE;
4811 break;
4812 case bfd_mach_mips4650:
4813 fpu_type = MIPS_FPU_SINGLE;
4814 break;
4815 default:
4816 fpu_type = MIPS_FPU_DOUBLE;
4817 break;
4818 }
4819 else if (arches != NULL)
4820 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4821 else
4822 fpu_type = MIPS_FPU_DOUBLE;
4823 if (gdbarch_debug)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4826
4827 /* try to find a pre-existing architecture */
4828 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4829 arches != NULL;
4830 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4831 {
4832 /* MIPS needs to be pedantic about which ABI the object is
4833 using. */
4834 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4835 continue;
4836 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4837 continue;
4838 /* Need to be pedantic about which register virtual size is
4839 used. */
4840 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4841 != mips64_transfers_32bit_regs_p)
4842 continue;
4843 /* Be pedantic about which FPU is selected. */
4844 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4845 continue;
4846 return arches->gdbarch;
4847 }
4848
4849 /* Need a new architecture. Fill in a target specific vector. */
4850 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4851 gdbarch = gdbarch_alloc (&info, tdep);
4852 tdep->elf_flags = elf_flags;
4853 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4854 tdep->found_abi = found_abi;
4855 tdep->mips_abi = mips_abi;
4856 tdep->mips_fpu_type = fpu_type;
4857
4858 /* Initially set everything according to the default ABI/ISA. */
4859 set_gdbarch_short_bit (gdbarch, 16);
4860 set_gdbarch_int_bit (gdbarch, 32);
4861 set_gdbarch_float_bit (gdbarch, 32);
4862 set_gdbarch_double_bit (gdbarch, 64);
4863 set_gdbarch_long_double_bit (gdbarch, 64);
4864 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4865 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4866 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4867
4868 set_gdbarch_elf_make_msymbol_special (gdbarch,
4869 mips_elf_make_msymbol_special);
4870
4871 /* Fill in the OS dependant register numbers and names. */
4872 {
4873 const char **reg_names;
4874 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4875 struct mips_regnum);
4876 if (info.osabi == GDB_OSABI_IRIX)
4877 {
4878 regnum->fp0 = 32;
4879 regnum->pc = 64;
4880 regnum->cause = 65;
4881 regnum->badvaddr = 66;
4882 regnum->hi = 67;
4883 regnum->lo = 68;
4884 regnum->fp_control_status = 69;
4885 regnum->fp_implementation_revision = 70;
4886 num_regs = 71;
4887 reg_names = mips_irix_reg_names;
4888 }
4889 else
4890 {
4891 regnum->lo = MIPS_EMBED_LO_REGNUM;
4892 regnum->hi = MIPS_EMBED_HI_REGNUM;
4893 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4894 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4895 regnum->pc = MIPS_EMBED_PC_REGNUM;
4896 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4897 regnum->fp_control_status = 70;
4898 regnum->fp_implementation_revision = 71;
4899 num_regs = 90;
4900 if (info.bfd_arch_info != NULL
4901 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4902 reg_names = mips_tx39_reg_names;
4903 else
4904 reg_names = mips_generic_reg_names;
4905 }
4906 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4907 replaced by read_pc? */
4908 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4909 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4910 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4911 set_gdbarch_num_regs (gdbarch, num_regs);
4912 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4913 set_gdbarch_register_name (gdbarch, mips_register_name);
4914 tdep->mips_processor_reg_names = reg_names;
4915 tdep->regnum = regnum;
4916 }
4917
4918 switch (mips_abi)
4919 {
4920 case MIPS_ABI_O32:
4921 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4922 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4923 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4924 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4925 tdep->default_mask_address_p = 0;
4926 set_gdbarch_long_bit (gdbarch, 32);
4927 set_gdbarch_ptr_bit (gdbarch, 32);
4928 set_gdbarch_long_long_bit (gdbarch, 64);
4929 break;
4930 case MIPS_ABI_O64:
4931 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4932 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4933 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4934 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4935 tdep->default_mask_address_p = 0;
4936 set_gdbarch_long_bit (gdbarch, 32);
4937 set_gdbarch_ptr_bit (gdbarch, 32);
4938 set_gdbarch_long_long_bit (gdbarch, 64);
4939 break;
4940 case MIPS_ABI_EABI32:
4941 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4942 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4943 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4944 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4945 tdep->default_mask_address_p = 0;
4946 set_gdbarch_long_bit (gdbarch, 32);
4947 set_gdbarch_ptr_bit (gdbarch, 32);
4948 set_gdbarch_long_long_bit (gdbarch, 64);
4949 break;
4950 case MIPS_ABI_EABI64:
4951 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4952 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4953 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4954 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4955 tdep->default_mask_address_p = 0;
