When the target h/w has 8byte registers, return 8 bytes for the raw buffer size
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45
46 /* The sizes of floating point registers. */
47
48 enum
49 {
50 MIPS_FPU_SINGLE_REGSIZE = 4,
51 MIPS_FPU_DOUBLE_REGSIZE = 8
52 };
53
54 /* All the possible MIPS ABIs. */
55
56 enum mips_abi
57 {
58 MIPS_ABI_UNKNOWN,
59 MIPS_ABI_N32,
60 MIPS_ABI_O32,
61 MIPS_ABI_O64,
62 MIPS_ABI_EABI32,
63 MIPS_ABI_EABI64
64 };
65
66 struct frame_extra_info
67 {
68 mips_extra_func_info_t proc_desc;
69 int num_args;
70 };
71
72 /* Various MIPS ISA options (related to stack analysis) can be
73 overridden dynamically. Establish an enum/array for managing
74 them. */
75
76 static const char size_auto[] = "auto";
77 static const char size_32[] = "32";
78 static const char size_64[] = "64";
79
80 static const char *size_enums[] = {
81 size_auto,
82 size_32,
83 size_64,
84 0
85 };
86
87 /* Some MIPS boards don't support floating point while others only
88 support single-precision floating-point operations. See also
89 FP_REGISTER_DOUBLE. */
90
91 enum mips_fpu_type
92 {
93 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
94 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
95 MIPS_FPU_NONE /* No floating point. */
96 };
97
98 #ifndef MIPS_DEFAULT_FPU_TYPE
99 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
100 #endif
101 static int mips_fpu_type_auto = 1;
102 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
103 #define MIPS_FPU_TYPE mips_fpu_type
104
105 /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
106 #ifndef FP_REGISTER_DOUBLE
107 #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
108 #endif
109
110 static int mips_debug = 0;
111
112 /* MIPS specific per-architecture information */
113 struct gdbarch_tdep
114 {
115 /* from the elf header */
116 int elf_flags;
117 /* mips options */
118 enum mips_abi mips_abi;
119 const char *mips_abi_string;
120 enum mips_fpu_type mips_fpu_type;
121 int mips_last_arg_regnum;
122 int mips_last_fp_arg_regnum;
123 int mips_default_saved_regsize;
124 int mips_fp_register_double;
125 int mips_regs_have_home_p;
126 int mips_default_stack_argsize;
127 int gdb_target_is_mips64;
128 int default_mask_address_p;
129 };
130
131 #if GDB_MULTI_ARCH
132 #undef MIPS_EABI
133 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
134 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
135 #endif
136
137 #if GDB_MULTI_ARCH
138 #undef MIPS_LAST_FP_ARG_REGNUM
139 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
140 #endif
141
142 #if GDB_MULTI_ARCH
143 #undef MIPS_LAST_ARG_REGNUM
144 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
145 #endif
146
147 #if GDB_MULTI_ARCH
148 #undef MIPS_FPU_TYPE
149 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
150 #endif
151
152 /* Return the currently configured (or set) saved register size. */
153
154 #if GDB_MULTI_ARCH
155 #undef MIPS_DEFAULT_SAVED_REGSIZE
156 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
157 #elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
158 #define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
159 #endif
160
161 static const char *mips_saved_regsize_string = size_auto;
162
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165 static unsigned int
166 mips_saved_regsize (void)
167 {
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174 }
175
176 /* Indicate that the ABI makes use of double-precision registers
177 provided by the FPU (rather than combining pairs of registers to
178 form double-precision values). Do not use "TARGET_IS_MIPS64" to
179 determine if the ABI is using double-precision registers. See also
180 MIPS_FPU_TYPE. */
181 #if GDB_MULTI_ARCH
182 #undef FP_REGISTER_DOUBLE
183 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
184 #endif
185
186 /* Does the caller allocate a ``home'' for each register used in the
187 function call? The N32 ABI and MIPS_EABI do not, the others do. */
188
189 #if GDB_MULTI_ARCH
190 #undef MIPS_REGS_HAVE_HOME_P
191 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
192 #elif !defined (MIPS_REGS_HAVE_HOME_P)
193 #define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
194 #endif
195
196 /* The amount of space reserved on the stack for registers. This is
197 different to MIPS_SAVED_REGSIZE as it determines the alignment of
198 data allocated after the registers have run out. */
199
200 #if GDB_MULTI_ARCH
201 #undef MIPS_DEFAULT_STACK_ARGSIZE
202 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
203 #elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
204 #define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
205 #endif
206
207 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
208
