2002-12-01 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47
48 /* A useful bit in the CP0 status register (PS_REGNUM). */
49 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50 #define ST0_FR (1 << 26)
51
52 /* The sizes of floating point registers. */
53
54 enum
55 {
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58 };
59
60 /* All the possible MIPS ABIs. */
61
62 enum mips_abi
63 {
64 MIPS_ABI_UNKNOWN = 0,
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
67 MIPS_ABI_N64,
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
72 };
73
74 static const char *mips_abi_string;
75
76 static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
80 "n64",
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85 };
86
87 struct frame_extra_info
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
92
93 /* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
97 static const char size_auto[] = "auto";
98 static const char size_32[] = "32";
99 static const char size_64[] = "64";
100
101 static const char *size_enums[] = {
102 size_auto,
103 size_32,
104 size_64,
105 0
106 };
107
108 /* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
111
112 enum mips_fpu_type
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
118
119 #ifndef MIPS_DEFAULT_FPU_TYPE
120 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121 #endif
122 static int mips_fpu_type_auto = 1;
123 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
124
125 static int mips_debug = 0;
126
127 /* MIPS specific per-architecture information */
128 struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
132
133 /* mips options */
134 enum mips_abi mips_abi;
135 enum mips_abi found_abi;
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
139 int mips_default_saved_regsize;
140 int mips_fp_register_double;
141 int mips_default_stack_argsize;
142 int gdb_target_is_mips64;
143 int default_mask_address_p;
144
145 enum gdb_osabi osabi;
146 };
147
148 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
150
151 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
152
153 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
154
155 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
156
157 /* Return the currently configured (or set) saved register size. */
158
159 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
160
161 static const char *mips_saved_regsize_string = size_auto;
162
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165 static unsigned int
166 mips_saved_regsize (void)
167 {
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174 }
175
176 /* Functions for setting and testing a bit in a minimal symbol that
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
181
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
185
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
189
190 static void
191 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
192 {
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
194 {
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
198 }
199 }
200
201 static int
202 msymbol_is_special (struct minimal_symbol *msym)
203 {
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
205 }
206
207 static long
208 msymbol_size (struct minimal_symbol *msym)
209 {
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
211 }
212
213 /* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
217
218 static void
219 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
221 int buf_offset)
222 {
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
224 int reg_offset = 0;
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
227 switch (endian)
228 {
229 case BFD_ENDIAN_BIG:
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
231 break;
232 case BFD_ENDIAN_LITTLE:
233 reg_offset = 0;
234 break;
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
236 reg_offset = 0;
237 break;
238 default:
239 internal_error (__FILE__, __LINE__, "bad switch");
240 }
241 if (mips_debug)
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
245 if (mips_debug && out != NULL)
246 {
247 int i;
248 fprintf_unfiltered (gdb_stdlog, "out ");
249 for (i = 0; i < length; i++)
250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
251 }
252 if (in != NULL)
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
254 if (out != NULL)
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
257 {
258 int i;
259 fprintf_unfiltered (gdb_stdlog, "in ");
260 for (i = 0; i < length; i++)
261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
262 }
263 if (mips_debug)
264 fprintf_unfiltered (gdb_stdlog, "\n");
265 }
266
267 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
270
271 static int
272 mips2_fp_compat (void)
273 {
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
275 meaningful. */
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
277 return 0;
278
279 #if 0
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
284 mode. */
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
286 return 1;
287 #endif
288
289 return 0;
290 }
291
292 /* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
296 MIPS_FPU_TYPE. */
297 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
298
299 /* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
302
303 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
304
305 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
306
307 static const char *mips_stack_argsize_string = size_auto;
308
309 static unsigned int
310 mips_stack_argsize (void)
311 {
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
315 return 8;
316 else /* if (mips_stack_argsize_string == size_32) */
317 return 4;
318 }
319
320 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
321
322 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
323
324 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
325
326 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
327
328 static void mips_print_register (int, int);
329
330 static mips_extra_func_info_t
331 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
332
333 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
334
335 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
336
337 static int mips_set_processor_type (char *);
338
339 static void mips_show_processor_type_command (char *, int);
340
341 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
342
343 static mips_extra_func_info_t
344 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
345
346 static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
348
349 static void mips_read_fp_register_single (int regno, char *rare_buffer);
350 static void mips_read_fp_register_double (int regno, char *rare_buffer);
351
352 static struct type *mips_float_register_type (void);
353 static struct type *mips_double_register_type (void);
354
355 /* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
357
358 char *mips_processor_type;
359
360 char *tmp_mips_processor_type;
361
362 /* The list of available "set mips " and "show mips " commands */
363
364 static struct cmd_list_element *setmipscmdlist = NULL;
365 static struct cmd_list_element *showmipscmdlist = NULL;
366
367 /* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
369
370 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371 char **mips_processor_reg_names = mips_generic_reg_names;
372
373 static const char *
374 mips_register_name (int i)
375 {
376 return mips_processor_reg_names[i];
377 }
378 /* *INDENT-OFF* */
379 /* Names of IDT R3041 registers. */
380
381 char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
391 "fsr", "fir", "",/*"fp"*/ "",
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
394 };
395
396 /* Names of IDT R3051 registers. */
397
398 char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
408 "fsr", "fir", ""/*"fp"*/, "",
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
411 };
412
413 /* Names of IDT R3081 registers. */
414
415 char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
425 "fsr", "fir", ""/*"fp"*/, "",
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
428 };
429
430 /* Names of LSI 33k registers. */
431
432 char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
442 "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445 };
446
447 struct {
448 char *name;
449 char **regnames;
450 } mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
457 { NULL, NULL }
458 };
459 /* *INDENT-ON* */
460
461
462
463
464 /* Table to translate MIPS16 register field to actual register number. */
465 static int mips16_to_32_reg[8] =
466 {16, 17, 2, 3, 4, 5, 6, 7};
467
468 /* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
470 search. */
471
472 static unsigned int heuristic_fence_post = 0;
473
474 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
476 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
484 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
486 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487 #define _PROC_MAGIC_ 0x0F0F0F0F
488 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
490
491 struct linked_proc_info
492 {
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
495 }
496 *linked_proc_desc_table = NULL;
497
498 void
499 mips_print_extra_frame_info (struct frame_info *fi)
500 {
501 if (fi
502 && fi->extra_info
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
505 printf_filtered (" frame pointer is at %s+%s\n",
506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
508 }
509
510 /* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
513
514 static int mips64_transfers_32bit_regs_p = 0;
515
516 static int
517 mips_register_raw_size (int reg_nr)
518 {
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
524 registers. */
525 return 8;
526 else
527 return MIPS_REGSIZE;
528 }
529
530 /* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
532
533 static int
534 mips_register_convertible (int reg_nr)
535 {
536 if (mips64_transfers_32bit_regs_p)
537 return 0;
538 else
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
540 }
541
542 static void
543 mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
545 {
546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
547 memcpy (virt_buf,
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
550 else
551 memcpy (virt_buf,
552 raw_buf,
553 TYPE_LENGTH (virtual_type));
554 }
555
556 static void
557 mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
559 {
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
563 virt_buf,
564 TYPE_LENGTH (virtual_type));
565 else
566 memcpy (raw_buf,
567 virt_buf,
568 TYPE_LENGTH (virtual_type));
569 }
570
571 void
572 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
573 {
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
579 {
580 char temp[4];
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
584 }
585 }
586
587 void
588 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
589 {
590 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
595 {
596 char temp[4];
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
600 }
601 }
602
603 /* Return the GDB type object for the "standard" data type
604 of data in register REG.
605
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
612
613 static struct type *
614 mips_register_virtual_type (int reg)
615 {
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
617 {
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
621 else
622 return builtin_type_ieee_double_little;
623 }
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
628 else
629 {
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
634 else
635 return builtin_type_uint32;
636 }
637 }
638
639 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
640
641 static CORE_ADDR
642 mips_read_sp (void)
643 {
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
645 }
646
647 /* Should the upper word of 64-bit addresses be zeroed? */
648 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
649
650 static int
651 mips_mask_address_p (void)
652 {
653 switch (mask_address_var)
654 {
655 case AUTO_BOOLEAN_TRUE:
656 return 1;
657 case AUTO_BOOLEAN_FALSE:
658 return 0;
659 break;
660 case AUTO_BOOLEAN_AUTO:
661 return MIPS_DEFAULT_MASK_ADDRESS_P;
662 default:
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
665 return -1;
666 }
667 }
668
669 static void
670 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
671 {
672 switch (mask_address_var)
673 {
674 case AUTO_BOOLEAN_TRUE:
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
676 break;
677 case AUTO_BOOLEAN_FALSE:
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
679 break;
680 case AUTO_BOOLEAN_AUTO:
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
683 break;
684 default:
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
687 break;
688 }
689 }
690
691 /* Should call_function allocate stack space for a struct return? */
692
693 static int
694 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
695 {
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
697 }
698
699 static int
700 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
701 {
702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
703 }
704
705 static int
706 mips_o32_use_struct_convention (int gcc_p, struct type *type)
707 {
708 return 1; /* Structures are returned by ref in extra arg0. */
709 }
710
711 /* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
714
715 static int
716 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
717 {
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
720
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
723
724 return 0;
725 }
726
727 static int
728 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
729 {
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
731 }
732
733 static int
734 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
735 {
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
737 }
738
739 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
740
741 static int
742 pc_is_mips16 (bfd_vma memaddr)
743 {
744 struct minimal_symbol *sym;
745
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
748 return 1;
749
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
754 if (sym)
755 return msymbol_is_special (sym);
756 else
757 return 0;
758 }
759
760 /* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
762
763 static CORE_ADDR
764 mips_read_pc (ptid_t ptid)
765 {
766 return read_signed_register_pid (PC_REGNUM, ptid);
767 }
768
769 /* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
771
772 static CORE_ADDR
773 after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
775 {
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
778
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
783 right now. */
784 if (!proc_desc)
785 proc_desc = find_proc_desc (pc, NULL, 0);
786
787 if (proc_desc)
788 {
789 /* If function is frameless, then we need to do it the hard way. I
790 strongly suspect that frameless always means prologueless... */
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
793 return 0;
794 }
795
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
798
799 sal = find_pc_line (func_addr, 0);
800
801 if (sal.end < func_end)
802 return sal.end;
803
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
806
807 return 0;
808 }
809
810 /* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
814
815 static void
816 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
818 {
819 int reg;
820
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
824 {
825 /* It might be possible to use the instruction to
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
832 }
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
836
837 {
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
840 }
841 }
842
843 /* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
847
848 static void
849 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
850 {
851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
852 {
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
855 }
856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
857 {
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
860 }
861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
864 }
865
866
867 /* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
869
870 static t_inst
871 mips_fetch_instruction (CORE_ADDR addr)
872 {
873 char buf[MIPS_INSTLEN];
874 int instlen;
875 int status;
876
877 if (pc_is_mips16 (addr))
878 {
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
881 }
882 else
883 instlen = MIPS_INSTLEN;
884 status = read_memory_nobpt (addr, buf, instlen);
885 if (status)
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
888 }
889
890
891 /* These the fields of 32 bit mips instructions */
892 #define mips32_op(x) (x >> 26)
893 #define itype_op(x) (x >> 26)
894 #define itype_rs(x) ((x >> 21) & 0x1f)
895 #define itype_rt(x) ((x >> 16) & 0x1f)
896 #define itype_immediate(x) (x & 0xffff)
897
898 #define jtype_op(x) (x >> 26)
899 #define jtype_target(x) (x & 0x03ffffff)
900
901 #define rtype_op(x) (x >> 26)
902 #define rtype_rs(x) ((x >> 21) & 0x1f)
903 #define rtype_rt(x) ((x >> 16) & 0x1f)
904 #define rtype_rd(x) ((x >> 11) & 0x1f)
905 #define rtype_shamt(x) ((x >> 6) & 0x1f)
906 #define rtype_funct(x) (x & 0x3f)
907
908 static CORE_ADDR
909 mips32_relative_offset (unsigned long inst)
910 {
911 long x;
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
914 {
915 x |= 0xffff0000; /* sign extension */
916 }
917 x = x << 2;
918 return x;
919 }
920
921 /* Determine whate to set a single step breakpoint while considering
922 branch prediction */
923 static CORE_ADDR
924 mips32_next_pc (CORE_ADDR pc)
925 {
926 unsigned long inst;
927 int op;
928 inst = mips_fetch_instruction (pc);
929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
930 {
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
933 {
934 op = (itype_op (inst) & 0x03);
935 switch (op)
936 {
937 case 0: /* BEQL */
938 goto equal_branch;
939 case 1: /* BNEL */
940 goto neq_branch;
941 case 2: /* BLEZL */
942 goto less_branch;
943 case 3: /* BGTZ */
944 goto greater_branch;
945 default:
946 pc += 4;
947 }
948 }
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
951 {
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
956
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
959 else
960 pc += 8;
961 }
962 else
963 pc += 4; /* Not a branch, next instruction is easy */
964 }
965 else
966 { /* This gets way messy */
967
968 /* Further subdivide into SPECIAL, REGIMM and other */
969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
970 {
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
973 switch (op)
974 {
975 case 8: /* JR */
976 case 9: /* JALR */
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
979 break;
980 default:
981 pc += 4;
982 }
983
984 break; /* end SPECIAL */
985 case 1: /* REGIMM */
986 {
987 op = itype_rt (inst); /* branch condition */
988 switch (op)
989 {
990 case 0: /* BLTZ */
991 case 2: /* BLTZL */
992 case 16: /* BLTZAL */
993 case 18: /* BLTZALL */
994 less_branch:
995 if (read_signed_register (itype_rs (inst)) < 0)
996 pc += mips32_relative_offset (inst) + 4;
997 else
998 pc += 8; /* after the delay slot */
999 break;
1000 case 1: /* BGEZ */
1001 case 3: /* BGEZL */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
1004 greater_equal_branch:
1005 if (read_signed_register (itype_rs (inst)) >= 0)
1006 pc += mips32_relative_offset (inst) + 4;
1007 else
1008 pc += 8; /* after the delay slot */
1009 break;
1010 /* All of the other instructions in the REGIMM category */
1011 default:
1012 pc += 4;
1013 }
1014 }
1015 break; /* end REGIMM */
1016 case 2: /* J */
1017 case 3: /* JAL */
1018 {
1019 unsigned long reg;
1020 reg = jtype_target (inst) << 2;
1021 /* Upper four bits get never changed... */
1022 pc = reg + ((pc + 4) & 0xf0000000);
1023 }
1024 break;
1025 /* FIXME case JALX : */
1026 {
1027 unsigned long reg;
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1031 }
1032 break; /* The new PC will be alternate mode */
1033 case 4: /* BEQ, BEQL */
1034 equal_branch:
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
1037 pc += mips32_relative_offset (inst) + 4;
1038 else
1039 pc += 8;
1040 break;
1041 case 5: /* BNE, BNEL */
1042 neq_branch:
1043 if (read_signed_register (itype_rs (inst)) !=
1044 read_signed_register (itype_rt (inst)))
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8;
1048 break;
1049 case 6: /* BLEZ, BLEZL */
1050 less_zero_branch:
1051 if (read_signed_register (itype_rs (inst) <= 0))
1052 pc += mips32_relative_offset (inst) + 4;
1053 else
1054 pc += 8;
1055 break;
1056 case 7:
1057 default:
1058 greater_branch: /* BGTZ, BGTZL */
1059 if (read_signed_register (itype_rs (inst) > 0))
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8;
1063 break;
1064 } /* switch */
1065 } /* else */
1066 return pc;
1067 } /* mips32_next_pc */
1068
1069 /* Decoding the next place to set a breakpoint is irregular for the
1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1073 either.
1074 */
1075
1076 /* Lots of mips16 instruction formats */
1077 /* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
1079 */
1080 enum mips16_inst_fmts
1081 {
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1104 };
1105 /* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
1107 struct upk_mips16
1108 {
1109 CORE_ADDR offset;
1110 unsigned int regx; /* Function in i8 type */
1111 unsigned int regy;
1112 };
1113
1114
1115 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
1117
1118 static CORE_ADDR
1119 extended_offset (unsigned int extension)
1120 {
1121 CORE_ADDR value;
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1123 value = value << 6;
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1125 value = value << 5;
1126 value |= extension & 0x01f; /* extract 4:0 */
1127 return value;
1128 }
1129
1130 /* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
1134 */
1135 /* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1137
1138
1139 static unsigned int
1140 fetch_mips_16 (CORE_ADDR pc)
1141 {
1142 char buf[8];
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
1146 }
1147
1148 static void
1149 unpack_mips16 (CORE_ADDR pc,
1150 unsigned int extension,
1151 unsigned int inst,
1152 enum mips16_inst_fmts insn_format,
1153 struct upk_mips16 *upk)
1154 {
1155 CORE_ADDR offset;
1156 int regx;
1157 int regy;
1158 switch (insn_format)
1159 {
1160 case itype:
1161 {
1162 CORE_ADDR value;
1163 if (extension)
1164 {
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
1167 value |= inst & 0x7ff; /* eleven bits from instruction */
1168 }
1169 else
1170 {
1171 value = inst & 0x7ff;
1172 /* FIXME : Consider sign extension */
1173 }
1174 offset = value;
1175 regx = -1;
1176 regy = -1;
1177 }
1178 break;
1179 case ritype:
1180 case i8type:
1181 { /* A register identifier and an offset */
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
1184 CORE_ADDR value;
1185 if (extension)
1186 {
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1192 {
1193 value &= ~0x3fff; /* remove the sign bit */
1194 value = -value;
1195 }
1196 }
1197 else
1198 {
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1203 {
1204 value &= 0xef; /* remove the sign bit */
1205 value = -value;
1206 }
1207 }
1208 offset = value;
1209 regy = -1;
1210 break;
1211 }
1212 case jalxtype:
1213 {
1214 unsigned long value;
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1219 value |= nexthalf;
1220 offset = value;
1221 regx = -1;
1222 regy = -1;
1223 break;
1224 }
1225 default:
1226 internal_error (__FILE__, __LINE__,
1227 "bad switch");
1228 }
1229 upk->offset = offset;
1230 upk->regx = regx;
1231 upk->regy = regy;
1232 }
1233
1234
1235 static CORE_ADDR
1236 add_offset_16 (CORE_ADDR pc, int offset)
1237 {
1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1239 }
1240
1241 static CORE_ADDR
1242 extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1244 unsigned int insn)
1245 {
1246 int op = (insn >> 11);
1247 switch (op)
1248 {
1249 case 2: /* Branch */
1250 {
1251 CORE_ADDR offset;
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1255 if (offset & 0x800)
1256 {
1257 offset &= 0xeff;
1258 offset = -offset;
1259 }
1260 pc += (offset << 1) + 2;
1261 break;
1262 }
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1264 {
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1270 else
1271 pc |= 0x01;
1272 break;
1273 }
1274 case 4: /* beqz */
1275 {
1276 struct upk_mips16 upk;
1277 int reg;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1280 if (reg == 0)
1281 pc += (upk.offset << 1) + 2;
1282 else
1283 pc += 2;
1284 break;
1285 }
1286 case 5: /* bnez */
1287 {
1288 struct upk_mips16 upk;
1289 int reg;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1292 if (reg != 0)
1293 pc += (upk.offset << 1) + 2;
1294 else
1295 pc += 2;
1296 break;
1297 }
1298 case 12: /* I8 Formats btez btnez */
1299 {
1300 struct upk_mips16 upk;
1301 int reg;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1309 else
1310 pc += 2;
1311 break;
1312 }
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1314 {
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1317 op = insn & 0x1f;
1318 if (op == 0)
1319 {
1320 int reg;
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1323 switch (upk.regy)
1324 {
1325 case 0:
1326 reg = upk.regx;
1327 break;
1328 case 1:
1329 reg = 31;
1330 break; /* Function return instruction */
1331 case 2:
1332 reg = upk.regx;
1333 break;
1334 default:
1335 reg = 31;
1336 break; /* BOGUS Guess */
1337 }
1338 pc = read_signed_register (reg);
1339 }
1340 else
1341 pc += 2;
1342 break;
1343 }
1344 case 30:
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1347 that. */
1348 {
1349 pc += 2;
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1351 break;
1352 }
1353 default:
1354 {
1355 pc += 2;
1356 break;
1357 }
1358 }
1359 return pc;
1360 }
1361
1362 static CORE_ADDR
1363 mips16_next_pc (CORE_ADDR pc)
1364 {
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1367 }
1368
1369 /* The mips_next_pc function supports single_step when the remote
1370 target monitor or stub is not developed enough to do a single_step.
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
1374 CORE_ADDR
1375 mips_next_pc (CORE_ADDR pc)
1376 {
1377 if (pc & 0x01)
1378 return mips16_next_pc (pc);
1379 else
1380 return mips32_next_pc (pc);
1381 }
1382
1383 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1384 NULL).