4956 set_gdbarch_long_bit (gdbarch, 64);
4957 set_gdbarch_ptr_bit (gdbarch, 64);
4958 set_gdbarch_long_long_bit (gdbarch, 64);
4959 break;
4960 case MIPS_ABI_N32:
4961 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4962 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4963 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4964 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4965 tdep->default_mask_address_p = 0;
4966 set_gdbarch_long_bit (gdbarch, 32);
4967 set_gdbarch_ptr_bit (gdbarch, 32);
4968 set_gdbarch_long_long_bit (gdbarch, 64);
4969 set_gdbarch_long_double_bit (gdbarch, 128);
4970 set_gdbarch_long_double_format (gdbarch,
4971 &floatformat_n32n64_long_double_big);
4972 break;
4973 case MIPS_ABI_N64:
4974 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4975 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4976 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4977 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4978 tdep->default_mask_address_p = 0;
4979 set_gdbarch_long_bit (gdbarch, 64);
4980 set_gdbarch_ptr_bit (gdbarch, 64);
4981 set_gdbarch_long_long_bit (gdbarch, 64);
4982 set_gdbarch_long_double_bit (gdbarch, 128);
4983 set_gdbarch_long_double_format (gdbarch,
4984 &floatformat_n32n64_long_double_big);
4985 break;
4986 default:
4987 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
4988 }
4989
4990 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4991 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4992 comment:
4993
4994 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4995 flag in object files because to do so would make it impossible to
4996 link with libraries compiled without "-gp32". This is
4997 unnecessarily restrictive.
4998
4999 We could solve this problem by adding "-gp32" multilibs to gcc,
5000 but to set this flag before gcc is built with such multilibs will
5001 break too many systems.''
5002
5003 But even more unhelpfully, the default linker output target for
5004 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5005 for 64-bit programs - you need to change the ABI to change this,
5006 and not all gcc targets support that currently. Therefore using
5007 this flag to detect 32-bit mode would do the wrong thing given
5008 the current gcc - it would make GDB treat these 64-bit programs
5009 as 32-bit programs by default. */
5010
5011 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5012 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5013 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5014
5015 /* Add/remove bits from an address. The MIPS needs be careful to
5016 ensure that all 32 bit addresses are sign extended to 64 bits. */
5017 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5018
5019 /* Unwind the frame. */
5020 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5021 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5022
5023 /* Map debug register numbers onto internal register numbers. */
5024 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5025 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5026 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5027 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5028 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5029 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5030 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5031 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5032
5033 /* MIPS version of CALL_DUMMY */
5034
5035 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5036 replaced by a command, and all targets will default to on stack
5037 (regardless of the stack's execute status). */
5038 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5039 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5040
5041 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5042 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5043 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5044
5045 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5046 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5047
5048 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5049
5050 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5051 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5052 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5053
5054 set_gdbarch_register_type (gdbarch, mips_register_type);
5055
5056 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5057
5058 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5059
5060 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5061 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5062 need to all be folded into the target vector. Since they are
5063 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5064 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5065 is sitting on? */
5066 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5067
5068 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5069
5070 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5071
5072 /* Hook in OS ABI-specific overrides, if they have been registered. */
5073 gdbarch_init_osabi (info, gdbarch);
5074
5075 /* Unwind the frame. */