209 static const char *mips_stack_argsize_string = size_auto;
210
211 static unsigned int
212 mips_stack_argsize (void)
213 {
214 if (mips_stack_argsize_string == size_auto)
215 return MIPS_DEFAULT_STACK_ARGSIZE;
216 else if (mips_stack_argsize_string == size_64)
217 return 8;
218 else /* if (mips_stack_argsize_string == size_32) */
219 return 4;
220 }
221
222 #if GDB_MULTI_ARCH
223 #undef GDB_TARGET_IS_MIPS64
224 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
225 #endif
226
227 #if GDB_MULTI_ARCH
228 #undef MIPS_DEFAULT_MASK_ADDRESS_P
229 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
230 #elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
231 #define MIPS_DEFAULT_MASK_ADDRESS_P (0)
232 #endif
233
234 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
235
236 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
237
238 static void mips_print_register (int, int);
239
240 static mips_extra_func_info_t
241 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
242
243 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
244
245 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
246
247 int mips_set_processor_type (char *);
248
249 static void mips_show_processor_type_command (char *, int);
250
251 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
252
253 static mips_extra_func_info_t
254 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
255
256 static CORE_ADDR after_prologue (CORE_ADDR pc,
257 mips_extra_func_info_t proc_desc);
258
259 /* This value is the model of MIPS in use. It is derived from the value
260 of the PrID register. */
261
262 char *mips_processor_type;
263
264 char *tmp_mips_processor_type;
265
266 /* The list of available "set mips " and "show mips " commands */
267
268 static struct cmd_list_element *setmipscmdlist = NULL;
269 static struct cmd_list_element *showmipscmdlist = NULL;
270
271 /* A set of original names, to be used when restoring back to generic
272 registers from a specific set. */
273
274 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
275 char **mips_processor_reg_names = mips_generic_reg_names;
276
277 char *
278 mips_register_name (int i)
279 {
280 return mips_processor_reg_names[i];
281 }
282 /* *INDENT-OFF* */
283 /* Names of IDT R3041 registers. */
284
285 char *mips_r3041_reg_names[] = {
286 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
287 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
288 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
289 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
290 "sr", "lo", "hi", "bad", "cause","pc",
291 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
292 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
293 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
294 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
295 "fsr", "fir", "fp", "",
296 "", "", "bus", "ccfg", "", "", "", "",
297 "", "", "port", "cmp", "", "", "epc", "prid",
298 };
299
300 /* Names of IDT R3051 registers. */
301
302 char *mips_r3051_reg_names[] = {
303 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
304 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
305 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
306 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
307 "sr", "lo", "hi", "bad", "cause","pc",
308 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
309 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
310 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
311 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
312 "fsr", "fir", "fp", "",
313 "inx", "rand", "elo", "", "ctxt", "", "", "",
314 "", "", "ehi", "", "", "", "epc", "prid",
315 };
316
317 /* Names of IDT R3081 registers. */
318
319 char *mips_r3081_reg_names[] = {
320 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
321 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
322 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
323 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
324 "sr", "lo", "hi", "bad", "cause","pc",
325 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
326 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
327 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
328 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
329 "fsr", "fir", "fp", "",
330 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
331 "", "", "ehi", "", "", "", "epc", "prid",
332 };
333
334 /* Names of LSI 33k registers. */
335
336 char *mips_lsi33k_reg_names[] = {
337 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
338 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
339 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
340 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