1385
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
1392 though.) */
1393
1394 static void
1395 mips_find_saved_regs (struct frame_info *fci)
1396 {
1397 int ireg;
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1400 int kernel_trap;
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1404 t_inst inst;
1405
1406 frame_saved_regs_zalloc (fci);
1407
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412 #ifndef SIGFRAME_BASE
1413 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415 #define SIGFRAME_BASE MIPS_REGSIZE
1416 /* FIXME! Are these correct?? */
1417 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419 #define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1421 #endif
1422 #ifndef SIGFRAME_REG_SIZE
1423 /* FIXME! Is this correct?? */
1424 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1425 #endif
1426 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1427 {
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1429 {
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
1433 }
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1435 {
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1439 }
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1441 return;
1442 }
1443
1444 proc_desc = fci->extra_info->proc_desc;
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1449 return;
1450
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1454
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || (get_frame_type (fci->next) == SIGTRAMP_FRAME))
1460
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
1463
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
1466
1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1468
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1473 && !kernel_trap)
1474 {
1475 /* We need to figure out whether the registers that the proc_desc
1476 claims are saved have been saved yet. */
1477
1478 CORE_ADDR addr;
1479
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1483 int instlen;
1484
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1488
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1492 {
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1496 else
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1498 addr += instlen;
1499 }
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1502 }
1503
1504 /* Fill in the offsets for the registers which gen_mask says
1505 were saved. */
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1508 if (gen_mask & 0x80000000)
1509 {
1510 fci->saved_regs[ireg] = reg_position;
1511 reg_position -= MIPS_SAVED_REGSIZE;
1512 }
1513
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1519 {
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1522 {
1523 int reg;
1524 int sreg_count = (inst >> 6) & 3;
1525
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1528 if (inst & 0x20)
1529 reg_position -= MIPS_SAVED_REGSIZE;
1530
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
1532 for (reg = 16; reg < sreg_count + 16; reg++)
1533 {
1534 fci->saved_regs[reg] = reg_position;
1535 reg_position -= MIPS_SAVED_REGSIZE;
1536 }
1537 }
1538 }
1539
1540 /* Fill in the offsets for the registers which float_mask says
1541 were saved. */
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1543
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1545 saved.
1546
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1549
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1555 bit register. */
1556
1557 if (MIPS_SAVED_REGSIZE == 4)
1558 reg_position += MIPS_SAVED_REGSIZE;
1559
1560 /* Fill in the offsets for the float registers which float_mask says
1561 were saved. */
1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1563 if (float_mask & 0x80000000)
1564 {
1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1566 reg_position -= MIPS_SAVED_REGSIZE;
1567 }
1568
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1570 }
1571
1572 /* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1578
1579 static void
1580 mips_frame_init_saved_regs (struct frame_info *frame)
1581 {
1582 if (frame->saved_regs == NULL)
1583 {
1584 mips_find_saved_regs (frame);
1585 }
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1587 }
1588
1589 static CORE_ADDR
1590 read_next_frame_reg (struct frame_info *fi, int regno)
1591 {
1592 int optimized;
1593 CORE_ADDR addr;
1594 int realnum;
1595 enum lval_type lval;
1596 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1597 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1598 raw_buffer);
1599 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1600 should have a pseudo register range that correspons to the ABI's,
1601 rather than the ISA's, view of registers. These registers would
1602 then implicitly describe their size and hence could be used
1603 without the below munging. */
1604 if (lval == lval_memory)
1605 {
1606 if (regno < 32)
1607 {
1608 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1609 saved. */
1610 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1611 }
1612 }
1613
1614 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1615 }
1616
1617 /* mips_addr_bits_remove - remove useless address bits */
1618
1619 static CORE_ADDR
1620 mips_addr_bits_remove (CORE_ADDR addr)
1621 {
1622 if (GDB_TARGET_IS_MIPS64)
1623 {
1624 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1625 {
1626 /* This hack is a work-around for existing boards using
1627 PMON, the simulator, and any other 64-bit targets that
1628 doesn't have true 64-bit addressing. On these targets,
1629 the upper 32 bits of addresses are ignored by the
1630 hardware. Thus, the PC or SP are likely to have been
1631 sign extended to all 1s by instruction sequences that
1632 load 32-bit addresses. For example, a typical piece of
1633 code that loads an address is this:
1634 lui $r2, <upper 16 bits>
1635 ori $r2, <lower 16 bits>
1636 But the lui sign-extends the value such that the upper 32
1637 bits may be all 1s. The workaround is simply to mask off
1638 these bits. In the future, gcc may be changed to support
1639 true 64-bit addressing, and this masking will have to be
1640 disabled. */
1641 addr &= (CORE_ADDR) 0xffffffff;
1642 }
1643 }
1644 else if (mips_mask_address_p ())
1645 {
1646 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1647 masking off bits, instead, the actual target should be asking
1648 for the address to be converted to a valid pointer. */
1649 /* Even when GDB is configured for some 32-bit targets
1650 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1651 so CORE_ADDR is 64 bits. So we still have to mask off
1652 useless bits from addresses. */
1653 addr &= (CORE_ADDR) 0xffffffff;
1654 }
1655 return addr;
1656 }
1657
1658 /* mips_software_single_step() is called just before we want to resume
1659 the inferior, if we want to single-step it but there is no hardware
1660 or kernel single-step support (MIPS on GNU/Linux for example). We find
1661 the target of the coming instruction and breakpoint it.
1662
1663 single_step is also called just after the inferior stops. If we had
1664 set up a simulated single-step, we undo our damage. */
1665
1666 void
1667 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1668 {
1669 static CORE_ADDR next_pc;
1670 typedef char binsn_quantum[BREAKPOINT_MAX];
1671 static binsn_quantum break_mem;
1672 CORE_ADDR pc;
1673
1674 if (insert_breakpoints_p)
1675 {
1676 pc = read_register (PC_REGNUM);
1677 next_pc = mips_next_pc (pc);
1678
1679 target_insert_breakpoint (next_pc, break_mem);
1680 }
1681 else
1682 target_remove_breakpoint (next_pc, break_mem);
1683 }
1684
1685 static void
1686 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1687 {
1688 CORE_ADDR pc, tmp;
1689
1690 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1691 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1692 tmp = SKIP_TRAMPOLINE_CODE (pc);
1693 prev->pc = tmp ? tmp : pc;
1694 }
1695
1696
1697 static CORE_ADDR
1698 mips_frame_saved_pc (struct frame_info *frame)
1699 {
1700 CORE_ADDR saved_pc;
1701 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1702 /* We have to get the saved pc from the sigcontext
1703 if it is a signal handler frame. */
1704 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1705 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1706
1707 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
1708 {
1709 LONGEST tmp;
1710 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1711 saved_pc = tmp;
1712 }
1713 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1714 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1715 else
1716 saved_pc = read_next_frame_reg (frame, pcreg);
1717
1718 return ADDR_BITS_REMOVE (saved_pc);
1719 }
1720
1721 static struct mips_extra_func_info temp_proc_desc;
1722 static CORE_ADDR temp_saved_regs[NUM_REGS];
1723
1724 /* Set a register's saved stack address in temp_saved_regs. If an address
1725 has already been set for this register, do nothing; this way we will
1726 only recognize the first save of a given register in a function prologue.
1727 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1728
1729 static void
1730 set_reg_offset (int regno, CORE_ADDR offset)
1731 {
1732 if (temp_saved_regs[regno] == 0)
1733 temp_saved_regs[regno] = offset;
1734 }
1735
1736
1737 /* Test whether the PC points to the return instruction at the
1738 end of a function. */
1739
1740 static int
1741 mips_about_to_return (CORE_ADDR pc)
1742 {
1743 if (pc_is_mips16 (pc))
1744 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1745 generates a "jr $ra"; other times it generates code to load
1746 the return address from the stack to an accessible register (such
1747 as $a3), then a "jr" using that register. This second case
1748 is almost impossible to distinguish from an indirect jump
1749 used for switch statements, so we don't even try. */
1750 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1751 else
1752 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1753 }
1754
1755
1756 /* This fencepost looks highly suspicious to me. Removing it also
1757 seems suspicious as it could affect remote debugging across serial
1758 lines. */
1759
1760 static CORE_ADDR
1761 heuristic_proc_start (CORE_ADDR pc)
1762 {
1763 CORE_ADDR start_pc;
1764 CORE_ADDR fence;
1765 int instlen;
1766 int seen_adjsp = 0;
1767
1768 pc = ADDR_BITS_REMOVE (pc);
1769 start_pc = pc;
1770 fence = start_pc - heuristic_fence_post;
1771 if (start_pc == 0)
1772 return 0;
1773
1774 if (heuristic_fence_post == UINT_MAX
1775 || fence < VM_MIN_ADDRESS)
1776 fence = VM_MIN_ADDRESS;
1777
1778 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1779
1780 /* search back for previous return */
1781 for (start_pc -= instlen;; start_pc -= instlen)
1782 if (start_pc < fence)
1783 {
1784 /* It's not clear to me why we reach this point when
1785 stop_soon_quietly, but with this test, at least we
1786 don't print out warnings for every child forked (eg, on
1787 decstation). 22apr93 rich@cygnus.com. */
1788 if (!stop_soon_quietly)
1789 {
1790 static int blurb_printed = 0;
1791
1792 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1793 paddr_nz (pc));
1794
1795 if (!blurb_printed)
1796 {
1797 /* This actually happens frequently in embedded
1798 development, when you first connect to a board
1799 and your stack pointer and pc are nowhere in
1800 particular. This message needs to give people
1801 in that situation enough information to
1802 determine that it's no big deal. */
1803 printf_filtered ("\n\
1804 GDB is unable to find the start of the function at 0x%s\n\
1805 and thus can't determine the size of that function's stack frame.\n\
1806 This means that GDB may be unable to access that stack frame, or\n\
1807 the frames below it.\n\
1808 This problem is most likely caused by an invalid program counter or\n\
1809 stack pointer.\n\
1810 However, if you think GDB should simply search farther back\n\
1811 from 0x%s for code which looks like the beginning of a\n\
1812 function, you can increase the range of the search using the `set\n\
1813 heuristic-fence-post' command.\n",
1814 paddr_nz (pc), paddr_nz (pc));
1815 blurb_printed = 1;
1816 }
1817 }
1818
1819 return 0;
1820 }
1821 else if (pc_is_mips16 (start_pc))
1822 {
1823 unsigned short inst;
1824
1825 /* On MIPS16, any one of the following is likely to be the
1826 start of a function:
1827 entry
1828 addiu sp,-n
1829 daddiu sp,-n
1830 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1831 inst = mips_fetch_instruction (start_pc);
1832 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1833 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1834 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1835 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1836 break;
1837 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1838 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1839 seen_adjsp = 1;
1840 else
1841 seen_adjsp = 0;
1842 }
1843 else if (mips_about_to_return (start_pc))
1844 {
1845 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1846 break;
1847 }
1848
1849 return start_pc;
1850 }
1851
1852 /* Fetch the immediate value from a MIPS16 instruction.
1853 If the previous instruction was an EXTEND, use it to extend
1854 the upper bits of the immediate value. This is a helper function
1855 for mips16_heuristic_proc_desc. */
1856
1857 static int
1858 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1859 unsigned short inst, /* current instruction */
1860 int nbits, /* number of bits in imm field */
1861 int scale, /* scale factor to be applied to imm */
1862 int is_signed) /* is the imm field signed? */
1863 {
1864 int offset;
1865
1866 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1867 {
1868 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1869 if (offset & 0x8000) /* check for negative extend */
1870 offset = 0 - (0x10000 - (offset & 0xffff));
1871 return offset | (inst & 0x1f);
1872 }
1873 else
1874 {
1875 int max_imm = 1 << nbits;
1876 int mask = max_imm - 1;
1877 int sign_bit = max_imm >> 1;
1878
1879 offset = inst & mask;
1880 if (is_signed && (offset & sign_bit))
1881 offset = 0 - (max_imm - offset);
1882 return offset * scale;
1883 }
1884 }
1885
1886
1887 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1888 stream from start_pc to limit_pc. */
1889
1890 static void
1891 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1892 struct frame_info *next_frame, CORE_ADDR sp)
1893 {
1894 CORE_ADDR cur_pc;
1895 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1896 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1897 unsigned inst = 0; /* current instruction */
1898 unsigned entry_inst = 0; /* the entry instruction */
1899 int reg, offset;
1900
1901 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1902 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1903
1904 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1905 {
1906 /* Save the previous instruction. If it's an EXTEND, we'll extract
1907 the immediate offset extension from it in mips16_get_imm. */
1908 prev_inst = inst;
1909
1910 /* Fetch and decode the instruction. */
1911 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1912 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1913 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1914 {
1915 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1916 if (offset < 0) /* negative stack adjustment? */
1917 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1918 else
1919 /* Exit loop if a positive stack adjustment is found, which
1920 usually means that the stack cleanup code in the function
1921 epilogue is reached. */
1922 break;
1923 }
1924 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1925 {
1926 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1927 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1928 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1929 set_reg_offset (reg, sp + offset);
1930 }
1931 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1932 {
1933 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1934 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1935 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1936 set_reg_offset (reg, sp + offset);
1937 }
1938 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1939 {
1940 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1941 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1942 set_reg_offset (RA_REGNUM, sp + offset);
1943 }
1944 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1945 {
1946 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1947 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1948 set_reg_offset (RA_REGNUM, sp + offset);
1949 }
1950 else if (inst == 0x673d) /* move $s1, $sp */
1951 {
1952 frame_addr = sp;
1953 PROC_FRAME_REG (&temp_proc_desc) = 17;
1954 }
1955 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1956 {
1957 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1958 frame_addr = sp + offset;
1959 PROC_FRAME_REG (&temp_proc_desc) = 17;
1960 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1961 }
1962 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1963 {
1964 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1965 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1966 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1967 set_reg_offset (reg, frame_addr + offset);
1968 }
1969 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1970 {
1971 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1972 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1973 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1974 set_reg_offset (reg, frame_addr + offset);
1975 }
1976 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1977 entry_inst = inst; /* save for later processing */
1978 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1979 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1980 }
1981
1982 /* The entry instruction is typically the first instruction in a function,
1983 and it stores registers at offsets relative to the value of the old SP
1984 (before the prologue). But the value of the sp parameter to this
1985 function is the new SP (after the prologue has been executed). So we
1986 can't calculate those offsets until we've seen the entire prologue,
1987 and can calculate what the old SP must have been. */
1988 if (entry_inst != 0)
1989 {
1990 int areg_count = (entry_inst >> 8) & 7;
1991 int sreg_count = (entry_inst >> 6) & 3;
1992
1993 /* The entry instruction always subtracts 32 from the SP. */
1994 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1995
1996 /* Now we can calculate what the SP must have been at the
1997 start of the function prologue. */
1998 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1999
2000 /* Check if a0-a3 were saved in the caller's argument save area. */
2001 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2002 {
2003 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2004 set_reg_offset (reg, sp + offset);
2005 offset += MIPS_SAVED_REGSIZE;
2006 }
2007
2008 /* Check if the ra register was pushed on the stack. */
2009 offset = -4;
2010 if (entry_inst & 0x20)
2011 {
2012 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2013 set_reg_offset (RA_REGNUM, sp + offset);
2014 offset -= MIPS_SAVED_REGSIZE;
2015 }
2016
2017 /* Check if the s0 and s1 registers were pushed on the stack. */
2018 for (reg = 16; reg < sreg_count + 16; reg++)
2019 {
2020 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2021 set_reg_offset (reg, sp + offset);
2022 offset -= MIPS_SAVED_REGSIZE;
2023 }
2024 }
2025 }
2026
2027 static void
2028 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2029 struct frame_info *next_frame, CORE_ADDR sp)
2030 {
2031 CORE_ADDR cur_pc;
2032 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2033 restart:
2034 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2035 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2036 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2037 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2038 {
2039 unsigned long inst, high_word, low_word;
2040 int reg;
2041
2042 /* Fetch the instruction. */
2043 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2044
2045 /* Save some code by pre-extracting some useful fields. */
2046 high_word = (inst >> 16) & 0xffff;
2047 low_word = inst & 0xffff;
2048 reg = high_word & 0x1f;
2049
2050 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2051 || high_word == 0x23bd /* addi $sp,$sp,-i */
2052 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2053 {
2054 if (low_word & 0x8000) /* negative stack adjustment? */
2055 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2056 else
2057 /* Exit loop if a positive stack adjustment is found, which
2058 usually means that the stack cleanup code in the function
2059 epilogue is reached. */
2060 break;
2061 }
2062 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2063 {
2064 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2065 set_reg_offset (reg, sp + low_word);
2066 }
2067 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2068 {
2069 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2070 but the register size used is only 32 bits. Make the address
2071 for the saved register point to the lower 32 bits. */
2072 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2073 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2074 }
2075 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2076 {
2077 /* Old gcc frame, r30 is virtual frame pointer. */
2078 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2079 frame_addr = sp + low_word;
2080 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2081 {
2082 unsigned alloca_adjust;
2083 PROC_FRAME_REG (&temp_proc_desc) = 30;
2084 frame_addr = read_next_frame_reg (next_frame, 30);
2085 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2086 if (alloca_adjust > 0)
2087 {
2088 /* FP > SP + frame_size. This may be because
2089 * of an alloca or somethings similar.
2090 * Fix sp to "pre-alloca" value, and try again.
2091 */
2092 sp += alloca_adjust;
2093 goto restart;
2094 }
2095 }
2096 }
2097 /* move $30,$sp. With different versions of gas this will be either
2098 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2099 Accept any one of these. */
2100 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2101 {
2102 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2103 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2104 {
2105 unsigned alloca_adjust;
2106 PROC_FRAME_REG (&temp_proc_desc) = 30;
2107 frame_addr = read_next_frame_reg (next_frame, 30);
2108 alloca_adjust = (unsigned) (frame_addr - sp);
2109 if (alloca_adjust > 0)
2110 {
2111 /* FP > SP + frame_size. This may be because
2112 * of an alloca or somethings similar.
2113 * Fix sp to "pre-alloca" value, and try again.
2114 */
2115 sp += alloca_adjust;
2116 goto restart;
2117 }
2118 }
2119 }
2120 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2121 {
2122 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2123 set_reg_offset (reg, frame_addr + low_word);
2124 }
2125 }
2126 }
2127
2128 static mips_extra_func_info_t
2129 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2130 struct frame_info *next_frame, int cur_frame)
2131 {
2132 CORE_ADDR sp;
2133
2134 if (cur_frame)
2135 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2136 else
2137 sp = 0;
2138
2139 if (start_pc == 0)
2140 return NULL;
2141 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2142 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2143 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2144 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2145 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2146
2147 if (start_pc + 200 < limit_pc)
2148 limit_pc = start_pc + 200;
2149 if (pc_is_mips16 (start_pc))
2150 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2151 else
2152 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2153 return &temp_proc_desc;
2154 }
2155
2156 struct mips_objfile_private
2157 {
2158 bfd_size_type size;
2159 char *contents;
2160 };
2161
2162 /* Global used to communicate between non_heuristic_proc_desc and
2163 compare_pdr_entries within qsort (). */
2164 static bfd *the_bfd;
2165
2166 static int
2167 compare_pdr_entries (const void *a, const void *b)
2168 {
2169 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2170 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2171
2172 if (lhs < rhs)
2173 return -1;
2174 else if (lhs == rhs)
2175 return 0;
2176 else
2177 return 1;
2178 }
2179
2180 static mips_extra_func_info_t
2181 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2182 {
2183 CORE_ADDR startaddr;
2184 mips_extra_func_info_t proc_desc;
2185 struct block *b = block_for_pc (pc);
2186 struct symbol *sym;
2187 struct obj_section *sec;
2188 struct mips_objfile_private *priv;
2189
2190 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2191 return NULL;
2192
2193 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2194 if (addrptr)
2195 *addrptr = startaddr;
2196
2197 priv = NULL;
2198
2199 sec = find_pc_section (pc);
2200 if (sec != NULL)
2201 {
2202 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2203
2204 /* Search the ".pdr" section generated by GAS. This includes most of
2205 the information normally found in ECOFF PDRs. */
2206
2207 the_bfd = sec->objfile->obfd;
2208 if (priv == NULL
2209 && (the_bfd->format == bfd_object
2210 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2211 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2212 {
2213 /* Right now GAS only outputs the address as a four-byte sequence.