5076 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5077 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5078 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5079 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5080 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5081 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5082
5083 return gdbarch;
5084 }
5085
5086 static void
5087 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5088 {
5089 struct gdbarch_info info;
5090
5091 /* Force the architecture to update, and (if it's a MIPS architecture)
5092 mips_gdbarch_init will take care of the rest. */
5093 gdbarch_info_init (&info);
5094 gdbarch_update_p (info);
5095 }
5096
5097 /* Print out which MIPS ABI is in use. */
5098
5099 static void
5100 show_mips_abi (struct ui_file *file,
5101 int from_tty,
5102 struct cmd_list_element *ignored_cmd,
5103 const char *ignored_value)
5104 {
5105 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5106 fprintf_filtered
5107 (file,
5108 "The MIPS ABI is unknown because the current architecture "
5109 "is not MIPS.\n");
5110 else
5111 {
5112 enum mips_abi global_abi = global_mips_abi ();
5113 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5114 const char *actual_abi_str = mips_abi_strings[actual_abi];
5115
5116 if (global_abi == MIPS_ABI_UNKNOWN)
5117 fprintf_filtered
5118 (file,
5119 "The MIPS ABI is set automatically (currently \"%s\").\n",
5120 actual_abi_str);
5121 else if (global_abi == actual_abi)
5122 fprintf_filtered
5123 (file,
5124 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5125 actual_abi_str);
5126 else
5127 {
5128 /* Probably shouldn't happen... */
5129 fprintf_filtered
5130 (file,
5131 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5132 actual_abi_str, mips_abi_strings[global_abi]);
5133 }
5134 }
5135 }
5136
5137 static void
5138 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5139 {
5140 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5141 if (tdep != NULL)
5142 {
5143 int ef_mips_arch;
5144 int ef_mips_32bitmode;
5145 /* determine the ISA */
5146 switch (tdep->elf_flags & EF_MIPS_ARCH)
5147 {
5148 case E_MIPS_ARCH_1:
5149 ef_mips_arch = 1;
5150 break;
5151 case E_MIPS_ARCH_2:
5152 ef_mips_arch = 2;
5153 break;
5154 case E_MIPS_ARCH_3:
5155 ef_mips_arch = 3;
5156 break;
5157 case E_MIPS_ARCH_4:
5158 ef_mips_arch = 4;
5159 break;
5160 default:
5161 ef_mips_arch = 0;
5162 break;
5163 }
5164 /* determine the size of a pointer */
5165 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5166 fprintf_unfiltered (file,
5167 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5168 tdep->elf_flags);
5169 fprintf_unfiltered (file,
5170 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5171 ef_mips_32bitmode);
5172 fprintf_unfiltered (file,
5173 "mips_dump_tdep: ef_mips_arch = %d\n",
5174 ef_mips_arch);
5175 fprintf_unfiltered (file,
5176 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5177 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5178 fprintf_unfiltered (file,
5179 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5180 mips_mask_address_p (tdep),
5181 tdep->default_mask_address_p);
5182 }
5183 fprintf_unfiltered (file,
5184 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5185 MIPS_DEFAULT_FPU_TYPE,
5186 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5187 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5188 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5189 : "???"));
5190 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5191 fprintf_unfiltered (file,
5192 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5193 MIPS_FPU_TYPE,
5194 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5195 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5196 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5197 : "???"));
5198 fprintf_unfiltered (file,
5199 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5200 mips_stack_argsize (current_gdbarch));
5201 }
5202
5203 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5204
5205 void
5206 _initialize_mips_tdep (void)
5207 {
5208 static struct cmd_list_element *mipsfpulist = NULL;
5209 struct cmd_list_element *c;
5210
5211 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5212 if (MIPS_ABI_LAST + 1
5213 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5214 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5215
5216 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5217
5218 mips_pdr_data = register_objfile_data ();
5219
5220 /* Add root prefix command for all "set mips"/"show mips" commands */
5221 add_prefix_cmd ("mips", no_class, set_mips_command,
5222 _("Various MIPS specific commands."),
5223 &setmipscmdlist, "set mips ", 0, &setlist);
5224
5225 add_prefix_cmd ("mips", no_class, show_mips_command,
5226 _("Various MIPS specific commands."),
5227 &showmipscmdlist, "show mips ", 0, &showlist);
5228
5229 /* Allow the user to override the saved register size. */
5230 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5231 size_enums, &mips_abi_regsize_string, _("\
5232 Set size of general purpose registers saved on the stack."), _("\
5233 Show size of general purpose registers saved on the stack."), _("\
5234 This option can be set to one of:\n\
5235 32 - Force GDB to treat saved GP registers as 32-bit\n\