341 "epc", "hi", "lo", "sr", "cause","badvaddr",
342 "dcic", "bpc", "bda", "", "", "", "", "",
343 "", "", "", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "",
347 "", "", "", "", "", "", "", "",
348 "", "", "", "", "", "", "", "",
349 };
350
351 struct {
352 char *name;
353 char **regnames;
354 } mips_processor_type_table[] = {
355 { "generic", mips_generic_reg_names },
356 { "r3041", mips_r3041_reg_names },
357 { "r3051", mips_r3051_reg_names },
358 { "r3071", mips_r3081_reg_names },
359 { "r3081", mips_r3081_reg_names },
360 { "lsi33k", mips_lsi33k_reg_names },
361 { NULL, NULL }
362 };
363 /* *INDENT-ON* */
364
365
366
367
368 /* Table to translate MIPS16 register field to actual register number. */
369 static int mips16_to_32_reg[8] =
370 {16, 17, 2, 3, 4, 5, 6, 7};
371
372 /* Heuristic_proc_start may hunt through the text section for a long
373 time across a 2400 baud serial line. Allows the user to limit this
374 search. */
375
376 static unsigned int heuristic_fence_post = 0;
377
378 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
379 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
380 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
381 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
382 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
383 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
384 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
385 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
386 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
387 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
388 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
389 #define _PROC_MAGIC_ 0x0F0F0F0F
390 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
391 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
392
393 struct linked_proc_info
394 {
395 struct mips_extra_func_info info;
396 struct linked_proc_info *next;
397 }
398 *linked_proc_desc_table = NULL;
399
400 void
401 mips_print_extra_frame_info (struct frame_info *fi)
402 {
403 if (fi
404 && fi->extra_info
405 && fi->extra_info->proc_desc
406 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
407 printf_filtered (" frame pointer is at %s+%s\n",
408 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
409 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
410 }
411
412 /* Convert between RAW and VIRTUAL registers. The RAW register size
413 defines the remote-gdb packet. */
414
415 static int mips64_transfers_32bit_regs_p = 0;
416
417 int
418 mips_register_raw_size (int reg_nr)
419 {
420 if (mips64_transfers_32bit_regs_p)
421 return REGISTER_VIRTUAL_SIZE (reg_nr);
422 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
423 && FP_REGISTER_DOUBLE)
424 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
425 registers. */
426 return 8;
427 else
428 return MIPS_REGSIZE;
429 }
430
431 int
432 mips_register_convertible (int reg_nr)
433 {
434 if (mips64_transfers_32bit_regs_p)
435 return 0;
436 else
437 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
438 }
439
440 void
441 mips_register_convert_to_virtual (int n, struct type *virtual_type,
442 char *raw_buf, char *virt_buf)
443 {
444 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
445 memcpy (virt_buf,
446 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
447 TYPE_LENGTH (virtual_type));
448 else
449 memcpy (virt_buf,
450 raw_buf,
451 TYPE_LENGTH (virtual_type));
452 }
453
454 void
455 mips_register_convert_to_raw (struct type *virtual_type, int n,
456 char *virt_buf, char *raw_buf)
457 {
458 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
459 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
460 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
461 virt_buf,
462 TYPE_LENGTH (virtual_type));
463 else
464 memcpy (raw_buf,
465 virt_buf,
466 TYPE_LENGTH (virtual_type));
467 }
468
469 /* Should the upper word of 64-bit addresses be zeroed? */
470 enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
471
472 static int
473 mips_mask_address_p (void)
474 {
475 switch (mask_address_var)
476 {
477 case CMD_AUTO_BOOLEAN_TRUE:
478 return 1;
479 case CMD_AUTO_BOOLEAN_FALSE:
480 return 0;
481 break;
482 case CMD_AUTO_BOOLEAN_AUTO:
483 return MIPS_DEFAULT_MASK_ADDRESS_P;
484 default:
485 internal_error (__FILE__, __LINE__,
486 "mips_mask_address_p: bad switch");
487 return -1;
488 }
489 }
490
491 static void
492 show_mask_address (char *cmd, int from_tty)
493 {
494 switch (mask_address_var)
495 {
496 case CMD_AUTO_BOOLEAN_TRUE:
497 printf_filtered ("The 32 bit mips address mask is enabled\n");
498 break;
499 case CMD_AUTO_BOOLEAN_FALSE:
500 printf_filtered ("The 32 bit mips address mask is disabled\n");
501 break;
502 case CMD_AUTO_BOOLEAN_AUTO:
503 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
504 mips_mask_address_p () ? "enabled" : "disabled");
505 break;
506 default:
507 internal_error (__FILE__, __LINE__,
508 "show_mask_address: bad switch");
509 break;
510 }
511 }
512
513 /* Should call_function allocate stack space for a struct return? */
514 int
515 mips_use_struct_convention (int gcc_p, struct type *type)
516 {
517 if (MIPS_EABI)
518 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
519 else
520 return 1; /* Structures are returned by ref in extra arg0 */
521 }
522
523 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
524
525 static int
526 pc_is_mips16 (bfd_vma memaddr)
527 {
528 struct minimal_symbol *sym;
529
530 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
531 if (IS_MIPS16_ADDR (memaddr))
532 return 1;
533
534 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
535 the high bit of the info field. Use this to decide if the function is
536 MIPS16 or normal MIPS. */
537 sym = lookup_minimal_symbol_by_pc (memaddr);
538 if (sym)
539 return MSYMBOL_IS_SPECIAL (sym);
540 else
541 return 0;
542 }
543
544 /* MIPS believes that the PC has a sign extended value. Perhaphs the
545 all registers should be sign extended for simplicity? */
546
547 static CORE_ADDR
548 mips_read_pc (int pid)
549 {
550 return read_signed_register_pid (PC_REGNUM, pid);
551 }
552
553 /* This returns the PC of the first inst after the prologue. If we can't
554 find the prologue, then return 0. */
555
556 static CORE_ADDR
557 after_prologue (CORE_ADDR pc,
558 mips_extra_func_info_t proc_desc)
559 {
560 struct symtab_and_line sal;
561 CORE_ADDR func_addr, func_end;
562
563 if (!proc_desc)
564 proc_desc = find_proc_desc (pc, NULL);
565
566 if (proc_desc)
567 {
568 /* If function is frameless, then we need to do it the hard way. I
569 strongly suspect that frameless always means prologueless... */
570 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
571 && PROC_FRAME_OFFSET (proc_desc) == 0)
572 return 0;
573 }
574
575 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
576 return 0; /* Unknown */
577
578 sal = find_pc_line (func_addr, 0);
579
580 if (sal.end < func_end)
581 return sal.end;
582
583 /* The line after the prologue is after the end of the function. In this
584 case, tell the caller to find the prologue the hard way. */
585
586 return 0;
587 }
588
589 /* Decode a MIPS32 instruction that saves a register in the stack, and
590 set the appropriate bit in the general register mask or float register mask
591 to indicate which register is saved. This is a helper function
592 for mips_find_saved_regs. */
593
594 static void
595 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
596 unsigned long *float_mask)
597 {
598 int reg;
599
600 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
601 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
602 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
603 {
604 /* It might be possible to use the instruction to
605 find the offset, rather than the code below which
606 is based on things being in a certain order in the
607 frame, but figuring out what the instruction's offset
608 is relative to might be a little tricky. */
609 reg = (inst & 0x001f0000) >> 16;
610 *gen_mask |= (1 << reg);
611 }
612 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
613 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
614 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
615
616 {
617 reg = ((inst & 0x001f0000) >> 16);
618 *float_mask |= (1 << reg);
619 }
620 }
621
622 /* Decode a MIPS16 instruction that saves a register in the stack, and
623 set the appropriate bit in the general register or float register mask
624 to indicate which register is saved. This is a helper function
625 for mips_find_saved_regs. */
626
627 static void
628 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
629 {
630 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
631 {
632 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
633 *gen_mask |= (1 << reg);
634 }
635 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
636 {
637 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
638 *gen_mask |= (1 << reg);
639 }
640 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
641 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
642 *gen_mask |= (1 << RA_REGNUM);
643 }
644
645
646 /* Fetch and return instruction from the specified location. If the PC
647 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
648
649 static t_inst
650 mips_fetch_instruction (CORE_ADDR addr)
651 {
652 char buf[MIPS_INSTLEN];
653 int instlen;
654 int status;
655
656 if (pc_is_mips16 (addr))
657 {
658 instlen = MIPS16_INSTLEN;