2214 This means that we should not bother with this method on 64-bit
2215 targets (until that is fixed). */
2216
2217 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2218 sizeof (struct mips_objfile_private));
2219 priv->size = 0;
2220 sec->objfile->obj_private = priv;
2221 }
2222 else if (priv == NULL)
2223 {
2224 asection *bfdsec;
2225
2226 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2227 sizeof (struct mips_objfile_private));
2228
2229 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2230 if (bfdsec != NULL)
2231 {
2232 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2233 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2234 priv->size);
2235 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2236 priv->contents, 0, priv->size);
2237
2238 /* In general, the .pdr section is sorted. However, in the
2239 presence of multiple code sections (and other corner cases)
2240 it can become unsorted. Sort it so that we can use a faster
2241 binary search. */
2242 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2243 }
2244 else
2245 priv->size = 0;
2246
2247 sec->objfile->obj_private = priv;
2248 }
2249 the_bfd = NULL;
2250
2251 if (priv->size != 0)
2252 {
2253 int low, mid, high;
2254 char *ptr;
2255
2256 low = 0;
2257 high = priv->size / 32;
2258
2259 do
2260 {
2261 CORE_ADDR pdr_pc;
2262
2263 mid = (low + high) / 2;
2264
2265 ptr = priv->contents + mid * 32;
2266 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2267 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2268 SECT_OFF_TEXT (sec->objfile));
2269 if (pdr_pc == startaddr)
2270 break;
2271 if (pdr_pc > startaddr)
2272 high = mid;
2273 else
2274 low = mid + 1;
2275 }
2276 while (low != high);
2277
2278 if (low != high)
2279 {
2280 struct symbol *sym = find_pc_function (pc);
2281
2282 /* Fill in what we need of the proc_desc. */
2283 proc_desc = (mips_extra_func_info_t)
2284 obstack_alloc (&sec->objfile->psymbol_obstack,
2285 sizeof (struct mips_extra_func_info));
2286 PROC_LOW_ADDR (proc_desc) = startaddr;
2287
2288 /* Only used for dummy frames. */
2289 PROC_HIGH_ADDR (proc_desc) = 0;
2290
2291 PROC_FRAME_OFFSET (proc_desc)
2292 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2293 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2294 ptr + 24);
2295 PROC_FRAME_ADJUST (proc_desc) = 0;
2296 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2297 ptr + 4);
2298 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2299 ptr + 12);
2300 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2301 ptr + 8);
2302 PROC_FREG_OFFSET (proc_desc)
2303 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2304 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2305 ptr + 28);
2306 proc_desc->pdr.isym = (long) sym;
2307
2308 return proc_desc;
2309 }
2310 }
2311 }
2312
2313 if (b == NULL)
2314 return NULL;
2315
2316 if (startaddr > BLOCK_START (b))
2317 {
2318 /* This is the "pathological" case referred to in a comment in
2319 print_frame_info. It might be better to move this check into
2320 symbol reading. */
2321 return NULL;
2322 }
2323
2324 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2325
2326 /* If we never found a PDR for this function in symbol reading, then
2327 examine prologues to find the information. */
2328 if (sym)
2329 {
2330 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2331 if (PROC_FRAME_REG (proc_desc) == -1)
2332 return NULL;
2333 else
2334 return proc_desc;
2335 }
2336 else
2337 return NULL;
2338 }
2339
2340
2341 static mips_extra_func_info_t
2342 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2343 {
2344 mips_extra_func_info_t proc_desc;
2345 CORE_ADDR startaddr = 0;
2346
2347 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2348
2349 if (proc_desc)
2350 {
2351 /* IF this is the topmost frame AND
2352 * (this proc does not have debugging information OR
2353 * the PC is in the procedure prologue)
2354 * THEN create a "heuristic" proc_desc (by analyzing
2355 * the actual code) to replace the "official" proc_desc.
2356 */
2357 if (next_frame == NULL)
2358 {
2359 struct symtab_and_line val;
2360 struct symbol *proc_symbol =
2361 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2362
2363 if (proc_symbol)
2364 {
2365 val = find_pc_line (BLOCK_START
2366 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2367 0);
2368 val.pc = val.end ? val.end : pc;
2369 }
2370 if (!proc_symbol || pc < val.pc)
2371 {
2372 mips_extra_func_info_t found_heuristic =
2373 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2374 pc, next_frame, cur_frame);
2375 if (found_heuristic)
2376 proc_desc = found_heuristic;
2377 }
2378 }
2379 }
2380 else
2381 {
2382 /* Is linked_proc_desc_table really necessary? It only seems to be used
2383 by procedure call dummys. However, the procedures being called ought
2384 to have their own proc_descs, and even if they don't,
2385 heuristic_proc_desc knows how to create them! */
2386
2387 register struct linked_proc_info *link;
2388
2389 for (link = linked_proc_desc_table; link; link = link->next)
2390 if (PROC_LOW_ADDR (&link->info) <= pc
2391 && PROC_HIGH_ADDR (&link->info) > pc)
2392 return &link->info;
2393
2394 if (startaddr == 0)
2395 startaddr = heuristic_proc_start (pc);
2396
2397 proc_desc =
2398 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2399 }
2400 return proc_desc;
2401 }
2402
2403 static CORE_ADDR
2404 get_frame_pointer (struct frame_info *frame,
2405 mips_extra_func_info_t proc_desc)
2406 {
2407 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2408 PROC_FRAME_REG (proc_desc)) +
2409 PROC_FRAME_OFFSET (proc_desc) -
2410 PROC_FRAME_ADJUST (proc_desc));
2411 }
2412
2413 static mips_extra_func_info_t cached_proc_desc;
2414
2415 static CORE_ADDR
2416 mips_frame_chain (struct frame_info *frame)
2417 {
2418 mips_extra_func_info_t proc_desc;
2419 CORE_ADDR tmp;
2420 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2421
2422 if (saved_pc == 0 || inside_entry_file (saved_pc))
2423 return 0;
2424
2425 /* Check if the PC is inside a call stub. If it is, fetch the
2426 PC of the caller of that stub. */
2427 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2428 saved_pc = tmp;
2429
2430 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2431 {
2432 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2433 is well, frame->frame the bottom of the current frame will
2434 contain that value. */
2435 return frame->frame;
2436 }
2437
2438 /* Look up the procedure descriptor for this PC. */
2439 proc_desc = find_proc_desc (saved_pc, frame, 1);
2440 if (!proc_desc)
2441 return 0;
2442
2443 cached_proc_desc = proc_desc;
2444
2445 /* If no frame pointer and frame size is zero, we must be at end
2446 of stack (or otherwise hosed). If we don't check frame size,
2447 we loop forever if we see a zero size frame. */
2448 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2449 && PROC_FRAME_OFFSET (proc_desc) == 0
2450 /* The previous frame from a sigtramp frame might be frameless
2451 and have frame size zero. */
2452 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2453 /* For a generic dummy frame, let get_frame_pointer() unwind a
2454 register value saved as part of the dummy frame call. */
2455 && !(DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0)))
2456 return 0;
2457 else
2458 return get_frame_pointer (frame, proc_desc);
2459 }
2460
2461 static void
2462 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2463 {
2464 int regnum;
2465
2466 /* Use proc_desc calculated in frame_chain */
2467 mips_extra_func_info_t proc_desc =
2468 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2469
2470 fci->extra_info = (struct frame_extra_info *)
2471 frame_obstack_alloc (sizeof (struct frame_extra_info));
2472
2473 fci->saved_regs = NULL;
2474 fci->extra_info->proc_desc =
2475 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2476 if (proc_desc)
2477 {
2478 /* Fixup frame-pointer - only needed for top frame */
2479 /* This may not be quite right, if proc has a real frame register.
2480 Get the value of the frame relative sp, procedure might have been
2481 interrupted by a signal at it's very start. */
2482 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2483 && !PROC_DESC_IS_DUMMY (proc_desc))
2484 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2485 else if (DEPRECATED_PC_IN_CALL_DUMMY (fci->pc, 0, 0))
2486 /* Do not ``fix'' fci->frame. It will have the value of the
2487 generic dummy frame's top-of-stack (since the draft
2488 fci->frame is obtained by returning the unwound stack
2489 pointer) and that is what we want. That way the fci->frame
2490 value will match the top-of-stack value that was saved as
2491 part of the dummy frames data. */
2492 /* Do nothing. */;
2493 else
2494 fci->frame = get_frame_pointer (fci->next, proc_desc);
2495
2496 if (proc_desc == &temp_proc_desc)
2497 {
2498 char *name;
2499
2500 /* Do not set the saved registers for a sigtramp frame,
2501 mips_find_saved_registers will do that for us. We can't
2502 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2503 yet set. */
2504 /* FIXME: cagney/2002-11-18: This problem will go away once
2505 frame.c:get_prev_frame() is modified to set the frame's
2506 type before calling functions like this. */
2507 find_pc_partial_function (fci->pc, &name,
2508 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2509 if (!PC_IN_SIGTRAMP (fci->pc, name))
2510 {
2511 frame_saved_regs_zalloc (fci);
2512 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2513 fci->saved_regs[PC_REGNUM]
2514 = fci->saved_regs[RA_REGNUM];
2515 /* Set value of previous frame's stack pointer. Remember that
2516 saved_regs[SP_REGNUM] is special in that it contains the
2517 value of the stack pointer register. The other saved_regs
2518 values are addresses (in the inferior) at which a given
2519 register's value may be found. */
2520 fci->saved_regs[SP_REGNUM] = fci->frame;
2521 }
2522 }
2523
2524 /* hack: if argument regs are saved, guess these contain args */
2525 /* assume we can't tell how many args for now */
2526 fci->extra_info->num_args = -1;
2527 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2528 {
2529 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2530 {
2531 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2532 break;
2533 }
2534 }
2535 }
2536 }
2537
2538 /* MIPS stack frames are almost impenetrable. When execution stops,
2539 we basically have to look at symbol information for the function
2540 that we stopped in, which tells us *which* register (if any) is
2541 the base of the frame pointer, and what offset from that register
2542 the frame itself is at.
2543
2544 This presents a problem when trying to examine a stack in memory
2545 (that isn't executing at the moment), using the "frame" command. We
2546 don't have a PC, nor do we have any registers except SP.
2547
2548 This routine takes two arguments, SP and PC, and tries to make the
2549 cached frames look as if these two arguments defined a frame on the
2550 cache. This allows the rest of info frame to extract the important
2551 arguments without difficulty. */
2552
2553 struct frame_info *
2554 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2555 {
2556 if (argc != 2)
2557 error ("MIPS frame specifications require two arguments: sp and pc");
2558
2559 return create_new_frame (argv[0], argv[1]);
2560 }
2561
2562 /* According to the current ABI, should the type be passed in a
2563 floating-point register (assuming that there is space)? When there
2564 is no FPU, FP are not even considered as possibile candidates for
2565 FP registers and, consequently this returns false - forces FP
2566 arguments into integer registers. */
2567
2568 static int
2569 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2570 {
2571 return ((typecode == TYPE_CODE_FLT
2572 || (MIPS_EABI
2573 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2574 && TYPE_NFIELDS (arg_type) == 1
2575 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2576 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2577 }
2578
2579 /* On o32, argument passing in GPRs depends on the alignment of the type being
2580 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2581
2582 static int
2583 mips_type_needs_double_align (struct type *type)
2584 {
2585 enum type_code typecode = TYPE_CODE (type);
2586
2587 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2588 return 1;
2589 else if (typecode == TYPE_CODE_STRUCT)
2590 {
2591 if (TYPE_NFIELDS (type) < 1)
2592 return 0;
2593 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2594 }
2595 else if (typecode == TYPE_CODE_UNION)
2596 {
2597 int i, n;
2598
2599 n = TYPE_NFIELDS (type);
2600 for (i = 0; i < n; i++)
2601 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2602 return 1;
2603 return 0;
2604 }
2605 return 0;
2606 }
2607
2608 /* Macros to round N up or down to the next A boundary;
2609 A must be a power of two. */
2610
2611 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2612 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2613
2614 /* Adjust the address downward (direction of stack growth) so that it
2615 is correctly aligned for a new stack frame. */
2616 static CORE_ADDR
2617 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2618 {
2619 return ROUND_DOWN (addr, 16);
2620 }
2621
2622 static CORE_ADDR
2623 mips_eabi_push_arguments (int nargs,
2624 struct value **args,
2625 CORE_ADDR sp,
2626 int struct_return,
2627 CORE_ADDR struct_addr)
2628 {
2629 int argreg;
2630 int float_argreg;
2631 int argnum;
2632 int len = 0;
2633 int stack_offset = 0;
2634
2635 /* First ensure that the stack and structure return address (if any)
2636 are properly aligned. The stack has to be at least 64-bit
2637 aligned even on 32-bit machines, because doubles must be 64-bit
2638 aligned. For n32 and n64, stack frames need to be 128-bit
2639 aligned, so we round to this widest known alignment. */
2640
2641 sp = ROUND_DOWN (sp, 16);
2642 struct_addr = ROUND_DOWN (struct_addr, 16);
2643
2644 /* Now make space on the stack for the args. We allocate more
2645 than necessary for EABI, because the first few arguments are
2646 passed in registers, but that's OK. */
2647 for (argnum = 0; argnum < nargs; argnum++)
2648 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2649 MIPS_STACK_ARGSIZE);
2650 sp -= ROUND_UP (len, 16);
2651
2652 if (mips_debug)
2653 fprintf_unfiltered (gdb_stdlog,
2654 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2655 paddr_nz (sp), ROUND_UP (len, 16));
2656
2657 /* Initialize the integer and float register pointers. */
2658 argreg = A0_REGNUM;
2659 float_argreg = FPA0_REGNUM;
2660
2661 /* The struct_return pointer occupies the first parameter-passing reg. */
2662 if (struct_return)
2663 {
2664 if (mips_debug)
2665 fprintf_unfiltered (gdb_stdlog,
2666 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2667 argreg, paddr_nz (struct_addr));
2668 write_register (argreg++, struct_addr);
2669 }
2670
2671 /* Now load as many as possible of the first arguments into
2672 registers, and push the rest onto the stack. Loop thru args
2673 from first to last. */
2674 for (argnum = 0; argnum < nargs; argnum++)
2675 {
2676 char *val;
2677 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2678 struct value *arg = args[argnum];
2679 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2680 int len = TYPE_LENGTH (arg_type);
2681 enum type_code typecode = TYPE_CODE (arg_type);
2682
2683 if (mips_debug)
2684 fprintf_unfiltered (gdb_stdlog,
2685 "mips_eabi_push_arguments: %d len=%d type=%d",
2686 argnum + 1, len, (int) typecode);
2687
2688 /* The EABI passes structures that do not fit in a register by
2689 reference. */
2690 if (len > MIPS_SAVED_REGSIZE
2691 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2692 {
2693 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2694 typecode = TYPE_CODE_PTR;
2695 len = MIPS_SAVED_REGSIZE;
2696 val = valbuf;
2697 if (mips_debug)
2698 fprintf_unfiltered (gdb_stdlog, " push");
2699 }
2700 else
2701 val = (char *) VALUE_CONTENTS (arg);
2702
2703 /* 32-bit ABIs always start floating point arguments in an
2704 even-numbered floating point register. Round the FP register
2705 up before the check to see if there are any FP registers
2706 left. Non MIPS_EABI targets also pass the FP in the integer
2707 registers so also round up normal registers. */
2708 if (!FP_REGISTER_DOUBLE
2709 && fp_register_arg_p (typecode, arg_type))
2710 {
2711 if ((float_argreg & 1))
2712 float_argreg++;
2713 }
2714
2715 /* Floating point arguments passed in registers have to be
2716 treated specially. On 32-bit architectures, doubles
2717 are passed in register pairs; the even register gets
2718 the low word, and the odd register gets the high word.
2719 On non-EABI processors, the first two floating point arguments are
2720 also copied to general registers, because MIPS16 functions
2721 don't use float registers for arguments. This duplication of
2722 arguments in general registers can't hurt non-MIPS16 functions
2723 because those registers are normally skipped. */
2724 /* MIPS_EABI squeezes a struct that contains a single floating
2725 point value into an FP register instead of pushing it onto the
2726 stack. */
2727 if (fp_register_arg_p (typecode, arg_type)
2728 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2729 {
2730 if (!FP_REGISTER_DOUBLE && len == 8)
2731 {
2732 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2733 unsigned long regval;
2734
2735 /* Write the low word of the double to the even register(s). */
2736 regval = extract_unsigned_integer (val + low_offset, 4);
2737 if (mips_debug)
2738 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2739 float_argreg, phex (regval, 4));
2740 write_register (float_argreg++, regval);
2741
2742 /* Write the high word of the double to the odd register(s). */
2743 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2744 if (mips_debug)
2745 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2746 float_argreg, phex (regval, 4));
2747 write_register (float_argreg++, regval);
2748 }
2749 else
2750 {
2751 /* This is a floating point value that fits entirely
2752 in a single register. */
2753 /* On 32 bit ABI's the float_argreg is further adjusted
2754 above to ensure that it is even register aligned. */
2755 LONGEST regval = extract_unsigned_integer (val, len);
2756 if (mips_debug)
2757 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2758 float_argreg, phex (regval, len));
2759 write_register (float_argreg++, regval);
2760 }
2761 }
2762 else
2763 {
2764 /* Copy the argument to general registers or the stack in
2765 register-sized pieces. Large arguments are split between
2766 registers and stack. */
2767 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2768 are treated specially: Irix cc passes them in registers
2769 where gcc sometimes puts them on the stack. For maximum
2770 compatibility, we will put them in both places. */
2771 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2772 (len % MIPS_SAVED_REGSIZE != 0));
2773
2774 /* Note: Floating-point values that didn't fit into an FP
2775 register are only written to memory. */
2776 while (len > 0)
2777 {
2778 /* Remember if the argument was written to the stack. */
2779 int stack_used_p = 0;
2780 int partial_len =
2781 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2782
2783 if (mips_debug)
2784 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2785 partial_len);
2786
2787 /* Write this portion of the argument to the stack. */
2788 if (argreg > MIPS_LAST_ARG_REGNUM
2789 || odd_sized_struct
2790 || fp_register_arg_p (typecode, arg_type))
2791 {
2792 /* Should shorter than int integer values be
2793 promoted to int before being stored? */
2794 int longword_offset = 0;
2795 CORE_ADDR addr;
2796 stack_used_p = 1;
2797 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2798 {
2799 if (MIPS_STACK_ARGSIZE == 8 &&
2800 (typecode == TYPE_CODE_INT ||
2801 typecode == TYPE_CODE_PTR ||
2802 typecode == TYPE_CODE_FLT) && len <= 4)
2803 longword_offset = MIPS_STACK_ARGSIZE - len;
2804 else if ((typecode == TYPE_CODE_STRUCT ||
2805 typecode == TYPE_CODE_UNION) &&
2806 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2807 longword_offset = MIPS_STACK_ARGSIZE - len;
2808 }
2809
2810 if (mips_debug)
2811 {
2812 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2813 paddr_nz (stack_offset));
2814 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2815 paddr_nz (longword_offset));
2816 }
2817
2818 addr = sp + stack_offset + longword_offset;
2819
2820 if (mips_debug)
2821 {
2822 int i;
2823 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2824 paddr_nz (addr));
2825 for (i = 0; i < partial_len; i++)
2826 {
2827 fprintf_unfiltered (gdb_stdlog, "%02x",
2828 val[i] & 0xff);
2829 }
2830 }
2831 write_memory (addr, val, partial_len);
2832 }
2833
2834 /* Note!!! This is NOT an else clause. Odd sized
2835 structs may go thru BOTH paths. Floating point
2836 arguments will not. */
2837 /* Write this portion of the argument to a general
2838 purpose register. */
2839 if (argreg <= MIPS_LAST_ARG_REGNUM
2840 && !fp_register_arg_p (typecode, arg_type))
2841 {
2842 LONGEST regval = extract_unsigned_integer (val, partial_len);
2843
2844 if (mips_debug)
2845 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2846 argreg,
2847 phex (regval, MIPS_SAVED_REGSIZE));
2848 write_register (argreg, regval);
2849 argreg++;
2850 }
2851
2852 len -= partial_len;
2853 val += partial_len;
2854
2855 /* Compute the the offset into the stack at which we
2856 will copy the next parameter.
2857
2858 In the new EABI (and the NABI32), the stack_offset
2859 only needs to be adjusted when it has been used. */
2860
2861 if (stack_used_p)
2862 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2863 }
2864 }
2865 if (mips_debug)
2866 fprintf_unfiltered (gdb_stdlog, "\n");
2867 }
2868
2869 /* Return adjusted stack pointer. */
2870 return sp;
2871 }
2872
2873 /* N32/N64 version of push_arguments. */
2874
2875 static CORE_ADDR
2876 mips_n32n64_push_arguments (int nargs,
2877 struct value **args,
2878 CORE_ADDR sp,
2879 int struct_return,
2880 CORE_ADDR struct_addr)
2881 {
2882 int argreg;
2883 int float_argreg;
2884 int argnum;
2885 int len = 0;
2886 int stack_offset = 0;
2887
2888 /* First ensure that the stack and structure return address (if any)
2889 are properly aligned. The stack has to be at least 64-bit
2890 aligned even on 32-bit machines, because doubles must be 64-bit
2891 aligned. For n32 and n64, stack frames need to be 128-bit
2892 aligned, so we round to this widest known alignment. */
2893
2894 sp = ROUND_DOWN (sp, 16);
2895 struct_addr = ROUND_DOWN (struct_addr, 16);
2896
2897 /* Now make space on the stack for the args. */
2898 for (argnum = 0; argnum < nargs; argnum++)
2899 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2900 MIPS_STACK_ARGSIZE);
2901 sp -= ROUND_UP (len, 16);
2902
2903 if (mips_debug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2906 paddr_nz (sp), ROUND_UP (len, 16));
2907
2908 /* Initialize the integer and float register pointers. */
2909 argreg = A0_REGNUM;
2910 float_argreg = FPA0_REGNUM;
2911
2912 /* The struct_return pointer occupies the first parameter-passing reg. */
2913 if (struct_return)
2914 {
2915 if (mips_debug)
2916 fprintf_unfiltered (gdb_stdlog,
2917 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2918 argreg, paddr_nz (struct_addr));
2919 write_register (argreg++, struct_addr);
2920 }
2921
2922 /* Now load as many as possible of the first arguments into
2923 registers, and push the rest onto the stack. Loop thru args
2924 from first to last. */
2925 for (argnum = 0; argnum < nargs; argnum++)
2926 {
2927 char *val;
2928 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2929 struct value *arg = args[argnum];
2930 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2931 int len = TYPE_LENGTH (arg_type);
2932 enum type_code typecode = TYPE_CODE (arg_type);
2933
2934 if (mips_debug)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "mips_n32n64_push_arguments: %d len=%d type=%d",
2937 argnum + 1, len, (int) typecode);
2938
2939 val = (char *) VALUE_CONTENTS (arg);
2940
2941 if (fp_register_arg_p (typecode, arg_type)
2942 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2943 {
2944 /* This is a floating point value that fits entirely
2945 in a single register. */
2946 /* On 32 bit ABI's the float_argreg is further adjusted
2947 above to ensure that it is even register aligned. */
2948 LONGEST regval = extract_unsigned_integer (val, len);
2949 if (mips_debug)
2950 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2951 float_argreg, phex (regval, len));
2952 write_register (float_argreg++, regval);
2953
2954 if (mips_debug)
2955 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2956 argreg, phex (regval, len));
2957 write_register (argreg, regval);
2958 argreg += 1;
2959 }
2960 else
2961 {
2962 /* Copy the argument to general registers or the stack in
2963 register-sized pieces. Large arguments are split between
2964 registers and stack. */
2965 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2966 are treated specially: Irix cc passes them in registers
2967 where gcc sometimes puts them on the stack. For maximum
2968 compatibility, we will put them in both places. */
2969 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2970 (len % MIPS_SAVED_REGSIZE != 0));
2971 /* Note: Floating-point values that didn't fit into an FP
2972 register are only written to memory. */
2973 while (len > 0)
2974 {
2975 /* Rememer if the argument was written to the stack. */
2976 int stack_used_p = 0;
2977 int partial_len = len < MIPS_SAVED_REGSIZE ?