5236 64 - Force GDB to treat saved GP registers as 64-bit\n\
5237 auto - Allow GDB to use the target's default setting or autodetect the\n\
5238 saved GP register size from information contained in the\n\
5239 executable (default)."),
5240 NULL,
5241 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5242 &setmipscmdlist, &showmipscmdlist);
5243
5244 /* Allow the user to override the argument stack size. */
5245 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5246 size_enums, &mips_stack_argsize_string, _("\
5247 Set the amount of stack space reserved for each argument."), _("\
5248 Show the amount of stack space reserved for each argument."), _("\
5249 This option can be set to one of:\n\
5250 32 - Force GDB to allocate 32-bit chunks per argument\n\
5251 64 - Force GDB to allocate 64-bit chunks per argument\n\
5252 auto - Allow GDB to determine the correct setting from the current\n\
5253 target and executable (default)"),
5254 NULL,
5255 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5256 &setmipscmdlist, &showmipscmdlist);
5257
5258 /* Allow the user to override the ABI. */
5259 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5260 &mips_abi_string, _("\
5261 Set the MIPS ABI used by this program."), _("\
5262 Show the MIPS ABI used by this program."), _("\
5263 This option can be set to one of:\n\
5264 auto - the default ABI associated with the current binary\n\
5265 o32\n\
5266 o64\n\
5267 n32\n\
5268 n64\n\
5269 eabi32\n\
5270 eabi64"),
5271 mips_abi_update,
5272 show_mips_abi,
5273 &setmipscmdlist, &showmipscmdlist);
5274
5275 /* Let the user turn off floating point and set the fence post for
5276 heuristic_proc_start. */
5277
5278 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5279 _("Set use of MIPS floating-point coprocessor."),
5280 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5281 add_cmd ("single", class_support, set_mipsfpu_single_command,
5282 _("Select single-precision MIPS floating-point coprocessor."),
5283 &mipsfpulist);
5284 add_cmd ("double", class_support, set_mipsfpu_double_command,
5285 _("Select double-precision MIPS floating-point coprocessor."),
5286 &mipsfpulist);
5287 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5288 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5289 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5290 add_cmd ("none", class_support, set_mipsfpu_none_command,
5291 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5292 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5293 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5294 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5295 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5296 _("Select MIPS floating-point coprocessor automatically."),
5297 &mipsfpulist);
5298 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5299 _("Show current use of MIPS floating-point coprocessor target."),
5300 &showlist);
5301
5302 /* We really would like to have both "0" and "unlimited" work, but
5303 command.c doesn't deal with that. So make it a var_zinteger
5304 because the user can always use "999999" or some such for unlimited. */
5305 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5306 &heuristic_fence_post, _("\
5307 Set the distance searched for the start of a function."), _("\
5308 Show the distance searched for the start of a function."), _("\
5309 If you are debugging a stripped executable, GDB needs to search through the\n\
5310 program for the start of a function. This command sets the distance of the\n\
5311 search. The only need to set it is when debugging a stripped executable."),
5312 reinit_frame_cache_sfunc,
5313 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5314 &setlist, &showlist);
5315
5316 /* Allow the user to control whether the upper bits of 64-bit
5317 addresses should be zeroed. */
5318 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5319 &mask_address_var, _("\
5320 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5321 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5322 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5323 allow GDB to determine the correct value."),
5324 NULL, show_mask_address,
5325 &setmipscmdlist, &showmipscmdlist);
5326
5327 /* Allow the user to control the size of 32 bit registers within the
5328 raw remote packet. */
5329 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5330 &mips64_transfers_32bit_regs_p, _("\
5331 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5332 _("\
5333 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5334 _("\
5335 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5336 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5337 64 bits for others. Use \"off\" to disable compatibility mode"),
5338 set_mips64_transfers_32bit_regs,
5339 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5340 &setlist, &showlist);
5341
5342 /* Debug this files internals. */
5343 add_setshow_zinteger_cmd ("mips", class_maintenance,
5344 &mips_debug, _("\
5345 Set mips debugging."), _("\
5346 Show mips debugging."), _("\
5347 When non-zero, mips specific debugging is enabled."),
5348 NULL,
5349 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5350 &setdebuglist, &showdebuglist);
5351 }
This page took 0.138355 seconds and 5 git commands to generate.