659 addr = UNMAKE_MIPS16_ADDR (addr);
660 }
661 else
662 instlen = MIPS_INSTLEN;
663 status = read_memory_nobpt (addr, buf, instlen);
664 if (status)
665 memory_error (status, addr);
666 return extract_unsigned_integer (buf, instlen);
667 }
668
669
670 /* These the fields of 32 bit mips instructions */
671 #define mips32_op(x) (x >> 25)
672 #define itype_op(x) (x >> 25)
673 #define itype_rs(x) ((x >> 21)& 0x1f)
674 #define itype_rt(x) ((x >> 16) & 0x1f)
675 #define itype_immediate(x) ( x & 0xffff)
676
677 #define jtype_op(x) (x >> 25)
678 #define jtype_target(x) ( x & 0x03fffff)
679
680 #define rtype_op(x) (x >>25)
681 #define rtype_rs(x) ((x>>21) & 0x1f)
682 #define rtype_rt(x) ((x>>16) & 0x1f)
683 #define rtype_rd(x) ((x>>11) & 0x1f)
684 #define rtype_shamt(x) ((x>>6) & 0x1f)
685 #define rtype_funct(x) (x & 0x3f )
686
687 static CORE_ADDR
688 mips32_relative_offset (unsigned long inst)
689 {
690 long x;
691 x = itype_immediate (inst);
692 if (x & 0x8000) /* sign bit set */
693 {
694 x |= 0xffff0000; /* sign extension */
695 }
696 x = x << 2;
697 return x;
698 }
699
700 /* Determine whate to set a single step breakpoint while considering
701 branch prediction */
702 CORE_ADDR
703 mips32_next_pc (CORE_ADDR pc)
704 {
705 unsigned long inst;
706 int op;
707 inst = mips_fetch_instruction (pc);
708 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
709 {
710 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
711 {
712 op = ((inst >> 25) & 0x03);
713 switch (op)
714 {
715 case 0:
716 goto equal_branch; /* BEQL */
717 case 1:
718 goto neq_branch; /* BNEZ */
719 case 2:
720 goto less_branch; /* BLEZ */
721 case 3:
722 goto greater_branch; /* BGTZ */
723 default:
724 pc += 4;
725 }
726 }
727 else
728 pc += 4; /* Not a branch, next instruction is easy */
729 }
730 else
731 { /* This gets way messy */
732
733 /* Further subdivide into SPECIAL, REGIMM and other */
734 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
735 {
736 case 0: /* SPECIAL */
737 op = rtype_funct (inst);
738 switch (op)
739 {
740 case 8: /* JR */
741 case 9: /* JALR */
742 /* Set PC to that address */
743 pc = read_signed_register (rtype_rs (inst));
744 break;
745 default:
746 pc += 4;
747 }
748
749 break; /* end special */
750 case 1: /* REGIMM */
751 {
752 op = jtype_op (inst); /* branch condition */
753 switch (jtype_op (inst))
754 {
755 case 0: /* BLTZ */
756 case 2: /* BLTXL */
757 case 16: /* BLTZALL */
758 case 18: /* BLTZALL */
759 less_branch:
760 if (read_signed_register (itype_rs (inst)) < 0)
761 pc += mips32_relative_offset (inst) + 4;
762 else
763 pc += 8; /* after the delay slot */
764 break;
765 case 1: /* GEZ */
766 case 3: /* BGEZL */
767 case 17: /* BGEZAL */
768 case 19: /* BGEZALL */
769 greater_equal_branch:
770 if (read_signed_register (itype_rs (inst)) >= 0)
771 pc += mips32_relative_offset (inst) + 4;
772 else
773 pc += 8; /* after the delay slot */
774 break;
775 /* All of the other intructions in the REGIMM catagory */
776 default:
777 pc += 4;
778 }
779 }
780 break; /* end REGIMM */
781 case 2: /* J */
782 case 3: /* JAL */
783 {
784 unsigned long reg;
785 reg = jtype_target (inst) << 2;
786 pc = reg + ((pc + 4) & 0xf0000000);
787 /* Whats this mysterious 0xf000000 adjustment ??? */
788 }
789 break;
790 /* FIXME case JALX : */
791 {
792 unsigned long reg;
793 reg = jtype_target (inst) << 2;
794 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
795 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
796 }
797 break; /* The new PC will be alternate mode */
798 case 4: /* BEQ , BEQL */
799 equal_branch:
800 if (read_signed_register (itype_rs (inst)) ==
801 read_signed_register (itype_rt (inst)))
802 pc += mips32_relative_offset (inst) + 4;
803 else
804 pc += 8;
805 break;
806 case 5: /* BNE , BNEL */
807 neq_branch:
808 if (read_signed_register (itype_rs (inst)) !=
809 read_signed_register (itype_rs (inst)))
810 pc += mips32_relative_offset (inst) + 4;
811 else
812 pc += 8;
813 break;
814 case 6: /* BLEZ , BLEZL */
815 less_zero_branch:
816 if (read_signed_register (itype_rs (inst) <= 0))
817 pc += mips32_relative_offset (inst) + 4;
818 else
819 pc += 8;
820 break;
821 case 7:
822 greater_branch: /* BGTZ BGTZL */
823 if (read_signed_register (itype_rs (inst) > 0))
824 pc += mips32_relative_offset (inst) + 4;
825 else
826 pc += 8;
827 break;
828 default:
829 pc += 8;
830 } /* switch */
831 } /* else */
832 return pc;
833 } /* mips32_next_pc */
834
835 /* Decoding the next place to set a breakpoint is irregular for the
836 mips 16 variant, but fortunately, there fewer instructions. We have to cope
837 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
838 We dont want to set a single step instruction on the extend instruction
839 either.