2978 len : MIPS_SAVED_REGSIZE;
2979
2980 if (mips_debug)
2981 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2982 partial_len);
2983
2984 /* Write this portion of the argument to the stack. */
2985 if (argreg > MIPS_LAST_ARG_REGNUM
2986 || odd_sized_struct
2987 || fp_register_arg_p (typecode, arg_type))
2988 {
2989 /* Should shorter than int integer values be
2990 promoted to int before being stored? */
2991 int longword_offset = 0;
2992 CORE_ADDR addr;
2993 stack_used_p = 1;
2994 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2995 {
2996 if (MIPS_STACK_ARGSIZE == 8 &&
2997 (typecode == TYPE_CODE_INT ||
2998 typecode == TYPE_CODE_PTR ||
2999 typecode == TYPE_CODE_FLT) && len <= 4)
3000 longword_offset = MIPS_STACK_ARGSIZE - len;
3001 }
3002
3003 if (mips_debug)
3004 {
3005 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3006 paddr_nz (stack_offset));
3007 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3008 paddr_nz (longword_offset));
3009 }
3010
3011 addr = sp + stack_offset + longword_offset;
3012
3013 if (mips_debug)
3014 {
3015 int i;
3016 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3017 paddr_nz (addr));
3018 for (i = 0; i < partial_len; i++)
3019 {
3020 fprintf_unfiltered (gdb_stdlog, "%02x",
3021 val[i] & 0xff);
3022 }
3023 }
3024 write_memory (addr, val, partial_len);
3025 }
3026
3027 /* Note!!! This is NOT an else clause. Odd sized
3028 structs may go thru BOTH paths. Floating point
3029 arguments will not. */
3030 /* Write this portion of the argument to a general
3031 purpose register. */
3032 if (argreg <= MIPS_LAST_ARG_REGNUM
3033 && !fp_register_arg_p (typecode, arg_type))
3034 {
3035 LONGEST regval = extract_unsigned_integer (val, partial_len);
3036
3037 /* A non-floating-point argument being passed in a
3038 general register. If a struct or union, and if
3039 the remaining length is smaller than the register
3040 size, we have to adjust the register value on
3041 big endian targets.
3042
3043 It does not seem to be necessary to do the
3044 same for integral types.
3045
3046 cagney/2001-07-23: gdb/179: Also, GCC, when
3047 outputting LE O32 with sizeof (struct) <
3048 MIPS_SAVED_REGSIZE, generates a left shift as
3049 part of storing the argument in a register a
3050 register (the left shift isn't generated when
3051 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3052 is quite possible that this is GCC contradicting
3053 the LE/O32 ABI, GDB has not been adjusted to
3054 accommodate this. Either someone needs to
3055 demonstrate that the LE/O32 ABI specifies such a
3056 left shift OR this new ABI gets identified as
3057 such and GDB gets tweaked accordingly. */
3058
3059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3060 && partial_len < MIPS_SAVED_REGSIZE
3061 && (typecode == TYPE_CODE_STRUCT ||
3062 typecode == TYPE_CODE_UNION))
3063 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3064 TARGET_CHAR_BIT);
3065
3066 if (mips_debug)
3067 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3068 argreg,
3069 phex (regval, MIPS_SAVED_REGSIZE));
3070 write_register (argreg, regval);
3071 argreg++;
3072 }
3073
3074 len -= partial_len;
3075 val += partial_len;
3076
3077 /* Compute the the offset into the stack at which we
3078 will copy the next parameter.
3079
3080 In N32 (N64?), the stack_offset only needs to be
3081 adjusted when it has been used. */
3082
3083 if (stack_used_p)
3084 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3085 }
3086 }
3087 if (mips_debug)
3088 fprintf_unfiltered (gdb_stdlog, "\n");
3089 }
3090
3091 /* Return adjusted stack pointer. */
3092 return sp;
3093 }
3094
3095 /* O32 version of push_arguments. */
3096
3097 static CORE_ADDR
3098 mips_o32_push_arguments (int nargs,
3099 struct value **args,
3100 CORE_ADDR sp,
3101 int struct_return,
3102 CORE_ADDR struct_addr)
3103 {
3104 int argreg;
3105 int float_argreg;
3106 int argnum;
3107 int len = 0;
3108 int stack_offset = 0;
3109
3110 /* First ensure that the stack and structure return address (if any)
3111 are properly aligned. The stack has to be at least 64-bit
3112 aligned even on 32-bit machines, because doubles must be 64-bit
3113 aligned. For n32 and n64, stack frames need to be 128-bit
3114 aligned, so we round to this widest known alignment. */
3115
3116 sp = ROUND_DOWN (sp, 16);
3117 struct_addr = ROUND_DOWN (struct_addr, 16);
3118
3119 /* Now make space on the stack for the args. */
3120 for (argnum = 0; argnum < nargs; argnum++)
3121 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3122 MIPS_STACK_ARGSIZE);
3123 sp -= ROUND_UP (len, 16);
3124
3125 if (mips_debug)
3126 fprintf_unfiltered (gdb_stdlog,
3127 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3128 paddr_nz (sp), ROUND_UP (len, 16));
3129
3130 /* Initialize the integer and float register pointers. */
3131 argreg = A0_REGNUM;
3132 float_argreg = FPA0_REGNUM;
3133
3134 /* The struct_return pointer occupies the first parameter-passing reg. */
3135 if (struct_return)
3136 {
3137 if (mips_debug)
3138 fprintf_unfiltered (gdb_stdlog,
3139 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3140 argreg, paddr_nz (struct_addr));
3141 write_register (argreg++, struct_addr);
3142 stack_offset += MIPS_STACK_ARGSIZE;
3143 }
3144
3145 /* Now load as many as possible of the first arguments into
3146 registers, and push the rest onto the stack. Loop thru args
3147 from first to last. */
3148 for (argnum = 0; argnum < nargs; argnum++)
3149 {
3150 char *val;
3151 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3152 struct value *arg = args[argnum];
3153 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3154 int len = TYPE_LENGTH (arg_type);
3155 enum type_code typecode = TYPE_CODE (arg_type);
3156
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "mips_o32_push_arguments: %d len=%d type=%d",
3160 argnum + 1, len, (int) typecode);
3161
3162 val = (char *) VALUE_CONTENTS (arg);
3163
3164 /* 32-bit ABIs always start floating point arguments in an
3165 even-numbered floating point register. Round the FP register
3166 up before the check to see if there are any FP registers
3167 left. O32/O64 targets also pass the FP in the integer
3168 registers so also round up normal registers. */
3169 if (!FP_REGISTER_DOUBLE
3170 && fp_register_arg_p (typecode, arg_type))
3171 {
3172 if ((float_argreg & 1))
3173 float_argreg++;
3174 }
3175
3176 /* Floating point arguments passed in registers have to be
3177 treated specially. On 32-bit architectures, doubles
3178 are passed in register pairs; the even register gets
3179 the low word, and the odd register gets the high word.
3180 On O32/O64, the first two floating point arguments are
3181 also copied to general registers, because MIPS16 functions
3182 don't use float registers for arguments. This duplication of
3183 arguments in general registers can't hurt non-MIPS16 functions
3184 because those registers are normally skipped. */
3185
3186 if (fp_register_arg_p (typecode, arg_type)
3187 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3188 {
3189 if (!FP_REGISTER_DOUBLE && len == 8)
3190 {
3191 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3192 unsigned long regval;
3193
3194 /* Write the low word of the double to the even register(s). */
3195 regval = extract_unsigned_integer (val + low_offset, 4);
3196 if (mips_debug)
3197 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3198 float_argreg, phex (regval, 4));
3199 write_register (float_argreg++, regval);
3200 if (mips_debug)
3201 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3202 argreg, phex (regval, 4));
3203 write_register (argreg++, regval);
3204
3205 /* Write the high word of the double to the odd register(s). */
3206 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3207 if (mips_debug)
3208 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3209 float_argreg, phex (regval, 4));
3210 write_register (float_argreg++, regval);
3211
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3214 argreg, phex (regval, 4));
3215 write_register (argreg++, regval);
3216 }
3217 else
3218 {
3219 /* This is a floating point value that fits entirely
3220 in a single register. */
3221 /* On 32 bit ABI's the float_argreg is further adjusted
3222 above to ensure that it is even register aligned. */
3223 LONGEST regval = extract_unsigned_integer (val, len);
3224 if (mips_debug)
3225 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3226 float_argreg, phex (regval, len));
3227 write_register (float_argreg++, regval);
3228 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3229 registers for each argument. The below is (my
3230 guess) to ensure that the corresponding integer
3231 register has reserved the same space. */
3232 if (mips_debug)
3233 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3234 argreg, phex (regval, len));
3235 write_register (argreg, regval);
3236 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3237 }
3238 /* Reserve space for the FP register. */
3239 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3240 }
3241 else
3242 {
3243 /* Copy the argument to general registers or the stack in
3244 register-sized pieces. Large arguments are split between
3245 registers and stack. */
3246 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3247 are treated specially: Irix cc passes them in registers
3248 where gcc sometimes puts them on the stack. For maximum
3249 compatibility, we will put them in both places. */
3250 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3251 (len % MIPS_SAVED_REGSIZE != 0));
3252 /* Structures should be aligned to eight bytes (even arg registers)
3253 on MIPS_ABI_O32, if their first member has double precision. */
3254 if (MIPS_SAVED_REGSIZE < 8
3255 && mips_type_needs_double_align (arg_type))
3256 {
3257 if ((argreg & 1))
3258 argreg++;
3259 }
3260 /* Note: Floating-point values that didn't fit into an FP
3261 register are only written to memory. */
3262 while (len > 0)
3263 {
3264 /* Remember if the argument was written to the stack. */
3265 int stack_used_p = 0;
3266 int partial_len =
3267 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3268
3269 if (mips_debug)
3270 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3271 partial_len);
3272
3273 /* Write this portion of the argument to the stack. */
3274 if (argreg > MIPS_LAST_ARG_REGNUM
3275 || odd_sized_struct
3276 || fp_register_arg_p (typecode, arg_type))
3277 {
3278 /* Should shorter than int integer values be
3279 promoted to int before being stored? */
3280 int longword_offset = 0;
3281 CORE_ADDR addr;
3282 stack_used_p = 1;
3283 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3284 {
3285 if (MIPS_STACK_ARGSIZE == 8 &&
3286 (typecode == TYPE_CODE_INT ||
3287 typecode == TYPE_CODE_PTR ||
3288 typecode == TYPE_CODE_FLT) && len <= 4)
3289 longword_offset = MIPS_STACK_ARGSIZE - len;
3290 }
3291
3292 if (mips_debug)
3293 {
3294 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3295 paddr_nz (stack_offset));
3296 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3297 paddr_nz (longword_offset));
3298 }
3299
3300 addr = sp + stack_offset + longword_offset;
3301
3302 if (mips_debug)
3303 {
3304 int i;
3305 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3306 paddr_nz (addr));
3307 for (i = 0; i < partial_len; i++)
3308 {
3309 fprintf_unfiltered (gdb_stdlog, "%02x",
3310 val[i] & 0xff);
3311 }
3312 }
3313 write_memory (addr, val, partial_len);
3314 }
3315
3316 /* Note!!! This is NOT an else clause. Odd sized
3317 structs may go thru BOTH paths. Floating point
3318 arguments will not. */
3319 /* Write this portion of the argument to a general
3320 purpose register. */
3321 if (argreg <= MIPS_LAST_ARG_REGNUM
3322 && !fp_register_arg_p (typecode, arg_type))
3323 {
3324 LONGEST regval = extract_signed_integer (val, partial_len);
3325 /* Value may need to be sign extended, because
3326 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3327
3328 /* A non-floating-point argument being passed in a
3329 general register. If a struct or union, and if
3330 the remaining length is smaller than the register
3331 size, we have to adjust the register value on
3332 big endian targets.
3333
3334 It does not seem to be necessary to do the
3335 same for integral types.
3336
3337 Also don't do this adjustment on O64 binaries.
3338
3339 cagney/2001-07-23: gdb/179: Also, GCC, when
3340 outputting LE O32 with sizeof (struct) <
3341 MIPS_SAVED_REGSIZE, generates a left shift as
3342 part of storing the argument in a register a
3343 register (the left shift isn't generated when
3344 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3345 is quite possible that this is GCC contradicting
3346 the LE/O32 ABI, GDB has not been adjusted to
3347 accommodate this. Either someone needs to
3348 demonstrate that the LE/O32 ABI specifies such a
3349 left shift OR this new ABI gets identified as
3350 such and GDB gets tweaked accordingly. */
3351
3352 if (MIPS_SAVED_REGSIZE < 8
3353 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3354 && partial_len < MIPS_SAVED_REGSIZE
3355 && (typecode == TYPE_CODE_STRUCT ||
3356 typecode == TYPE_CODE_UNION))
3357 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3358 TARGET_CHAR_BIT);
3359
3360 if (mips_debug)
3361 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3362 argreg,
3363 phex (regval, MIPS_SAVED_REGSIZE));
3364 write_register (argreg, regval);
3365 argreg++;
3366
3367 /* Prevent subsequent floating point arguments from
3368 being passed in floating point registers. */
3369 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3370 }
3371
3372 len -= partial_len;
3373 val += partial_len;
3374
3375 /* Compute the the offset into the stack at which we
3376 will copy the next parameter.
3377
3378 In older ABIs, the caller reserved space for
3379 registers that contained arguments. This was loosely
3380 refered to as their "home". Consequently, space is
3381 always allocated. */
3382
3383 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3384 }
3385 }
3386 if (mips_debug)
3387 fprintf_unfiltered (gdb_stdlog, "\n");
3388 }
3389
3390 /* Return adjusted stack pointer. */
3391 return sp;
3392 }
3393
3394 /* O64 version of push_arguments. */
3395
3396 static CORE_ADDR
3397 mips_o64_push_arguments (int nargs,
3398 struct value **args,
3399 CORE_ADDR sp,
3400 int struct_return,
3401 CORE_ADDR struct_addr)
3402 {
3403 int argreg;
3404 int float_argreg;
3405 int argnum;
3406 int len = 0;
3407 int stack_offset = 0;
3408
3409 /* First ensure that the stack and structure return address (if any)
3410 are properly aligned. The stack has to be at least 64-bit
3411 aligned even on 32-bit machines, because doubles must be 64-bit
3412 aligned. For n32 and n64, stack frames need to be 128-bit
3413 aligned, so we round to this widest known alignment. */
3414
3415 sp = ROUND_DOWN (sp, 16);
3416 struct_addr = ROUND_DOWN (struct_addr, 16);
3417
3418 /* Now make space on the stack for the args. */
3419 for (argnum = 0; argnum < nargs; argnum++)
3420 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3421 MIPS_STACK_ARGSIZE);
3422 sp -= ROUND_UP (len, 16);
3423
3424 if (mips_debug)
3425 fprintf_unfiltered (gdb_stdlog,
3426 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3427 paddr_nz (sp), ROUND_UP (len, 16));
3428
3429 /* Initialize the integer and float register pointers. */
3430 argreg = A0_REGNUM;
3431 float_argreg = FPA0_REGNUM;
3432
3433 /* The struct_return pointer occupies the first parameter-passing reg. */
3434 if (struct_return)
3435 {
3436 if (mips_debug)
3437 fprintf_unfiltered (gdb_stdlog,
3438 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3439 argreg, paddr_nz (struct_addr));
3440 write_register (argreg++, struct_addr);
3441 stack_offset += MIPS_STACK_ARGSIZE;
3442 }
3443
3444 /* Now load as many as possible of the first arguments into
3445 registers, and push the rest onto the stack. Loop thru args
3446 from first to last. */
3447 for (argnum = 0; argnum < nargs; argnum++)
3448 {
3449 char *val;
3450 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3451 struct value *arg = args[argnum];
3452 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3453 int len = TYPE_LENGTH (arg_type);
3454 enum type_code typecode = TYPE_CODE (arg_type);
3455
3456 if (mips_debug)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "mips_o64_push_arguments: %d len=%d type=%d",
3459 argnum + 1, len, (int) typecode);
3460
3461 val = (char *) VALUE_CONTENTS (arg);
3462
3463 /* 32-bit ABIs always start floating point arguments in an
3464 even-numbered floating point register. Round the FP register
3465 up before the check to see if there are any FP registers
3466 left. O32/O64 targets also pass the FP in the integer
3467 registers so also round up normal registers. */
3468 if (!FP_REGISTER_DOUBLE
3469 && fp_register_arg_p (typecode, arg_type))
3470 {
3471 if ((float_argreg & 1))
3472 float_argreg++;
3473 }
3474
3475 /* Floating point arguments passed in registers have to be
3476 treated specially. On 32-bit architectures, doubles
3477 are passed in register pairs; the even register gets
3478 the low word, and the odd register gets the high word.
3479 On O32/O64, the first two floating point arguments are
3480 also copied to general registers, because MIPS16 functions
3481 don't use float registers for arguments. This duplication of
3482 arguments in general registers can't hurt non-MIPS16 functions
3483 because those registers are normally skipped. */
3484
3485 if (fp_register_arg_p (typecode, arg_type)
3486 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3487 {
3488 if (!FP_REGISTER_DOUBLE && len == 8)
3489 {
3490 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3491 unsigned long regval;
3492
3493 /* Write the low word of the double to the even register(s). */
3494 regval = extract_unsigned_integer (val + low_offset, 4);
3495 if (mips_debug)
3496 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3497 float_argreg, phex (regval, 4));
3498 write_register (float_argreg++, regval);
3499 if (mips_debug)
3500 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3501 argreg, phex (regval, 4));
3502 write_register (argreg++, regval);
3503
3504 /* Write the high word of the double to the odd register(s). */
3505 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3506 if (mips_debug)
3507 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3508 float_argreg, phex (regval, 4));
3509 write_register (float_argreg++, regval);
3510
3511 if (mips_debug)
3512 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3513 argreg, phex (regval, 4));
3514 write_register (argreg++, regval);
3515 }
3516 else
3517 {
3518 /* This is a floating point value that fits entirely
3519 in a single register. */
3520 /* On 32 bit ABI's the float_argreg is further adjusted
3521 above to ensure that it is even register aligned. */
3522 LONGEST regval = extract_unsigned_integer (val, len);
3523 if (mips_debug)
3524 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3525 float_argreg, phex (regval, len));
3526 write_register (float_argreg++, regval);
3527 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3528 registers for each argument. The below is (my
3529 guess) to ensure that the corresponding integer
3530 register has reserved the same space. */
3531 if (mips_debug)
3532 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3533 argreg, phex (regval, len));
3534 write_register (argreg, regval);
3535 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3536 }
3537 /* Reserve space for the FP register. */
3538 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3539 }
3540 else
3541 {
3542 /* Copy the argument to general registers or the stack in
3543 register-sized pieces. Large arguments are split between
3544 registers and stack. */
3545 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3546 are treated specially: Irix cc passes them in registers
3547 where gcc sometimes puts them on the stack. For maximum
3548 compatibility, we will put them in both places. */
3549 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3550 (len % MIPS_SAVED_REGSIZE != 0));
3551 /* Structures should be aligned to eight bytes (even arg registers)
3552 on MIPS_ABI_O32, if their first member has double precision. */
3553 if (MIPS_SAVED_REGSIZE < 8
3554 && mips_type_needs_double_align (arg_type))
3555 {
3556 if ((argreg & 1))
3557 argreg++;
3558 }
3559 /* Note: Floating-point values that didn't fit into an FP
3560 register are only written to memory. */
3561 while (len > 0)
3562 {
3563 /* Remember if the argument was written to the stack. */
3564 int stack_used_p = 0;
3565 int partial_len =
3566 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3567
3568 if (mips_debug)
3569 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3570 partial_len);
3571
3572 /* Write this portion of the argument to the stack. */
3573 if (argreg > MIPS_LAST_ARG_REGNUM
3574 || odd_sized_struct
3575 || fp_register_arg_p (typecode, arg_type))
3576 {
3577 /* Should shorter than int integer values be
3578 promoted to int before being stored? */
3579 int longword_offset = 0;
3580 CORE_ADDR addr;
3581 stack_used_p = 1;
3582 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3583 {
3584 if (MIPS_STACK_ARGSIZE == 8 &&
3585 (typecode == TYPE_CODE_INT ||
3586 typecode == TYPE_CODE_PTR ||
3587 typecode == TYPE_CODE_FLT) && len <= 4)
3588 longword_offset = MIPS_STACK_ARGSIZE - len;
3589 }
3590
3591 if (mips_debug)
3592 {
3593 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3594 paddr_nz (stack_offset));
3595 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3596 paddr_nz (longword_offset));
3597 }
3598
3599 addr = sp + stack_offset + longword_offset;
3600
3601 if (mips_debug)
3602 {
3603 int i;
3604 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3605 paddr_nz (addr));
3606 for (i = 0; i < partial_len; i++)
3607 {
3608 fprintf_unfiltered (gdb_stdlog, "%02x",
3609 val[i] & 0xff);
3610 }
3611 }
3612 write_memory (addr, val, partial_len);
3613 }
3614
3615 /* Note!!! This is NOT an else clause. Odd sized
3616 structs may go thru BOTH paths. Floating point
3617 arguments will not. */
3618 /* Write this portion of the argument to a general
3619 purpose register. */
3620 if (argreg <= MIPS_LAST_ARG_REGNUM
3621 && !fp_register_arg_p (typecode, arg_type))
3622 {
3623 LONGEST regval = extract_signed_integer (val, partial_len);
3624 /* Value may need to be sign extended, because
3625 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3626
3627 /* A non-floating-point argument being passed in a
3628 general register. If a struct or union, and if
3629 the remaining length is smaller than the register
3630 size, we have to adjust the register value on
3631 big endian targets.
3632
3633 It does not seem to be necessary to do the
3634 same for integral types.
3635
3636 Also don't do this adjustment on O64 binaries.
3637
3638 cagney/2001-07-23: gdb/179: Also, GCC, when
3639 outputting LE O32 with sizeof (struct) <
3640 MIPS_SAVED_REGSIZE, generates a left shift as
3641 part of storing the argument in a register a
3642 register (the left shift isn't generated when
3643 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3644 is quite possible that this is GCC contradicting
3645 the LE/O32 ABI, GDB has not been adjusted to
3646 accommodate this. Either someone needs to
3647 demonstrate that the LE/O32 ABI specifies such a
3648 left shift OR this new ABI gets identified as
3649 such and GDB gets tweaked accordingly. */
3650
3651 if (MIPS_SAVED_REGSIZE < 8
3652 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3653 && partial_len < MIPS_SAVED_REGSIZE
3654 && (typecode == TYPE_CODE_STRUCT ||
3655 typecode == TYPE_CODE_UNION))
3656 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3657 TARGET_CHAR_BIT);
3658
3659 if (mips_debug)
3660 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3661 argreg,
3662 phex (regval, MIPS_SAVED_REGSIZE));
3663 write_register (argreg, regval);
3664 argreg++;
3665
3666 /* Prevent subsequent floating point arguments from
3667 being passed in floating point registers. */
3668 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3669 }
3670
3671 len -= partial_len;
3672 val += partial_len;
3673
3674 /* Compute the the offset into the stack at which we
3675 will copy the next parameter.
3676
3677 In older ABIs, the caller reserved space for
3678 registers that contained arguments. This was loosely
3679 refered to as their "home". Consequently, space is
3680 always allocated. */
3681
3682 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3683 }
3684 }
3685 if (mips_debug)
3686 fprintf_unfiltered (gdb_stdlog, "\n");
3687 }
3688
3689 /* Return adjusted stack pointer. */
3690 return sp;
3691 }
3692
3693 static CORE_ADDR
3694 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3695 {
3696 /* Set the return address register to point to the entry
3697 point of the program, where a breakpoint lies in wait. */
3698 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3699 return sp;
3700 }
3701
3702 static void
3703 mips_push_register (CORE_ADDR * sp, int regno)
3704 {
3705 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3706 int regsize;
3707 int offset;
3708 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3709 {
3710 regsize = MIPS_SAVED_REGSIZE;
3711 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3712 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3713 : 0);
3714 }
3715 else
3716 {
3717 regsize = REGISTER_RAW_SIZE (regno);
3718 offset = 0;
3719 }
3720 *sp -= regsize;
3721 deprecated_read_register_gen (regno, buffer);
3722 write_memory (*sp, buffer + offset, regsize);
3723 }
3724
3725 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3726 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3727
3728 static void
3729 mips_push_dummy_frame (void)
3730 {
3731 int ireg;
3732 struct linked_proc_info *link = (struct linked_proc_info *)
3733 xmalloc (sizeof (struct linked_proc_info));
3734 mips_extra_func_info_t proc_desc = &link->info;
3735 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3736 CORE_ADDR old_sp = sp;
3737 link->next = linked_proc_desc_table;
3738 linked_proc_desc_table = link;
3739
3740 /* FIXME! are these correct ? */
3741 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3742 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3743 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3744 #define FLOAT_SINGLE_REG_SAVE_MASK \
3745 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3746 /*
3747 * The registers we must save are all those not preserved across
3748 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3749 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3750 * and FP Control/Status registers.
3751 *
3752 *
3753 * Dummy frame layout:
3754 * (high memory)
3755 * Saved PC
3756 * Saved MMHI, MMLO, FPC_CSR
3757 * Saved R31
3758 * Saved R28
3759 * ...
3760 * Saved R1
3761 * Saved D18 (i.e. F19, F18)
3762 * ...
3763 * Saved D0 (i.e. F1, F0)
3764 * Argument build area and stack arguments written via mips_push_arguments
3765 * (low memory)
3766 */
3767
3768 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3769 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3770 PROC_FRAME_OFFSET (proc_desc) = 0;
3771 PROC_FRAME_ADJUST (proc_desc) = 0;
3772 mips_push_register (&sp, PC_REGNUM);
3773 mips_push_register (&sp, HI_REGNUM);
3774 mips_push_register (&sp, LO_REGNUM);
3775 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3776
3777 /* Save general CPU registers */
3778 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3779 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3780 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3781 for (ireg = 32; --ireg >= 0;)
3782 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3783 mips_push_register (&sp, ireg);
3784
3785 /* Save floating point registers starting with high order word */
3786 PROC_FREG_MASK (proc_desc) =
3787 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3788 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3789 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3790 from FP. */
3791 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3792 for (ireg = 32; --ireg >= 0;)
3793 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3794 mips_push_register (&sp, ireg + FP0_REGNUM);
3795
3796 /* Update the frame pointer for the call dummy and the stack pointer.
3797 Set the procedure's starting and ending addresses to point to the
3798 call dummy address at the entry point. */
3799 write_register (PUSH_FP_REGNUM, old_sp);
3800 write_register (SP_REGNUM, sp);
3801 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3802 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3803 SET_PROC_DESC_IS_DUMMY (proc_desc);
3804 PROC_PC_REG (proc_desc) = RA_REGNUM;
3805 }
3806
3807 static void
3808 mips_pop_frame (void)
3809 {
3810 register int regnum;
3811 struct frame_info *frame = get_current_frame ();
3812 CORE_ADDR new_sp = get_frame_base (frame);
3813 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3814
3815 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
3816 {
3817 generic_pop_dummy_frame ();
3818 flush_cached_frames ();
3819 return;
3820 }
3821
3822 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3823 if (frame->saved_regs == NULL)
3824 FRAME_INIT_SAVED_REGS (frame);
3825 for (regnum = 0; regnum < NUM_REGS; regnum++)
3826 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3827 && frame->saved_regs[regnum])
3828 {
3829 /* Floating point registers must not be sign extended,
3830 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3831
3832 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3833 write_register (regnum,
3834 read_memory_unsigned_integer (frame->saved_regs[regnum],
3835 MIPS_SAVED_REGSIZE));
3836 else
3837 write_register (regnum,
3838 read_memory_integer (frame->saved_regs[regnum],
3839 MIPS_SAVED_REGSIZE));
3840 }
3841
3842 write_register (SP_REGNUM, new_sp);
3843 flush_cached_frames ();
3844
3845 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3846 {
3847 struct linked_proc_info *pi_ptr, *prev_ptr;
3848
3849 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3850 pi_ptr != NULL;
3851 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3852 {
3853 if (&pi_ptr->info == proc_desc)
3854 break;
3855 }
3856
3857 if (pi_ptr == NULL)
3858 error ("Can't locate dummy extra frame info\n");
3859
3860 if (prev_ptr != NULL)
3861 prev_ptr->next = pi_ptr->next;
3862 else
3863 linked_proc_desc_table = pi_ptr->next;
3864
3865 xfree (pi_ptr);
3866
3867 write_register (HI_REGNUM,
3868 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3869 MIPS_SAVED_REGSIZE));
3870 write_register (LO_REGNUM,
3871 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3872 MIPS_SAVED_REGSIZE));
3873 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3874 write_register (FCRCS_REGNUM,
3875 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3876 MIPS_SAVED_REGSIZE));
3877 }
3878 }
3879
3880 static void
3881 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3882 struct value **args, struct type *type, int gcc_p)
3883 {
3884 write_register(T9_REGNUM, fun);
3885 }
3886
3887 /* Floating point register management.
3888
3889 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3890 64bit operations, these early MIPS cpus treat fp register pairs
3891 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3892 registers and offer a compatibility mode that emulates the MIPS2 fp
3893 model. When operating in MIPS2 fp compat mode, later cpu's split
3894 double precision floats into two 32-bit chunks and store them in
3895 consecutive fp regs. To display 64-bit floats stored in this
3896 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3897 Throw in user-configurable endianness and you have a real mess.
3898
3899 The way this works is:
3900 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3901 double-precision value will be split across two logical registers.
3902 The lower-numbered logical register will hold the low-order bits,
3903 regardless of the processor's endianness.
3904 - If we are on a 64-bit processor, and we are looking for a
3905 single-precision value, it will be in the low ordered bits
3906 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3907 save slot in memory.
3908 - If we are in 64-bit mode, everything is straightforward.
3909
3910 Note that this code only deals with "live" registers at the top of the
3911 stack. We will attempt to deal with saved registers later, when
3912 the raw/cooked register interface is in place. (We need a general
3913 interface that can deal with dynamic saved register sizes -- fp
3914 regs could be 32 bits wide in one frame and 64 on the frame above
3915 and below). */
3916
3917 static struct type *
3918 mips_float_register_type (void)
3919 {
3920 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3921 return builtin_type_ieee_single_big;
3922 else
3923 return builtin_type_ieee_single_little;
3924 }
3925
3926 static struct type *
3927 mips_double_register_type (void)
3928 {
3929 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3930 return builtin_type_ieee_double_big;
3931 else
3932 return builtin_type_ieee_double_little;
3933 }
3934
3935 /* Copy a 32-bit single-precision value from the current frame
3936 into rare_buffer. */
3937
3938 static void
3939 mips_read_fp_register_single (int regno, char *rare_buffer)
3940 {
3941 int raw_size = REGISTER_RAW_SIZE (regno);
3942 char *raw_buffer = alloca (raw_size);
3943
3944 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
3945 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3946 if (raw_size == 8)
3947 {
3948 /* We have a 64-bit value for this register. Find the low-order
3949 32 bits. */
3950 int offset;
3951
3952 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3953 offset = 4;
3954 else
3955 offset = 0;
3956
3957 memcpy (rare_buffer, raw_buffer + offset, 4);
3958 }
3959 else
3960 {
3961 memcpy (rare_buffer, raw_buffer, 4);
3962 }
3963 }
3964
3965 /* Copy a 64-bit double-precision value from the current frame into
3966 rare_buffer. This may include getting half of it from the next
3967 register. */
3968
3969 static void
3970 mips_read_fp_register_double (int regno, char *rare_buffer)
3971 {
3972 int raw_size = REGISTER_RAW_SIZE (regno);
3973
3974 if (raw_size == 8 && !mips2_fp_compat ())
3975 {
3976 /* We have a 64-bit value for this register, and we should use
3977 all 64 bits. */
3978 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
3979 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3980 }
3981 else
3982 {
3983 if ((regno - FP0_REGNUM) & 1)
3984 internal_error (__FILE__, __LINE__,
3985 "mips_read_fp_register_double: bad access to "
3986 "odd-numbered FP register");
3987
3988 /* mips_read_fp_register_single will find the correct 32 bits from
3989 each register. */
3990 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3991 {
3992 mips_read_fp_register_single (regno, rare_buffer + 4);
3993 mips_read_fp_register_single (regno + 1, rare_buffer);
3994 }
3995 else
3996 {
3997 mips_read_fp_register_single (regno, rare_buffer);
3998 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3999 }
4000 }
4001 }
4002
4003 static void
4004 mips_print_register (int regnum, int all)
4005 {
4006 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4007
4008 /* Get the data in raw format. */
4009 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4010 {
4011 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4012 return;
4013 }
4014
4015 /* If we have a actual 32-bit floating point register (or we are in
4016 32-bit compatibility mode), and the register is even-numbered,
4017 also print it as a double (spanning two registers). */
4018 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4019 && (REGISTER_RAW_SIZE (regnum) == 4
4020 || mips2_fp_compat ())
4021 && !((regnum - FP0_REGNUM) & 1))
4022 {
4023 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4024
4025 mips_read_fp_register_double (regnum, dbuffer);
4026
4027 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4028 val_print (mips_double_register_type (), dbuffer, 0, 0,
4029 gdb_stdout, 0, 1, 0, Val_pretty_default);
4030 printf_filtered ("); ");
4031 }
4032 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4033
4034 /* The problem with printing numeric register names (r26, etc.) is that
4035 the user can't use them on input. Probably the best solution is to
4036 fix it so that either the numeric or the funky (a2, etc.) names
4037 are accepted on input. */
4038 if (regnum < MIPS_NUMREGS)
4039 printf_filtered ("(r%d): ", regnum);
4040 else
4041 printf_filtered (": ");
4042
4043 /* If virtual format is floating, print it that way. */
4044 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4045 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4046 {
4047 /* We have a meaningful 64-bit value in this register. Show
4048 it as a 32-bit float and a 64-bit double. */
4049 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4050
4051 printf_filtered (" (float) ");
4052 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4053 gdb_stdout, 0, 1, 0, Val_pretty_default);
4054 printf_filtered (", (double) ");
4055 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4056 gdb_stdout, 0, 1, 0, Val_pretty_default);
4057 }
4058 else
4059 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4060 gdb_stdout, 0, 1, 0, Val_pretty_default);
4061 /* Else print as integer in hex. */
4062 else
4063 {
4064 int offset;
4065
4066 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4067 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4068 else
4069 offset = 0;
4070
4071 print_scalar_formatted (raw_buffer + offset,
4072 REGISTER_VIRTUAL_TYPE (regnum),
4073 'x', 0, gdb_stdout);
4074 }
4075 }
4076
4077 /* Replacement for generic do_registers_info.
4078 Print regs in pretty columns. */
4079
4080 static int
4081 do_fp_register_row (int regnum)
4082 { /* do values for FP (float) regs */
4083 char *raw_buffer;
4084 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4085 int inv1, inv2, inv3;
4086
4087 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4088
4089 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4090 {
4091 /* 4-byte registers: we can fit two registers per row. */
4092 /* Also print every pair of 4-byte regs as an 8-byte double. */
4093 mips_read_fp_register_single (regnum, raw_buffer);
4094 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4095
4096 mips_read_fp_register_single (regnum + 1, raw_buffer);
4097 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4098
4099 mips_read_fp_register_double (regnum, raw_buffer);
4100 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4101
4102 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4103 if (inv1)
4104 printf_filtered (": <invalid float>");
4105 else
4106 printf_filtered ("%-17.9g", flt1);
4107
4108 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4109 if (inv2)
4110 printf_filtered (": <invalid float>");
4111 else
4112 printf_filtered ("%-17.9g", flt2);
4113
4114 printf_filtered (" dbl: ");
4115 if (inv3)
4116 printf_filtered ("<invalid double>");
4117 else
4118 printf_filtered ("%-24.17g", doub);
4119 printf_filtered ("\n");
4120
4121 /* may want to do hex display here (future enhancement) */
4122 regnum += 2;
4123 }
4124 else
4125 {
4126 /* Eight byte registers: print each one as float AND as double. */
4127 mips_read_fp_register_single (regnum, raw_buffer);
4128 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4129
4130 mips_read_fp_register_double (regnum, raw_buffer);
4131 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4132
4133 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4134 if (inv1)
4135 printf_filtered ("<invalid float>");
4136 else
4137 printf_filtered ("flt: %-17.9g", flt1);
4138
4139 printf_filtered (" dbl: ");
4140 if (inv3)
4141 printf_filtered ("<invalid double>");
4142 else
4143 printf_filtered ("%-24.17g", doub);
4144
4145 printf_filtered ("\n");
4146 /* may want to do hex display here (future enhancement) */
4147 regnum++;
4148 }
4149 return regnum;
4150 }
4151
4152 /* Print a row's worth of GP (int) registers, with name labels above */
4153
4154 static int
4155 do_gp_register_row (int regnum)
4156 {
4157 /* do values for GP (int) regs */
4158 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4159 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4160 int col, byte;
4161 int start_regnum = regnum;
4162 int numregs = NUM_REGS;
4163
4164
4165 /* For GP registers, we print a separate row of names above the vals */
4166 printf_filtered (" ");
4167 for (col = 0; col < ncols && regnum < numregs; regnum++)
4168 {
4169 if (*REGISTER_NAME (regnum) == '\0')
4170 continue; /* unused register */
4171 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4172 break; /* end the row: reached FP register */
4173 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4174 REGISTER_NAME (regnum));
4175 col++;
4176 }
4177 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4178 start_regnum); /* print the R0 to R31 names */
4179
4180 regnum = start_regnum; /* go back to start of row */
4181 /* now print the values in hex, 4 or 8 to the row */
4182 for (col = 0; col < ncols && regnum < numregs; regnum++)
4183 {
4184 if (*REGISTER_NAME (regnum) == '\0')
4185 continue; /* unused register */
4186 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4187 break; /* end row: reached FP register */
4188 /* OK: get the data in raw format. */
4189 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4190 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4191 /* pad small registers */
4192 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4193 printf_filtered (" ");
4194 /* Now print the register value in hex, endian order. */
4195 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4196 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4197 byte < REGISTER_RAW_SIZE (regnum);
4198 byte++)
4199 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4200 else
4201 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4202 byte >= 0;
4203 byte--)
4204 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4205 printf_filtered (" ");
4206 col++;
4207 }
4208 if (col > 0) /* ie. if we actually printed anything... */
4209 printf_filtered ("\n");
4210
4211 return regnum;
4212 }
4213
4214 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4215
4216 static void
4217 mips_do_registers_info (int regnum, int fpregs)
4218 {
4219 if (regnum != -1) /* do one specified register */
4220 {
4221 if (*(REGISTER_NAME (regnum)) == '\0')
4222 error ("Not a valid register for the current processor type");
4223
4224 mips_print_register (regnum, 0);
4225 printf_filtered ("\n");
4226 }
4227 else
4228 /* do all (or most) registers */
4229 {
4230 regnum = 0;
4231 while (regnum < NUM_REGS)
4232 {
4233 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4234 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4235 regnum = do_fp_register_row (regnum); /* FP regs */
4236 else
4237 regnum += MIPS_NUMREGS; /* skip floating point regs */
4238 else
4239 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4240 }
4241 }
4242 }
4243
4244 /* Is this a branch with a delay slot? */
4245
4246 static int is_delayed (unsigned long);
4247
4248 static int
4249 is_delayed (unsigned long insn)
4250 {
4251 int i;
4252 for (i = 0; i < NUMOPCODES; ++i)
4253 if (mips_opcodes[i].pinfo != INSN_MACRO
4254 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4255 break;
4256 return (i < NUMOPCODES
4257 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4258 | INSN_COND_BRANCH_DELAY
4259 | INSN_COND_BRANCH_LIKELY)));
4260 }
4261
4262 int
4263 mips_step_skips_delay (CORE_ADDR pc)
4264 {
4265 char buf[MIPS_INSTLEN];
4266
4267 /* There is no branch delay slot on MIPS16. */
4268 if (pc_is_mips16 (pc))
4269 return 0;
4270
4271 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4272 /* If error reading memory, guess that it is not a delayed branch. */
4273 return 0;
4274 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4275 }
4276
4277
4278 /* Skip the PC past function prologue instructions (32-bit version).
4279 This is a helper function for mips_skip_prologue. */
4280
4281 static CORE_ADDR
4282 mips32_skip_prologue (CORE_ADDR pc)
4283 {
4284 t_inst inst;
4285 CORE_ADDR end_pc;
4286 int seen_sp_adjust = 0;
4287 int load_immediate_bytes = 0;
4288
4289 /* Skip the typical prologue instructions. These are the stack adjustment
4290 instruction and the instructions that save registers on the stack
4291 or in the gcc frame. */
4292 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4293 {
4294 unsigned long high_word;
4295
4296 inst = mips_fetch_instruction (pc);
4297 high_word = (inst >> 16) & 0xffff;
4298
4299 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4300 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4301 seen_sp_adjust = 1;
4302 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4303 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4304 seen_sp_adjust = 1;
4305 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4306 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4307 && (inst & 0x001F0000)) /* reg != $zero */
4308 continue;
4309
4310 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4311 continue;
4312 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4313 /* sx reg,n($s8) */
4314 continue; /* reg != $zero */
4315
4316 /* move $s8,$sp. With different versions of gas this will be either
4317 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4318 Accept any one of these. */
4319 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4320 continue;
4321
4322 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4323 continue;
4324 else if (high_word == 0x3c1c) /* lui $gp,n */
4325 continue;
4326 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4327 continue;
4328 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4329 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4330 continue;
4331 /* The following instructions load $at or $t0 with an immediate
4332 value in preparation for a stack adjustment via
4333 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4334 a local variable, so we accept them only before a stack adjustment
4335 instruction was seen. */
4336 else if (!seen_sp_adjust)
4337 {
4338 if (high_word == 0x3c01 || /* lui $at,n */
4339 high_word == 0x3c08) /* lui $t0,n */
4340 {
4341 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4342 continue;
4343 }
4344 else if (high_word == 0x3421 || /* ori $at,$at,n */
4345 high_word == 0x3508 || /* ori $t0,$t0,n */
4346 high_word == 0x3401 || /* ori $at,$zero,n */
4347 high_word == 0x3408) /* ori $t0,$zero,n */
4348 {
4349 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4350 continue;
4351 }
4352 else
4353 break;
4354 }
4355 else
4356 break;
4357 }
4358
4359 /* In a frameless function, we might have incorrectly
4360 skipped some load immediate instructions. Undo the skipping
4361 if the load immediate was not followed by a stack adjustment. */
4362 if (load_immediate_bytes && !seen_sp_adjust)
4363 pc -= load_immediate_bytes;
4364 return pc;
4365 }
4366
4367 /* Skip the PC past function prologue instructions (16-bit version).