840 */
841
842 /* Lots of mips16 instruction formats */
843 /* Predicting jumps requires itype,ritype,i8type
844 and their extensions extItype,extritype,extI8type
845 */
846 enum mips16_inst_fmts
847 {
848 itype, /* 0 immediate 5,10 */
849 ritype, /* 1 5,3,8 */
850 rrtype, /* 2 5,3,3,5 */
851 rritype, /* 3 5,3,3,5 */
852 rrrtype, /* 4 5,3,3,3,2 */
853 rriatype, /* 5 5,3,3,1,4 */
854 shifttype, /* 6 5,3,3,3,2 */
855 i8type, /* 7 5,3,8 */
856 i8movtype, /* 8 5,3,3,5 */
857 i8mov32rtype, /* 9 5,3,5,3 */
858 i64type, /* 10 5,3,8 */
859 ri64type, /* 11 5,3,3,5 */
860 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
861 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
862 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
863 extRRItype, /* 15 5,5,5,5,3,3,5 */
864 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
865 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
866 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
867 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
868 extRi64type, /* 20 5,6,5,5,3,3,5 */
869 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
870 };
871 /* I am heaping all the fields of the formats into one structure and
872 then, only the fields which are involved in instruction extension */
873 struct upk_mips16
874 {
875 CORE_ADDR offset;
876 unsigned int regx; /* Function in i8 type */
877 unsigned int regy;
878 };
879
880
881 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
882 for the bits which make up the immediatate extension. */
883
884 static CORE_ADDR
885 extended_offset (unsigned int extension)
886 {
887 CORE_ADDR value;
888 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
889 value = value << 6;
890 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
891 value = value << 5;
892 value |= extension & 0x01f; /* extract 4:0 */
893 return value;
894 }
895
896 /* Only call this function if you know that this is an extendable
897 instruction, It wont malfunction, but why make excess remote memory references?
898 If the immediate operands get sign extended or somthing, do it after
899 the extension is performed.
900 */
901 /* FIXME: Every one of these cases needs to worry about sign extension
902 when the offset is to be used in relative addressing */
903
904
905 static unsigned int
906 fetch_mips_16 (CORE_ADDR pc)
907 {
908 char buf[8];
909 pc &= 0xfffffffe; /* clear the low order bit */
910 target_read_memory (pc, buf, 2);
911 return extract_unsigned_integer (buf, 2);
912 }
913
914 static void
915 unpack_mips16 (CORE_ADDR pc,
916 unsigned int extension,
917 unsigned int inst,
918 enum mips16_inst_fmts insn_format,
919 struct upk_mips16 *upk)
920 {
921 CORE_ADDR offset;
922 int regx;
923 int regy;
924 switch (insn_format)
925 {
926 case itype:
927 {
928 CORE_ADDR value;
929 if (extension)
930 {
931 value = extended_offset (extension);
932 value = value << 11; /* rom for the original value */
933 value |= inst & 0x7ff; /* eleven bits from instruction */
934 }
935 else
936 {
937 value = inst & 0x7ff;
938 /* FIXME : Consider sign extension */
939 }
940 offset = value;
941 regx = -1;
942 regy = -1;
943 }
944 break;
945 case ritype:
946 case i8type:
947 { /* A register identifier and an offset */
948 /* Most of the fields are the same as I type but the
949 immediate value is of a different length */
950 CORE_ADDR value;
951 if (extension)
952 {
953 value = extended_offset (extension);
954 value = value << 8; /* from the original instruction */
955 value |= inst & 0xff; /* eleven bits from instruction */