4368 This is a helper function for mips_skip_prologue. */
4369
4370 static CORE_ADDR
4371 mips16_skip_prologue (CORE_ADDR pc)
4372 {
4373 CORE_ADDR end_pc;
4374 int extend_bytes = 0;
4375 int prev_extend_bytes;
4376
4377 /* Table of instructions likely to be found in a function prologue. */
4378 static struct
4379 {
4380 unsigned short inst;
4381 unsigned short mask;
4382 }
4383 table[] =
4384 {
4385 {
4386 0x6300, 0xff00
4387 }
4388 , /* addiu $sp,offset */
4389 {
4390 0xfb00, 0xff00
4391 }
4392 , /* daddiu $sp,offset */
4393 {
4394 0xd000, 0xf800
4395 }
4396 , /* sw reg,n($sp) */
4397 {
4398 0xf900, 0xff00
4399 }
4400 , /* sd reg,n($sp) */
4401 {
4402 0x6200, 0xff00
4403 }
4404 , /* sw $ra,n($sp) */
4405 {
4406 0xfa00, 0xff00
4407 }
4408 , /* sd $ra,n($sp) */
4409 {
4410 0x673d, 0xffff
4411 }
4412 , /* move $s1,sp */
4413 {
4414 0xd980, 0xff80
4415 }
4416 , /* sw $a0-$a3,n($s1) */
4417 {
4418 0x6704, 0xff1c
4419 }
4420 , /* move reg,$a0-$a3 */
4421 {
4422 0xe809, 0xf81f
4423 }
4424 , /* entry pseudo-op */
4425 {
4426 0x0100, 0xff00
4427 }
4428 , /* addiu $s1,$sp,n */
4429 {
4430 0, 0
4431 } /* end of table marker */
4432 };
4433
4434 /* Skip the typical prologue instructions. These are the stack adjustment
4435 instruction and the instructions that save registers on the stack
4436 or in the gcc frame. */
4437 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4438 {
4439 unsigned short inst;
4440 int i;
4441
4442 inst = mips_fetch_instruction (pc);
4443
4444 /* Normally we ignore an extend instruction. However, if it is
4445 not followed by a valid prologue instruction, we must adjust
4446 the pc back over the extend so that it won't be considered
4447 part of the prologue. */
4448 if ((inst & 0xf800) == 0xf000) /* extend */
4449 {
4450 extend_bytes = MIPS16_INSTLEN;
4451 continue;
4452 }
4453 prev_extend_bytes = extend_bytes;
4454 extend_bytes = 0;
4455
4456 /* Check for other valid prologue instructions besides extend. */
4457 for (i = 0; table[i].mask != 0; i++)
4458 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4459 break;
4460 if (table[i].mask != 0) /* it was in table? */
4461 continue; /* ignore it */
4462 else
4463 /* non-prologue */
4464 {
4465 /* Return the current pc, adjusted backwards by 2 if
4466 the previous instruction was an extend. */
4467 return pc - prev_extend_bytes;
4468 }
4469 }
4470 return pc;
4471 }
4472
4473 /* To skip prologues, I use this predicate. Returns either PC itself
4474 if the code at PC does not look like a function prologue; otherwise
4475 returns an address that (if we're lucky) follows the prologue. If
4476 LENIENT, then we must skip everything which is involved in setting
4477 up the frame (it's OK to skip more, just so long as we don't skip
4478 anything which might clobber the registers which are being saved.
4479 We must skip more in the case where part of the prologue is in the
4480 delay slot of a non-prologue instruction). */
4481
4482 static CORE_ADDR
4483 mips_skip_prologue (CORE_ADDR pc)
4484 {
4485 /* See if we can determine the end of the prologue via the symbol table.
4486 If so, then return either PC, or the PC after the prologue, whichever
4487 is greater. */
4488
4489 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4490
4491 if (post_prologue_pc != 0)
4492 return max (pc, post_prologue_pc);
4493
4494 /* Can't determine prologue from the symbol table, need to examine
4495 instructions. */
4496
4497 if (pc_is_mips16 (pc))
4498 return mips16_skip_prologue (pc);
4499 else
4500 return mips32_skip_prologue (pc);
4501 }
4502
4503 /* Determine how a return value is stored within the MIPS register
4504 file, given the return type `valtype'. */
4505
4506 struct return_value_word
4507 {
4508 int len;
4509 int reg;
4510 int reg_offset;
4511 int buf_offset;
4512 };
4513
4514 static void
4515 return_value_location (struct type *valtype,
4516 struct return_value_word *hi,
4517 struct return_value_word *lo)
4518 {
4519 int len = TYPE_LENGTH (valtype);
4520
4521 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4522 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4523 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4524 {
4525 if (!FP_REGISTER_DOUBLE && len == 8)
4526 {
4527 /* We need to break a 64bit float in two 32 bit halves and
4528 spread them across a floating-point register pair. */
4529 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4530 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4531 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4532 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4533 ? 4 : 0);
4534 hi->reg_offset = lo->reg_offset;
4535 lo->reg = FP0_REGNUM + 0;
4536 hi->reg = FP0_REGNUM + 1;
4537 lo->len = 4;
4538 hi->len = 4;
4539 }
4540 else
4541 {
4542 /* The floating point value fits in a single floating-point
4543 register. */
4544 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4545 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4546 && len == 4)
4547 ? 4 : 0);
4548 lo->reg = FP0_REGNUM;
4549 lo->len = len;
4550 lo->buf_offset = 0;
4551 hi->len = 0;
4552 hi->reg_offset = 0;
4553 hi->buf_offset = 0;
4554 hi->reg = 0;
4555 }
4556 }
4557 else
4558 {
4559 /* Locate a result possibly spread across two registers. */
4560 int regnum = 2;
4561 lo->reg = regnum + 0;
4562 hi->reg = regnum + 1;
4563 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4564 && len < MIPS_SAVED_REGSIZE)
4565 {
4566 /* "un-left-justify" the value in the low register */
4567 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4568 lo->len = len;
4569 hi->reg_offset = 0;
4570 hi->len = 0;
4571 }
4572 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4573 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4574 && len < MIPS_SAVED_REGSIZE * 2
4575 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4576 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4577 {
4578 /* "un-left-justify" the value spread across two registers. */
4579 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4580 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4581 hi->reg_offset = 0;
4582 hi->len = len - lo->len;
4583 }
4584 else
4585 {
4586 /* Only perform a partial copy of the second register. */
4587 lo->reg_offset = 0;
4588 hi->reg_offset = 0;
4589 if (len > MIPS_SAVED_REGSIZE)
4590 {
4591 lo->len = MIPS_SAVED_REGSIZE;
4592 hi->len = len - MIPS_SAVED_REGSIZE;
4593 }
4594 else
4595 {
4596 lo->len = len;
4597 hi->len = 0;
4598 }
4599 }
4600 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4601 && REGISTER_RAW_SIZE (regnum) == 8
4602 && MIPS_SAVED_REGSIZE == 4)
4603 {
4604 /* Account for the fact that only the least-signficant part
4605 of the register is being used */
4606 lo->reg_offset += 4;
4607 hi->reg_offset += 4;
4608 }
4609 lo->buf_offset = 0;
4610 hi->buf_offset = lo->len;
4611 }
4612 }
4613
4614 /* Given a return value in `regbuf' with a type `valtype', extract and
4615 copy its value into `valbuf'. */
4616
4617 static void
4618 mips_eabi_extract_return_value (struct type *valtype,
4619 char regbuf[REGISTER_BYTES],
4620 char *valbuf)
4621 {
4622 struct return_value_word lo;
4623 struct return_value_word hi;
4624 return_value_location (valtype, &hi, &lo);
4625
4626 memcpy (valbuf + lo.buf_offset,
4627 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4628 lo.len);
4629
4630 if (hi.len > 0)
4631 memcpy (valbuf + hi.buf_offset,
4632 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4633 hi.len);
4634 }
4635
4636 static void
4637 mips_o64_extract_return_value (struct type *valtype,
4638 char regbuf[REGISTER_BYTES],
4639 char *valbuf)
4640 {
4641 struct return_value_word lo;
4642 struct return_value_word hi;
4643 return_value_location (valtype, &hi, &lo);
4644
4645 memcpy (valbuf + lo.buf_offset,
4646 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4647 lo.len);
4648
4649 if (hi.len > 0)
4650 memcpy (valbuf + hi.buf_offset,
4651 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4652 hi.len);
4653 }
4654
4655 /* Given a return value in `valbuf' with a type `valtype', write it's
4656 value into the appropriate register. */
4657
4658 static void
4659 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4660 {
4661 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4662 struct return_value_word lo;
4663 struct return_value_word hi;
4664 return_value_location (valtype, &hi, &lo);
4665
4666 memset (raw_buffer, 0, sizeof (raw_buffer));
4667 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4668 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4669 REGISTER_RAW_SIZE (lo.reg));
4670
4671 if (hi.len > 0)
4672 {
4673 memset (raw_buffer, 0, sizeof (raw_buffer));
4674 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4675 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4676 REGISTER_RAW_SIZE (hi.reg));
4677 }
4678 }
4679
4680 static void
4681 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4682 {
4683 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4684 struct return_value_word lo;
4685 struct return_value_word hi;
4686 return_value_location (valtype, &hi, &lo);
4687
4688 memset (raw_buffer, 0, sizeof (raw_buffer));
4689 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4690 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4691 REGISTER_RAW_SIZE (lo.reg));
4692
4693 if (hi.len > 0)
4694 {
4695 memset (raw_buffer, 0, sizeof (raw_buffer));
4696 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4697 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4698 REGISTER_RAW_SIZE (hi.reg));
4699 }
4700 }
4701
4702 /* O32 ABI stuff. */
4703
4704 static void
4705 mips_o32_xfer_return_value (struct type *type,
4706 struct regcache *regcache,
4707 bfd_byte *in, const bfd_byte *out)
4708 {
4709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4710 if (TYPE_CODE (type) == TYPE_CODE_FLT
4711 && TYPE_LENGTH (type) == 4
4712 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4713 {
4714 /* A single-precision floating-point value. It fits in the
4715 least significant part of FP0. */
4716 if (mips_debug)
4717 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4718 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4719 TARGET_BYTE_ORDER, in, out, 0);
4720 }
4721 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4722 && TYPE_LENGTH (type) == 8
4723 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4724 {
4725 /* A double-precision floating-point value. It fits in the
4726 least significant part of FP0/FP1 but with byte ordering
4727 based on the target (???). */
4728 if (mips_debug)
4729 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4730 switch (TARGET_BYTE_ORDER)
4731 {
4732 case BFD_ENDIAN_LITTLE:
4733 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4734 TARGET_BYTE_ORDER, in, out, 0);
4735 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4736 TARGET_BYTE_ORDER, in, out, 4);
4737 break;
4738 case BFD_ENDIAN_BIG:
4739 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4740 TARGET_BYTE_ORDER, in, out, 0);
4741 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4742 TARGET_BYTE_ORDER, in, out, 4);
4743 break;
4744 default:
4745 internal_error (__FILE__, __LINE__, "bad switch");
4746 }
4747 }
4748 #if 0
4749 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4750 && TYPE_NFIELDS (type) <= 2
4751 && TYPE_NFIELDS (type) >= 1
4752 && ((TYPE_NFIELDS (type) == 1
4753 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4754 == TYPE_CODE_FLT))
4755 || (TYPE_NFIELDS (type) == 2
4756 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4757 == TYPE_CODE_FLT)
4758 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4759 == TYPE_CODE_FLT)))
4760 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4761 {
4762 /* A struct that contains one or two floats. Each value is part
4763 in the least significant part of their floating point
4764 register.. */
4765 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4766 int regnum;
4767 int field;
4768 for (field = 0, regnum = FP0_REGNUM;
4769 field < TYPE_NFIELDS (type);
4770 field++, regnum += 2)
4771 {
4772 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4773 / TARGET_CHAR_BIT);
4774 if (mips_debug)
4775 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4776 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4777 TARGET_BYTE_ORDER, in, out, offset);
4778 }
4779 }
4780 #endif
4781 #if 0
4782 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4783 || TYPE_CODE (type) == TYPE_CODE_UNION)
4784 {
4785 /* A structure or union. Extract the left justified value,
4786 regardless of the byte order. I.e. DO NOT USE
4787 mips_xfer_lower. */
4788 int offset;
4789 int regnum;
4790 for (offset = 0, regnum = V0_REGNUM;
4791 offset < TYPE_LENGTH (type);
4792 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4793 {
4794 int xfer = REGISTER_RAW_SIZE (regnum);
4795 if (offset + xfer > TYPE_LENGTH (type))
4796 xfer = TYPE_LENGTH (type) - offset;
4797 if (mips_debug)
4798 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4799 offset, xfer, regnum);
4800 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4801 in, out, offset);
4802 }
4803 }
4804 #endif
4805 else
4806 {
4807 /* A scalar extract each part but least-significant-byte
4808 justified. o32 thinks registers are 4 byte, regardless of
4809 the ISA. mips_stack_argsize controls this. */
4810 int offset;
4811 int regnum;
4812 for (offset = 0, regnum = V0_REGNUM;
4813 offset < TYPE_LENGTH (type);
4814 offset += mips_stack_argsize (), regnum++)
4815 {
4816 int xfer = mips_stack_argsize ();
4817 int pos = 0;
4818 if (offset + xfer > TYPE_LENGTH (type))
4819 xfer = TYPE_LENGTH (type) - offset;
4820 if (mips_debug)
4821 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4822 offset, xfer, regnum);
4823 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4824 in, out, offset);
4825 }
4826 }
4827 }
4828
4829 static void
4830 mips_o32_extract_return_value (struct type *type,
4831 struct regcache *regcache,
4832 void *valbuf)
4833 {
4834 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4835 }
4836
4837 static void
4838 mips_o32_store_return_value (struct type *type, char *valbuf)
4839 {
4840 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4841 }
4842
4843 /* N32/N44 ABI stuff. */
4844
4845 static void
4846 mips_n32n64_xfer_return_value (struct type *type,
4847 struct regcache *regcache,
4848 bfd_byte *in, const bfd_byte *out)
4849 {
4850 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4851 if (TYPE_CODE (type) == TYPE_CODE_FLT
4852 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4853 {
4854 /* A floating-point value belongs in the least significant part
4855 of FP0. */
4856 if (mips_debug)
4857 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4858 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4859 TARGET_BYTE_ORDER, in, out, 0);
4860 }
4861 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4862 && TYPE_NFIELDS (type) <= 2
4863 && TYPE_NFIELDS (type) >= 1
4864 && ((TYPE_NFIELDS (type) == 1
4865 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4866 == TYPE_CODE_FLT))
4867 || (TYPE_NFIELDS (type) == 2
4868 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4869 == TYPE_CODE_FLT)
4870 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4871 == TYPE_CODE_FLT)))
4872 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4873 {
4874 /* A struct that contains one or two floats. Each value is part
4875 in the least significant part of their floating point
4876 register.. */
4877 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4878 int regnum;
4879 int field;
4880 for (field = 0, regnum = FP0_REGNUM;
4881 field < TYPE_NFIELDS (type);
4882 field++, regnum += 2)
4883 {
4884 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4885 / TARGET_CHAR_BIT);
4886 if (mips_debug)
4887 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4888 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4889 TARGET_BYTE_ORDER, in, out, offset);
4890 }
4891 }
4892 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4893 || TYPE_CODE (type) == TYPE_CODE_UNION)
4894 {
4895 /* A structure or union. Extract the left justified value,
4896 regardless of the byte order. I.e. DO NOT USE
4897 mips_xfer_lower. */
4898 int offset;
4899 int regnum;
4900 for (offset = 0, regnum = V0_REGNUM;
4901 offset < TYPE_LENGTH (type);
4902 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4903 {
4904 int xfer = REGISTER_RAW_SIZE (regnum);
4905 if (offset + xfer > TYPE_LENGTH (type))
4906 xfer = TYPE_LENGTH (type) - offset;
4907 if (mips_debug)
4908 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4909 offset, xfer, regnum);
4910 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4911 in, out, offset);
4912 }
4913 }
4914 else
4915 {
4916 /* A scalar extract each part but least-significant-byte
4917 justified. */
4918 int offset;
4919 int regnum;
4920 for (offset = 0, regnum = V0_REGNUM;
4921 offset < TYPE_LENGTH (type);
4922 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4923 {
4924 int xfer = REGISTER_RAW_SIZE (regnum);
4925 int pos = 0;
4926 if (offset + xfer > TYPE_LENGTH (type))
4927 xfer = TYPE_LENGTH (type) - offset;
4928 if (mips_debug)
4929 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4930 offset, xfer, regnum);
4931 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4932 in, out, offset);
4933 }
4934 }
4935 }
4936
4937 static void
4938 mips_n32n64_extract_return_value (struct type *type,
4939 struct regcache *regcache,
4940 void *valbuf)
4941 {
4942 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4943 }
4944
4945 static void
4946 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4947 {
4948 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4949 }
4950
4951 static void
4952 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4953 {
4954 /* Nothing to do -- push_arguments does all the work. */
4955 }
4956
4957 static CORE_ADDR
4958 mips_extract_struct_value_address (struct regcache *regcache)
4959 {
4960 /* FIXME: This will only work at random. The caller passes the
4961 struct_return address in V0, but it is not preserved. It may
4962 still be there, or this may be a random value. */
4963 LONGEST val;
4964
4965 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4966 return val;
4967 }
4968
4969 /* Exported procedure: Is PC in the signal trampoline code */
4970
4971 static int
4972 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4973 {
4974 if (sigtramp_address == 0)
4975 fixup_sigtramp ();
4976 return (pc >= sigtramp_address && pc < sigtramp_end);
4977 }
4978
4979 /* Root of all "set mips "/"show mips " commands. This will eventually be
4980 used for all MIPS-specific commands. */
4981
4982 static void
4983 show_mips_command (char *args, int from_tty)
4984 {
4985 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4986 }
4987
4988 static void
4989 set_mips_command (char *args, int from_tty)
4990 {
4991 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4992 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4993 }
4994
4995 /* Commands to show/set the MIPS FPU type. */
4996
4997 static void
4998 show_mipsfpu_command (char *args, int from_tty)
4999 {
5000 char *fpu;
5001 switch (MIPS_FPU_TYPE)
5002 {
5003 case MIPS_FPU_SINGLE:
5004 fpu = "single-precision";
5005 break;
5006 case MIPS_FPU_DOUBLE:
5007 fpu = "double-precision";
5008 break;
5009 case MIPS_FPU_NONE:
5010 fpu = "absent (none)";
5011 break;
5012 default:
5013 internal_error (__FILE__, __LINE__, "bad switch");
5014 }
5015 if (mips_fpu_type_auto)
5016 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5017 fpu);
5018 else
5019 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5020 fpu);
5021 }
5022
5023
5024 static void
5025 set_mipsfpu_command (char *args, int from_tty)
5026 {
5027 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5028 show_mipsfpu_command (args, from_tty);
5029 }
5030
5031 static void
5032 set_mipsfpu_single_command (char *args, int from_tty)
5033 {
5034 mips_fpu_type = MIPS_FPU_SINGLE;
5035 mips_fpu_type_auto = 0;
5036 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5037 }
5038
5039 static void
5040 set_mipsfpu_double_command (char *args, int from_tty)
5041 {
5042 mips_fpu_type = MIPS_FPU_DOUBLE;
5043 mips_fpu_type_auto = 0;
5044 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5045 }
5046
5047 static void
5048 set_mipsfpu_none_command (char *args, int from_tty)
5049 {
5050 mips_fpu_type = MIPS_FPU_NONE;
5051 mips_fpu_type_auto = 0;
5052 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5053 }
5054
5055 static void
5056 set_mipsfpu_auto_command (char *args, int from_tty)
5057 {
5058 mips_fpu_type_auto = 1;
5059 }
5060
5061 /* Command to set the processor type. */
5062
5063 void
5064 mips_set_processor_type_command (char *args, int from_tty)
5065 {
5066 int i;
5067
5068 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5069 {
5070 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5071 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5072 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5073
5074 /* Restore the value. */
5075 tmp_mips_processor_type = xstrdup (mips_processor_type);
5076
5077 return;
5078 }
5079
5080 if (!mips_set_processor_type (tmp_mips_processor_type))
5081 {
5082 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5083 /* Restore its value. */
5084 tmp_mips_processor_type = xstrdup (mips_processor_type);
5085 }
5086 }
5087
5088 static void
5089 mips_show_processor_type_command (char *args, int from_tty)
5090 {
5091 }
5092
5093 /* Modify the actual processor type. */
5094
5095 static int
5096 mips_set_processor_type (char *str)
5097 {
5098 int i;
5099
5100 if (str == NULL)
5101 return 0;
5102
5103 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5104 {
5105 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5106 {
5107 mips_processor_type = str;
5108 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5109 return 1;
5110 /* FIXME tweak fpu flag too */
5111 }
5112 }
5113
5114 return 0;
5115 }
5116
5117 /* Attempt to identify the particular processor model by reading the
5118 processor id. */
5119
5120 char *
5121 mips_read_processor_type (void)
5122 {
5123 CORE_ADDR prid;
5124
5125 prid = read_register (PRID_REGNUM);
5126
5127 if ((prid & ~0xf) == 0x700)
5128 return savestring ("r3041", strlen ("r3041"));
5129
5130 return NULL;
5131 }
5132
5133 /* Just like reinit_frame_cache, but with the right arguments to be
5134 callable as an sfunc. */
5135
5136 static void
5137 reinit_frame_cache_sfunc (char *args, int from_tty,
5138 struct cmd_list_element *c)
5139 {
5140 reinit_frame_cache ();
5141 }
5142
5143 int
5144 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5145 {
5146 mips_extra_func_info_t proc_desc;
5147
5148 /* Search for the function containing this address. Set the low bit
5149 of the address when searching, in case we were given an even address
5150 that is the start of a 16-bit function. If we didn't do this,
5151 the search would fail because the symbol table says the function
5152 starts at an odd address, i.e. 1 byte past the given address. */
5153 memaddr = ADDR_BITS_REMOVE (memaddr);
5154 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5155
5156 /* Make an attempt to determine if this is a 16-bit function. If
5157 the procedure descriptor exists and the address therein is odd,
5158 it's definitely a 16-bit function. Otherwise, we have to just
5159 guess that if the address passed in is odd, it's 16-bits. */
5160 if (proc_desc)
5161 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5162 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5163 else
5164 info->mach = pc_is_mips16 (memaddr) ?
5165 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5166
5167 /* Round down the instruction address to the appropriate boundary. */
5168 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5169
5170 /* Call the appropriate disassembler based on the target endian-ness. */
5171 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5172 return print_insn_big_mips (memaddr, info);
5173 else
5174 return print_insn_little_mips (memaddr, info);
5175 }
5176
5177 /* Old-style breakpoint macros.
5178 The IDT board uses an unusual breakpoint value, and sometimes gets
5179 confused when it sees the usual MIPS breakpoint instruction. */
5180
5181 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5182 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5183 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5184 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5185 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5186 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5187 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5188 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5189
5190 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5191 counter value to determine whether a 16- or 32-bit breakpoint should be
5192 used. It returns a pointer to a string of bytes that encode a breakpoint
5193 instruction, stores the length of the string to *lenptr, and adjusts pc
5194 (if necessary) to point to the actual memory location where the
5195 breakpoint should be inserted. */
5196
5197 static const unsigned char *
5198 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5199 {
5200 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5201 {
5202 if (pc_is_mips16 (*pcptr))
5203 {
5204 static unsigned char mips16_big_breakpoint[] =
5205 MIPS16_BIG_BREAKPOINT;
5206 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5207 *lenptr = sizeof (mips16_big_breakpoint);
5208 return mips16_big_breakpoint;
5209 }
5210 else
5211 {
5212 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5213 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5214 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5215
5216 *lenptr = sizeof (big_breakpoint);
5217
5218 if (strcmp (target_shortname, "mips") == 0)
5219 return idt_big_breakpoint;
5220 else if (strcmp (target_shortname, "ddb") == 0
5221 || strcmp (target_shortname, "pmon") == 0
5222 || strcmp (target_shortname, "lsi") == 0)
5223 return pmon_big_breakpoint;
5224 else
5225 return big_breakpoint;
5226 }
5227 }
5228 else
5229 {
5230 if (pc_is_mips16 (*pcptr))
5231 {
5232 static unsigned char mips16_little_breakpoint[] =
5233 MIPS16_LITTLE_BREAKPOINT;
5234 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5235 *lenptr = sizeof (mips16_little_breakpoint);
5236 return mips16_little_breakpoint;
5237 }
5238 else
5239 {
5240 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5241 static unsigned char pmon_little_breakpoint[] =
5242 PMON_LITTLE_BREAKPOINT;
5243 static unsigned char idt_little_breakpoint[] =
5244 IDT_LITTLE_BREAKPOINT;
5245
5246 *lenptr = sizeof (little_breakpoint);
5247
5248 if (strcmp (target_shortname, "mips") == 0)
5249 return idt_little_breakpoint;
5250 else if (strcmp (target_shortname, "ddb") == 0
5251 || strcmp (target_shortname, "pmon") == 0
5252 || strcmp (target_shortname, "lsi") == 0)
5253 return pmon_little_breakpoint;
5254 else
5255 return little_breakpoint;
5256 }
5257 }
5258 }
5259
5260 /* If PC is in a mips16 call or return stub, return the address of the target
5261 PC, which is either the callee or the caller. There are several
5262 cases which must be handled:
5263
5264 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5265 target PC is in $31 ($ra).
5266 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5267 and the target PC is in $2.
5268 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5269 before the jal instruction, this is effectively a call stub
5270 and the the target PC is in $2. Otherwise this is effectively
5271 a return stub and the target PC is in $18.
5272
5273 See the source code for the stubs in gcc/config/mips/mips16.S for
5274 gory details.
5275
5276 This function implements the SKIP_TRAMPOLINE_CODE macro.
5277 */
5278
5279 static CORE_ADDR
5280 mips_skip_stub (CORE_ADDR pc)
5281 {
5282 char *name;
5283 CORE_ADDR start_addr;
5284
5285 /* Find the starting address and name of the function containing the PC. */
5286 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5287 return 0;
5288
5289 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5290 target PC is in $31 ($ra). */
5291 if (strcmp (name, "__mips16_ret_sf") == 0
5292 || strcmp (name, "__mips16_ret_df") == 0)
5293 return read_signed_register (RA_REGNUM);
5294
5295 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5296 {
5297 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5298 and the target PC is in $2. */
5299 if (name[19] >= '0' && name[19] <= '9')
5300 return read_signed_register (2);
5301
5302 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5303 before the jal instruction, this is effectively a call stub
5304 and the the target PC is in $2. Otherwise this is effectively
5305 a return stub and the target PC is in $18. */
5306 else if (name[19] == 's' || name[19] == 'd')
5307 {
5308 if (pc == start_addr)
5309 {
5310 /* Check if the target of the stub is a compiler-generated
5311 stub. Such a stub for a function bar might have a name
5312 like __fn_stub_bar, and might look like this:
5313 mfc1 $4,$f13
5314 mfc1 $5,$f12
5315 mfc1 $6,$f15
5316 mfc1 $7,$f14
5317 la $1,bar (becomes a lui/addiu pair)
5318 jr $1
5319 So scan down to the lui/addi and extract the target
5320 address from those two instructions. */
5321
5322 CORE_ADDR target_pc = read_signed_register (2);
5323 t_inst inst;
5324 int i;
5325
5326 /* See if the name of the target function is __fn_stub_*. */
5327 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5328 return target_pc;
5329 if (strncmp (name, "__fn_stub_", 10) != 0
5330 && strcmp (name, "etext") != 0
5331 && strcmp (name, "_etext") != 0)
5332 return target_pc;
5333
5334 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5335 The limit on the search is arbitrarily set to 20
5336 instructions. FIXME. */
5337 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5338 {
5339 inst = mips_fetch_instruction (target_pc);
5340 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5341 pc = (inst << 16) & 0xffff0000; /* high word */
5342 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5343 return pc | (inst & 0xffff); /* low word */
5344 }
5345
5346 /* Couldn't find the lui/addui pair, so return stub address. */
5347 return target_pc;
5348 }
5349 else
5350 /* This is the 'return' part of a call stub. The return
5351 address is in $r18. */
5352 return read_signed_register (18);
5353 }
5354 }
5355 return 0; /* not a stub */
5356 }
5357
5358
5359 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5360 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5361
5362 static int
5363 mips_in_call_stub (CORE_ADDR pc, char *name)
5364 {
5365 CORE_ADDR start_addr;
5366
5367 /* Find the starting address of the function containing the PC. If the
5368 caller didn't give us a name, look it up at the same time. */
5369 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5370 return 0;
5371
5372 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5373 {
5374 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5375 if (name[19] >= '0' && name[19] <= '9')
5376 return 1;
5377 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5378 before the jal instruction, this is effectively a call stub. */
5379 else if (name[19] == 's' || name[19] == 'd')
5380 return pc == start_addr;
5381 }
5382
5383 return 0; /* not a stub */
5384 }
5385
5386
5387 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5388 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5389
5390 static int
5391 mips_in_return_stub (CORE_ADDR pc, char *name)
5392 {
5393 CORE_ADDR start_addr;
5394
5395 /* Find the starting address of the function containing the PC. */
5396 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5397 return 0;
5398
5399 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5400 if (strcmp (name, "__mips16_ret_sf") == 0
5401 || strcmp (name, "__mips16_ret_df") == 0)
5402 return 1;
5403
5404 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5405 i.e. after the jal instruction, this is effectively a return stub. */
5406 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5407 && (name[19] == 's' || name[19] == 'd')
5408 && pc != start_addr)
5409 return 1;
5410
5411 return 0; /* not a stub */
5412 }
5413
5414
5415 /* Return non-zero if the PC is in a library helper function that should
5416 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5417
5418 int
5419 mips_ignore_helper (CORE_ADDR pc)
5420 {
5421 char *name;
5422
5423 /* Find the starting address and name of the function containing the PC. */
5424 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5425 return 0;
5426
5427 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5428 that we want to ignore. */
5429 return (strcmp (name, "__mips16_ret_sf") == 0
5430 || strcmp (name, "__mips16_ret_df") == 0);
5431 }
5432
5433
5434 /* Return a location where we can set a breakpoint that will be hit
5435 when an inferior function call returns. This is normally the
5436 program's entry point. Executables that don't have an entry
5437 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5438 whose address is the location where the breakpoint should be placed. */
5439
5440 static CORE_ADDR
5441 mips_call_dummy_address (void)
5442 {
5443 struct minimal_symbol *sym;
5444
5445 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5446 if (sym)
5447 return SYMBOL_VALUE_ADDRESS (sym);
5448 else
5449 return entry_point_address ();
5450 }
5451
5452
5453 /* If the current gcc for this target does not produce correct debugging
5454 information for float parameters, both prototyped and unprototyped, then
5455 define this macro. This forces gdb to always assume that floats are
5456 passed as doubles and then converted in the callee.
5457
5458 For the mips chip, it appears that the debug info marks the parameters as
5459 floats regardless of whether the function is prototyped, but the actual
5460 values are passed as doubles for the non-prototyped case and floats for
5461 the prototyped case. Thus we choose to make the non-prototyped case work
5462 for C and break the prototyped case, since the non-prototyped case is
5463 probably much more common. (FIXME). */
5464
5465 static int
5466 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5467 {
5468 return current_language->la_language == language_c;
5469 }
5470
5471 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5472 the register stored on the stack (32) is different to its real raw
5473 size (64). The below ensures that registers are fetched from the
5474 stack using their ABI size and then stored into the RAW_BUFFER
5475 using their raw size.
5476
5477 The alternative to adding this function would be to add an ABI
5478 macro - REGISTER_STACK_SIZE(). */
5479
5480 static void
5481 mips_get_saved_register (char *raw_buffer,
5482 int *optimizedp,
5483 CORE_ADDR *addrp,
5484 struct frame_info *frame,
5485 int regnum,
5486 enum lval_type *lvalp)
5487 {
5488 CORE_ADDR addrx;
5489 enum lval_type lvalx;
5490 int optimizedx;
5491 int realnum;
5492
5493 if (!target_has_registers)
5494 error ("No registers.");
5495
5496 /* Make certain that all needed parameters are present. */
5497 if (addrp == NULL)
5498 addrp = &addrx;
5499 if (lvalp == NULL)
5500 lvalp = &lvalx;
5501 if (optimizedp == NULL)
5502 optimizedp = &optimizedx;
5503 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5504 addrp, &realnum, raw_buffer);
5505 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5506 have a pseudo register range that correspons to the ABI's, rather
5507 than the ISA's, view of registers. These registers would then
5508 implicitly describe their size and hence could be used without
5509 the below munging. */
5510 if ((*lvalp) == lval_memory)
5511 {
5512 if (raw_buffer != NULL)
5513 {
5514 if (regnum < 32)
5515 {
5516 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5517 saved. */
5518 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5519 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5520 }
5521 }
5522 }
5523 }
5524
5525 /* Immediately after a function call, return the saved pc.
5526 Can't always go through the frames for this because on some machines
5527 the new frame is not set up until the new function executes
5528 some instructions. */
5529
5530 static CORE_ADDR
5531 mips_saved_pc_after_call (struct frame_info *frame)
5532 {
5533 return read_signed_register (RA_REGNUM);
5534 }
5535
5536
5537 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5538 REGNUM */
5539
5540 static int
5541 mips_stab_reg_to_regnum (int num)
5542 {
5543 if (num < 32)
5544 return num;
5545 else
5546 return num + FP0_REGNUM - 38;
5547 }
5548
5549 /* Convert a ecoff register number to a gdb REGNUM */
5550
5551 static int
5552 mips_ecoff_reg_to_regnum (int num)
5553 {
5554 if (num < 32)
5555 return num;
5556 else
5557 return num + FP0_REGNUM - 32;
5558 }
5559
5560 /* Convert an integer into an address. By first converting the value
5561 into a pointer and then extracting it signed, the address is
5562 guarenteed to be correctly sign extended. */
5563
5564 static CORE_ADDR
5565 mips_integer_to_address (struct type *type, void *buf)
5566 {
5567 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5568 LONGEST val = unpack_long (type, buf);
5569 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5570 return extract_signed_integer (tmp,
5571 TYPE_LENGTH (builtin_type_void_data_ptr));
5572 }
5573
5574 static void
5575 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5576 {
5577 enum mips_abi *abip = (enum mips_abi *) obj;
5578 const char *name = bfd_get_section_name (abfd, sect);
5579
5580 if (*abip != MIPS_ABI_UNKNOWN)
5581 return;
5582
5583 if (strncmp (name, ".mdebug.", 8) != 0)
5584 return;
5585
5586 if (strcmp (name, ".mdebug.abi32") == 0)
5587 *abip = MIPS_ABI_O32;
5588 else if (strcmp (name, ".mdebug.abiN32") == 0)
5589 *abip = MIPS_ABI_N32;
5590 else if (strcmp (name, ".mdebug.abi64") == 0)
5591 *abip = MIPS_ABI_N64;
5592 else if (strcmp (name, ".mdebug.abiO64") == 0)
5593 *abip = MIPS_ABI_O64;
5594 else if (strcmp (name, ".mdebug.eabi32") == 0)
5595 *abip = MIPS_ABI_EABI32;
5596 else if (strcmp (name, ".mdebug.eabi64") == 0)
5597 *abip = MIPS_ABI_EABI64;
5598 else
5599 warning ("unsupported ABI %s.", name + 8);
5600 }
5601
5602 static enum mips_abi
5603 global_mips_abi (void)
5604 {
5605 int i;
5606
5607 for (i = 0; mips_abi_strings[i] != NULL; i++)
5608 if (mips_abi_strings[i] == mips_abi_string)
5609 return (enum mips_abi) i;
5610
5611 internal_error (__FILE__, __LINE__,
5612 "unknown ABI string");
5613 }
5614
5615 static struct gdbarch *
5616 mips_gdbarch_init (struct gdbarch_info info,
5617 struct gdbarch_list *arches)
5618 {
5619 static LONGEST mips_call_dummy_words[] =
5620 {0};
5621 struct gdbarch *gdbarch;
5622 struct gdbarch_tdep *tdep;
5623 int elf_flags;
5624 enum mips_abi mips_abi, found_abi, wanted_abi;
5625 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5626
5627 /* Reset the disassembly info, in case it was set to something
5628 non-default. */
5629 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5630 tm_print_insn_info.arch = bfd_arch_unknown;
5631 tm_print_insn_info.mach = 0;
5632
5633 elf_flags = 0;
5634
5635 if (info.abfd)
5636 {
5637 /* First of all, extract the elf_flags, if available. */
5638 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5639 elf_flags = elf_elfheader (info.abfd)->e_flags;
5640
5641 /* Try to determine the OS ABI of the object we are loading. If
5642 we end up with `unknown', just leave it that way. */
5643 osabi = gdbarch_lookup_osabi (info.abfd);
5644 }
5645
5646 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5647 switch ((elf_flags & EF_MIPS_ABI))
5648 {
5649 case E_MIPS_ABI_O32:
5650 mips_abi = MIPS_ABI_O32;
5651 break;
5652 case E_MIPS_ABI_O64:
5653 mips_abi = MIPS_ABI_O64;
5654 break;
5655 case E_MIPS_ABI_EABI32:
5656 mips_abi = MIPS_ABI_EABI32;
5657 break;
5658 case E_MIPS_ABI_EABI64:
5659 mips_abi = MIPS_ABI_EABI64;
5660 break;
5661 default:
5662 if ((elf_flags & EF_MIPS_ABI2))
5663 mips_abi = MIPS_ABI_N32;
5664 else
5665 mips_abi = MIPS_ABI_UNKNOWN;
5666 break;
5667 }
5668
5669 /* GCC creates a pseudo-section whose name describes the ABI. */
5670 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5671 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5672
5673 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5674 Use the ABI from the last architecture if there is one. */
5675 if (info.abfd == NULL && arches != NULL)
5676 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5677
5678 /* Try the architecture for any hint of the correct ABI. */
5679 if (mips_abi == MIPS_ABI_UNKNOWN
5680 && info.bfd_arch_info != NULL
5681 && info.bfd_arch_info->arch == bfd_arch_mips)
5682 {
5683 switch (info.bfd_arch_info->mach)
5684 {
5685 case bfd_mach_mips3900:
5686 mips_abi = MIPS_ABI_EABI32;
5687 break;
5688 case bfd_mach_mips4100:
5689 case bfd_mach_mips5000:
5690 mips_abi = MIPS_ABI_EABI64;
5691 break;
5692 case bfd_mach_mips8000:
5693 case bfd_mach_mips10000:
5694 /* On Irix, ELF64 executables use the N64 ABI. The
5695 pseudo-sections which describe the ABI aren't present
5696 on IRIX. (Even for executables created by gcc.) */
5697 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5698 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5699 mips_abi = MIPS_ABI_N64;
5700 else
5701 mips_abi = MIPS_ABI_N32;
5702 break;
5703 }
5704 }
5705
5706 if (mips_abi == MIPS_ABI_UNKNOWN)
5707 mips_abi = MIPS_ABI_O32;
5708
5709 /* Now that we have found what the ABI for this binary would be,
5710 check whether the user is overriding it. */
5711 found_abi = mips_abi;
5712 wanted_abi = global_mips_abi ();
5713 if (wanted_abi != MIPS_ABI_UNKNOWN)
5714 mips_abi = wanted_abi;
5715
5716 if (gdbarch_debug)
5717 {
5718 fprintf_unfiltered (gdb_stdlog,
5719 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5720 elf_flags);
5721 fprintf_unfiltered (gdb_stdlog,
5722 "mips_gdbarch_init: mips_abi = %d\n",
5723 mips_abi);
5724 fprintf_unfiltered (gdb_stdlog,
5725 "mips_gdbarch_init: found_mips_abi = %d\n",
5726 found_abi);
5727 }
5728
5729 /* try to find a pre-existing architecture */
5730 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5731 arches != NULL;
5732 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5733 {
5734 /* MIPS needs to be pedantic about which ABI the object is
5735 using. */
5736 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5737 continue;
5738 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5739 continue;
5740 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5741 return arches->gdbarch;
5742 }
5743
5744 /* Need a new architecture. Fill in a target specific vector. */
5745 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5746 gdbarch = gdbarch_alloc (&info, tdep);
5747 tdep->elf_flags = elf_flags;
5748 tdep->osabi = osabi;
5749
5750 /* Initially set everything according to the default ABI/ISA. */
5751 set_gdbarch_short_bit (gdbarch, 16);
5752 set_gdbarch_int_bit (gdbarch, 32);
5753 set_gdbarch_float_bit (gdbarch, 32);
5754 set_gdbarch_double_bit (gdbarch, 64);
5755 set_gdbarch_long_double_bit (gdbarch, 64);
5756 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5757 set_gdbarch_max_register_raw_size (gdbarch, 8);
5758 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5759 tdep->found_abi = found_abi;
5760 tdep->mips_abi = mips_abi;
5761
5762 set_gdbarch_elf_make_msymbol_special (gdbarch,
5763 mips_elf_make_msymbol_special);
5764
5765 switch (mips_abi)
5766 {
5767 case MIPS_ABI_O32:
5768 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5769 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5770 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5771 tdep->mips_default_saved_regsize = 4;
5772 tdep->mips_default_stack_argsize = 4;
5773 tdep->mips_fp_register_double = 0;
5774 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5775 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5776 tdep->gdb_target_is_mips64 = 0;
5777 tdep->default_mask_address_p = 0;
5778 set_gdbarch_long_bit (gdbarch, 32);
5779 set_gdbarch_ptr_bit (gdbarch, 32);
5780 set_gdbarch_long_long_bit (gdbarch, 64);
5781 set_gdbarch_reg_struct_has_addr (gdbarch,
5782 mips_o32_reg_struct_has_addr);
5783 set_gdbarch_use_struct_convention (gdbarch,
5784 mips_o32_use_struct_convention);
5785 break;
5786 case MIPS_ABI_O64:
5787 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5788 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5789 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5790 tdep->mips_default_saved_regsize = 8;
5791 tdep->mips_default_stack_argsize = 8;
5792 tdep->mips_fp_register_double = 1;
5793 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5794 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5795 tdep->gdb_target_is_mips64 = 1;
5796 tdep->default_mask_address_p = 0;
5797 set_gdbarch_long_bit (gdbarch, 32);
5798 set_gdbarch_ptr_bit (gdbarch, 32);
5799 set_gdbarch_long_long_bit (gdbarch, 64);
5800 set_gdbarch_reg_struct_has_addr (gdbarch,
5801 mips_o32_reg_struct_has_addr);
5802 set_gdbarch_use_struct_convention (gdbarch,
5803 mips_o32_use_struct_convention);
5804 break;
5805 case MIPS_ABI_EABI32:
5806 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5807 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5808 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5809 tdep->mips_default_saved_regsize = 4;
5810 tdep->mips_default_stack_argsize = 4;
5811 tdep->mips_fp_register_double = 0;
5812 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5813 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5814 tdep->gdb_target_is_mips64 = 0;
5815 tdep->default_mask_address_p = 0;
5816 set_gdbarch_long_bit (gdbarch, 32);
5817 set_gdbarch_ptr_bit (gdbarch, 32);
5818 set_gdbarch_long_long_bit (gdbarch, 64);
5819 set_gdbarch_reg_struct_has_addr (gdbarch,
5820 mips_eabi_reg_struct_has_addr);
5821 set_gdbarch_use_struct_convention (gdbarch,
5822 mips_eabi_use_struct_convention);
5823 break;
5824 case MIPS_ABI_EABI64:
5825 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5826 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5827 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5828 tdep->mips_default_saved_regsize = 8;
5829 tdep->mips_default_stack_argsize = 8;
5830 tdep->mips_fp_register_double = 1;
5831 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5832 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5833 tdep->gdb_target_is_mips64 = 1;
5834 tdep->default_mask_address_p = 0;
5835 set_gdbarch_long_bit (gdbarch, 64);
5836 set_gdbarch_ptr_bit (gdbarch, 64);
5837 set_gdbarch_long_long_bit (gdbarch, 64);
5838 set_gdbarch_reg_struct_has_addr (gdbarch,
5839 mips_eabi_reg_struct_has_addr);
5840 set_gdbarch_use_struct_convention (gdbarch,
5841 mips_eabi_use_struct_convention);
5842 break;
5843 case MIPS_ABI_N32:
5844 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5845 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5846 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5847 tdep->mips_default_saved_regsize = 8;
5848 tdep->mips_default_stack_argsize = 8;
5849 tdep->mips_fp_register_double = 1;
5850 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5851 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5852 tdep->gdb_target_is_mips64 = 1;
5853 tdep->default_mask_address_p = 0;
5854 set_gdbarch_long_bit (gdbarch, 32);
5855 set_gdbarch_ptr_bit (gdbarch, 32);
5856 set_gdbarch_long_long_bit (gdbarch, 64);
5857
5858 /* Set up the disassembler info, so that we get the right
5859 register names from libopcodes. */
5860 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5861 tm_print_insn_info.arch = bfd_arch_mips;
5862 if (info.bfd_arch_info != NULL
5863 && info.bfd_arch_info->arch == bfd_arch_mips
5864 && info.bfd_arch_info->mach)
5865 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5866 else
5867 tm_print_insn_info.mach = bfd_mach_mips8000;
5868
5869 set_gdbarch_use_struct_convention (gdbarch,
5870 mips_n32n64_use_struct_convention);
5871 set_gdbarch_reg_struct_has_addr (gdbarch,
5872 mips_n32n64_reg_struct_has_addr);
5873 break;
5874 case MIPS_ABI_N64:
5875 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5876 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5877 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5878 tdep->mips_default_saved_regsize = 8;
5879 tdep->mips_default_stack_argsize = 8;
5880 tdep->mips_fp_register_double = 1;
5881 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5882 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5883 tdep->gdb_target_is_mips64 = 1;
5884 tdep->default_mask_address_p = 0;
5885 set_gdbarch_long_bit (gdbarch, 64);
5886 set_gdbarch_ptr_bit (gdbarch, 64);
5887 set_gdbarch_long_long_bit (gdbarch, 64);
5888
5889 /* Set up the disassembler info, so that we get the right
5890 register names from libopcodes. */
5891 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5892 tm_print_insn_info.arch = bfd_arch_mips;
5893 if (info.bfd_arch_info != NULL
5894 && info.bfd_arch_info->arch == bfd_arch_mips
5895 && info.bfd_arch_info->mach)
5896 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5897 else
5898 tm_print_insn_info.mach = bfd_mach_mips8000;
5899
5900 set_gdbarch_use_struct_convention (gdbarch,
5901 mips_n32n64_use_struct_convention);
5902 set_gdbarch_reg_struct_has_addr (gdbarch,
5903 mips_n32n64_reg_struct_has_addr);
5904 break;
5905 default:
5906 internal_error (__FILE__, __LINE__,
5907 "unknown ABI in switch");
5908 }
5909
5910 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5911 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5912 comment:
5913
5914 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5915 flag in object files because to do so would make it impossible to
5916 link with libraries compiled without "-gp32". This is
5917 unnecessarily restrictive.
5918
5919 We could solve this problem by adding "-gp32" multilibs to gcc,
5920 but to set this flag before gcc is built with such multilibs will
5921 break too many systems.''
5922
5923 But even more unhelpfully, the default linker output target for
5924 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5925 for 64-bit programs - you need to change the ABI to change this,
5926 and not all gcc targets support that currently. Therefore using
5927 this flag to detect 32-bit mode would do the wrong thing given
5928 the current gcc - it would make GDB treat these 64-bit programs
5929 as 32-bit programs by default. */
5930
5931 /* enable/disable the MIPS FPU */
5932 if (!mips_fpu_type_auto)
5933 tdep->mips_fpu_type = mips_fpu_type;
5934 else if (info.bfd_arch_info != NULL
5935 && info.bfd_arch_info->arch == bfd_arch_mips)
5936 switch (info.bfd_arch_info->mach)
5937 {
5938 case bfd_mach_mips3900:
5939 case bfd_mach_mips4100:
5940 case bfd_mach_mips4111:
5941 tdep->mips_fpu_type = MIPS_FPU_NONE;
5942 break;
5943 case bfd_mach_mips4650:
5944 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5945 break;
5946 default:
5947 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5948 break;
5949 }
5950 else
5951 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5952
5953 /* MIPS version of register names. NOTE: At present the MIPS
5954 register name management is part way between the old -
5955 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5956 Further work on it is required. */
5957 /* NOTE: many targets (esp. embedded) do not go thru the
5958 gdbarch_register_name vector at all, instead bypassing it
5959 by defining REGISTER_NAMES. */
5960 set_gdbarch_register_name (gdbarch, mips_register_name);
5961 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5962 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5963 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5964 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5965 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5966
5967 /* Add/remove bits from an address. The MIPS needs be careful to
5968 ensure that all 32 bit addresses are sign extended to 64 bits. */
5969 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5970
5971 /* There's a mess in stack frame creation. See comments in
5972 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5973 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5974 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
5975
5976 /* Map debug register numbers onto internal register numbers. */
5977 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5978 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5979
5980 /* Initialize a frame */
5981 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5982 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5983
5984 /* MIPS version of CALL_DUMMY */
5985
5986 set_gdbarch_call_dummy_p (gdbarch, 1);
5987 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5988 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5989 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5990 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
5991 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5992 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5993 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5994 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5995 set_gdbarch_call_dummy_length (gdbarch, 0);
5996 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5997 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5998 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5999 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
6000 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6001 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6002 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
6003 set_gdbarch_register_convert_to_virtual (gdbarch,
6004 mips_register_convert_to_virtual);
6005 set_gdbarch_register_convert_to_raw (gdbarch,
6006 mips_register_convert_to_raw);
6007
6008 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
6009
6010 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
6011 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
6012 set_gdbarch_frameless_function_invocation (gdbarch,
6013 generic_frameless_function_invocation_not);
6014 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6015 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6016 set_gdbarch_frame_args_skip (gdbarch, 0);
6017
6018 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
6019
6020 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6021 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6022 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6023
6024 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6025 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6026
6027 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6028 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6029 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6030
6031 set_gdbarch_function_start_offset (gdbarch, 0);
6032
6033 /* There are MIPS targets which do not yet use this since they still
6034 define REGISTER_VIRTUAL_TYPE. */
6035 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6036 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6037
6038 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6039 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6040
6041 /* Hook in OS ABI-specific overrides, if they have been registered. */
6042 gdbarch_init_osabi (info, gdbarch, osabi);
6043
6044 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6045 set_gdbarch_extract_struct_value_address (gdbarch,
6046 mips_extract_struct_value_address);
6047
6048 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6049
6050 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6051 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6052
6053 return gdbarch;
6054 }
6055
6056 static void
6057 mips_abi_update (char *ignore_args, int from_tty,
6058 struct cmd_list_element *c)
6059 {
6060 struct gdbarch_info info;
6061
6062 /* Force the architecture to update, and (if it's a MIPS architecture)
6063 mips_gdbarch_init will take care of the rest. */
6064 gdbarch_info_init (&info);
6065 gdbarch_update_p (info);
6066 }
6067
6068 static void
6069 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6070 {
6071 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6072 if (tdep != NULL)
6073 {
6074 int ef_mips_arch;
6075 int ef_mips_32bitmode;
6076 /* determine the ISA */
6077 switch (tdep->elf_flags & EF_MIPS_ARCH)
6078 {
6079 case E_MIPS_ARCH_1:
6080 ef_mips_arch = 1;
6081 break;
6082 case E_MIPS_ARCH_2:
6083 ef_mips_arch = 2;
6084 break;
6085 case E_MIPS_ARCH_3:
6086 ef_mips_arch = 3;
6087 break;
6088 case E_MIPS_ARCH_4:
6089 ef_mips_arch = 4;
6090 break;
6091 default:
6092 ef_mips_arch = 0;
6093 break;
6094 }
6095 /* determine the size of a pointer */
6096 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6097 fprintf_unfiltered (file,
6098 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6099 tdep->elf_flags);
6100 fprintf_unfiltered (file,
6101 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6102 ef_mips_32bitmode);
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: ef_mips_arch = %d\n",
6105 ef_mips_arch);
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6108 tdep->mips_abi,
6109 mips_abi_strings[tdep->mips_abi]);
6110 fprintf_unfiltered (file,
6111 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6112 mips_mask_address_p (),
6113 tdep->default_mask_address_p);
6114 }
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6117 FP_REGISTER_DOUBLE);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6120 MIPS_DEFAULT_FPU_TYPE,
6121 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6122 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6123 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6124 : "???"));
6125 fprintf_unfiltered (file,
6126 "mips_dump_tdep: MIPS_EABI = %d\n",
6127 MIPS_EABI);
6128 fprintf_unfiltered (file,
6129 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6130 MIPS_LAST_FP_ARG_REGNUM,
6131 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6132 fprintf_unfiltered (file,
6133 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6134 MIPS_FPU_TYPE,
6135 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6136 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6137 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6138 : "???"));
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6141 MIPS_DEFAULT_SAVED_REGSIZE);
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6144 FP_REGISTER_DOUBLE);
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6147 MIPS_DEFAULT_STACK_ARGSIZE);
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6150 MIPS_STACK_ARGSIZE);
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6153 MIPS_REGSIZE);
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: A0_REGNUM = %d\n",
6156 A0_REGNUM);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6159 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6162 XSTRING (ATTACH_DETACH));
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6165 BADVADDR_REGNUM);
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6170 CAUSE_REGNUM);
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6173 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6176 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6177 fprintf_unfiltered (file,
6178 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6179 FCRCS_REGNUM);
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6182 FCRIR_REGNUM);
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6185 FIRST_EMBED_REGNUM);
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6188 FPA0_REGNUM);
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6191 GDB_TARGET_IS_MIPS64);
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6194 GEN_REG_SAVE_MASK);
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6197 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: HI_REGNUM = %d\n",
6200 HI_REGNUM);
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6207 XSTRING (IGNORE_HELPER_CALL (PC)));
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6210 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6213 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6218 LAST_EMBED_REGNUM);
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: LO_REGNUM = %d\n",
6223 LO_REGNUM);
6224 #ifdef MACHINE_CPROC_FP_OFFSET
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6227 MACHINE_CPROC_FP_OFFSET);
6228 #endif
6229 #ifdef MACHINE_CPROC_PC_OFFSET
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6232 MACHINE_CPROC_PC_OFFSET);
6233 #endif
6234 #ifdef MACHINE_CPROC_SP_OFFSET
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6237 MACHINE_CPROC_SP_OFFSET);
6238 #endif
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6245 MIPS16_INSTLEN);
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6254 MIPS_INSTLEN);
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6257 MIPS_LAST_ARG_REGNUM,
6258 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6261 MIPS_NUMREGS);
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6266 MIPS_SAVED_REGSIZE);
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: OP_LDFPR = used?\n");
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: OP_LDGPR = used?\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: PRID_REGNUM = %d\n",
6277 PRID_REGNUM);
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6280 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: PROC_PC_REG = function?\n");
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: PS_REGNUM = %d\n",
6307 PS_REGNUM);
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6310 PUSH_FP_REGNUM);
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: RA_REGNUM = %d\n",
6313 RA_REGNUM);
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6316 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6319 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: ROUND_DOWN = function?\n");
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: ROUND_UP = function?\n");
6326 #ifdef SAVED_BYTES
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SAVED_BYTES = %d\n",
6329 SAVED_BYTES);
6330 #endif
6331 #ifdef SAVED_FP
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SAVED_FP = %d\n",
6334 SAVED_FP);
6335 #endif
6336 #ifdef SAVED_PC
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: SAVED_PC = %d\n",
6339 SAVED_PC);
6340 #endif
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6343 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6348 SIGFRAME_BASE);
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6351 SIGFRAME_FPREGSAVE_OFF);
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6354 SIGFRAME_PC_OFF);
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6357 SIGFRAME_REGSAVE_OFF);
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6360 SIGFRAME_REG_SIZE);
6361 fprintf_unfiltered (file,
6362 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6363 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6366 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6369 SOFTWARE_SINGLE_STEP_P ());
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6372 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6373 #ifdef STACK_END_ADDR
6374 fprintf_unfiltered (file,
6375 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6376 STACK_END_ADDR);
6377 #endif
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6380 XSTRING (STEP_SKIPS_DELAY (PC)));
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6383 STEP_SKIPS_DELAY_P);
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6386 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: T9_REGNUM = %d\n",
6389 T9_REGNUM);
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6394 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6397 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6398 fprintf_unfiltered (file,
6399 "mips_dump_tdep: TARGET_MIPS = used?\n");
6400 fprintf_unfiltered (file,
6401 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6402 XSTRING (TM_PRINT_INSN_MACH));
6403 #ifdef TRACE_CLEAR
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6406 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6407 #endif
6408 #ifdef TRACE_FLAVOR
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6411 TRACE_FLAVOR);
6412 #endif
6413 #ifdef TRACE_FLAVOR_SIZE
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6416 TRACE_FLAVOR_SIZE);
6417 #endif
6418 #ifdef TRACE_SET
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: TRACE_SET # %s\n",
6421 XSTRING (TRACE_SET (X,STATE)));
6422 #endif
6423 fprintf_unfiltered (file,
6424 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6425 #ifdef UNUSED_REGNUM
6426 fprintf_unfiltered (file,
6427 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6428 UNUSED_REGNUM);
6429 #endif
6430 fprintf_unfiltered (file,
6431 "mips_dump_tdep: V0_REGNUM = %d\n",
6432 V0_REGNUM);
6433 fprintf_unfiltered (file,
6434 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6435 (long) VM_MIN_ADDRESS);
6436 #ifdef VX_NUM_REGS
6437 fprintf_unfiltered (file,
6438 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6439 VX_NUM_REGS);
6440 #endif
6441 fprintf_unfiltered (file,
6442 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6443 ZERO_REGNUM);
6444 fprintf_unfiltered (file,
6445 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6446 _PROC_MAGIC_);
6447
6448 fprintf_unfiltered (file,
6449 "mips_dump_tdep: OS ABI = %s\n",
6450 gdbarch_osabi_name (tdep->osabi));
6451 }
6452
6453 void
6454 _initialize_mips_tdep (void)
6455 {
6456 static struct cmd_list_element *mipsfpulist = NULL;
6457 struct cmd_list_element *c;
6458
6459 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6460 if (MIPS_ABI_LAST + 1
6461 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6462 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6463
6464 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6465 if (!tm_print_insn) /* Someone may have already set it */
6466 tm_print_insn = gdb_print_insn_mips;
6467
6468 /* Add root prefix command for all "set mips"/"show mips" commands */
6469 add_prefix_cmd ("mips", no_class, set_mips_command,
6470 "Various MIPS specific commands.",
6471 &setmipscmdlist, "set mips ", 0, &setlist);
6472
6473 add_prefix_cmd ("mips", no_class, show_mips_command,
6474 "Various MIPS specific commands.",
6475 &showmipscmdlist, "show mips ", 0, &showlist);
6476
6477 /* Allow the user to override the saved register size. */
6478 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6479 class_obscure,
6480 size_enums,
6481 &mips_saved_regsize_string, "\
6482 Set size of general purpose registers saved on the stack.\n\
6483 This option can be set to one of:\n\
6484 32 - Force GDB to treat saved GP registers as 32-bit\n\
6485 64 - Force GDB to treat saved GP registers as 64-bit\n\
6486 auto - Allow GDB to use the target's default setting or autodetect the\n\
6487 saved GP register size from information contained in the executable.\n\
6488 (default: auto)",
6489 &setmipscmdlist),
6490 &showmipscmdlist);
6491
6492 /* Allow the user to override the argument stack size. */
6493 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6494 class_obscure,
6495 size_enums,
6496 &mips_stack_argsize_string, "\
6497 Set the amount of stack space reserved for each argument.\n\
6498 This option can be set to one of:\n\
6499 32 - Force GDB to allocate 32-bit chunks per argument\n\
6500 64 - Force GDB to allocate 64-bit chunks per argument\n\
6501 auto - Allow GDB to determine the correct setting from the current\n\
6502 target and executable (default)",
6503 &setmipscmdlist),
6504 &showmipscmdlist);
6505
6506 /* Allow the user to override the ABI. */
6507 c = add_set_enum_cmd
6508 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6509 "Set the ABI used by this program.\n"
6510 "This option can be set to one of:\n"
6511 " auto - the default ABI associated with the current binary\n"
6512 " o32\n"
6513 " o64\n"
6514 " n32\n"
6515 " n64\n"
6516 " eabi32\n"
6517 " eabi64",
6518 &setmipscmdlist);
6519 add_show_from_set (c, &showmipscmdlist);
6520 set_cmd_sfunc (c, mips_abi_update);
6521
6522 /* Let the user turn off floating point and set the fence post for
6523 heuristic_proc_start. */
6524
6525 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6526 "Set use of MIPS floating-point coprocessor.",
6527 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6528 add_cmd ("single", class_support, set_mipsfpu_single_command,
6529 "Select single-precision MIPS floating-point coprocessor.",
6530 &mipsfpulist);
6531 add_cmd ("double", class_support, set_mipsfpu_double_command,
6532 "Select double-precision MIPS floating-point coprocessor.",
6533 &mipsfpulist);
6534 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6535 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6536 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6537 add_cmd ("none", class_support, set_mipsfpu_none_command,
6538 "Select no MIPS floating-point coprocessor.",
6539 &mipsfpulist);
6540 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6541 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6542 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6543 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6544 "Select MIPS floating-point coprocessor automatically.",
6545 &mipsfpulist);
6546 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6547 "Show current use of MIPS floating-point coprocessor target.",
6548 &showlist);
6549
6550 /* We really would like to have both "0" and "unlimited" work, but
6551 command.c doesn't deal with that. So make it a var_zinteger
6552 because the user can always use "999999" or some such for unlimited. */
6553 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6554 (char *) &heuristic_fence_post,
6555 "\
6556 Set the distance searched for the start of a function.\n\
6557 If you are debugging a stripped executable, GDB needs to search through the\n\
6558 program for the start of a function. This command sets the distance of the\n\
6559 search. The only need to set it is when debugging a stripped executable.",
6560 &setlist);
6561 /* We need to throw away the frame cache when we set this, since it
6562 might change our ability to get backtraces. */
6563 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6564 add_show_from_set (c, &showlist);
6565
6566 /* Allow the user to control whether the upper bits of 64-bit
6567 addresses should be zeroed. */
6568 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6569 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6570 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6571 allow GDB to determine the correct value.\n", "\
6572 Show zeroing of upper 32 bits of 64-bit addresses.",
6573 NULL, show_mask_address,
6574 &setmipscmdlist, &showmipscmdlist);
6575
6576 /* Allow the user to control the size of 32 bit registers within the
6577 raw remote packet. */
6578 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6579 class_obscure,
6580 var_boolean,
6581 (char *)&mips64_transfers_32bit_regs_p, "\
6582 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6583 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6584 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6585 64 bits for others. Use \"off\" to disable compatibility mode",
6586 &setlist),
6587 &showlist);
6588
6589 /* Debug this files internals. */
6590 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6591 &mips_debug, "Set mips debugging.\n\
6592 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6593 &showdebuglist);
6594 }
This page took 0.241644 seconds and 5 git commands to generate.