956 regx = (extension >> 8) & 0x07; /* or i8 funct */
957 if (value & 0x4000) /* test the sign bit , bit 26 */
958 {
959 value &= ~0x3fff; /* remove the sign bit */
960 value = -value;
961 }
962 }
963 else
964 {
965 value = inst & 0xff; /* 8 bits */
966 regx = (inst >> 8) & 0x07; /* or i8 funct */
967 /* FIXME: Do sign extension , this format needs it */
968 if (value & 0x80) /* THIS CONFUSES ME */
969 {
970 value &= 0xef; /* remove the sign bit */
971 value = -value;
972 }
973 }
974 offset = value;
975 regy = -1;
976 break;
977 }
978 case jalxtype:
979 {
980 unsigned long value;
981 unsigned int nexthalf;
982 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
983 value = value << 16;
984 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
985 value |= nexthalf;
986 offset = value;
987 regx = -1;
988 regy = -1;
989 break;
990 }
991 default:
992 internal_error (__FILE__, __LINE__,
993 "bad switch");
994 }
995 upk->offset = offset;
996 upk->regx = regx;
997 upk->regy = regy;
998 }
999
1000
1001 static CORE_ADDR
1002 add_offset_16 (CORE_ADDR pc, int offset)
1003 {
1004 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1005
1006 }
1007
1008 static CORE_ADDR
1009 extended_mips16_next_pc (CORE_ADDR pc,
1010 unsigned int extension,
1011 unsigned int insn)
1012 {
1013 int op = (insn >> 11);
1014 switch (op)
1015 {
1016 case 2: /* Branch */
1017 {
1018 CORE_ADDR offset;
1019 struct upk_mips16 upk;
1020 unpack_mips16 (pc, extension, insn, itype, &upk);
1021 offset = upk.offset;
1022 if (offset & 0x800)
1023 {
1024 offset &= 0xeff;
1025 offset = -offset;
1026 }
1027 pc += (offset << 1) + 2;
1028 break;
1029 }
1030 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1031 {
1032 struct upk_mips16 upk;
1033 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1034 pc = add_offset_16 (pc, upk.offset);
1035 if ((insn >> 10) & 0x01) /* Exchange mode */
1036 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1037 else
1038 pc |= 0x01;
1039 break;
1040 }
1041 case 4: /* beqz */
1042 {
1043 struct upk_mips16 upk;
1044 int reg;
1045 unpack_mips16 (pc, extension, insn, ritype, &upk);
1046 reg = read_signed_register (upk.regx);
1047 if (reg == 0)
1048 pc += (upk.offset << 1) + 2;
1049 else
1050 pc += 2;
1051 break;
1052 }
1053 case 5: /* bnez */
1054 {
1055 struct upk_mips16 upk;
1056 int reg;
1057 unpack_mips16 (pc, extension, insn, ritype, &upk);
1058 reg = read_signed_register (upk.regx);
1059 if (reg != 0)
1060 pc += (upk.offset << 1) + 2;
1061 else
1062 pc += 2;
1063 break;
1064 }
1065 case 12: /* I8 Formats btez btnez */
1066 {
1067 struct upk_mips16 upk;
1068 int reg;
1069 unpack_mips16 (pc, extension, insn, i8type, &upk);
1070 /* upk.regx contains the opcode */
1071 reg = read_signed_register (24); /* Test register is 24 */
1072 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1073 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1074 /* pc = add_offset_16(pc,upk.offset) ; */
1075 pc += (upk.offset << 1) + 2;
1076 else
1077 pc += 2;
1078 break;
1079 }
1080 case 29: /* RR Formats JR, JALR, JALR-RA */
1081 {
1082 struct upk_mips16 upk;
1083 /* upk.fmt = rrtype; */
1084 op = insn & 0x1f;
1085 if (op == 0)
1086 {
1087 int reg;
1088 upk.regx = (insn >> 8) & 0x07;
1089 upk.regy = (insn >> 5) & 0x07;
1090 switch (upk.regy)
1091 {
1092 case 0:
1093 reg = upk.regx;
1094 break;
1095 case 1:
1096 reg = 31;
1097 break; /* Function return instruction */
1098 case 2:
1099 reg = upk.regx;
1100 break;
1101 default:
1102 reg = 31;
1103 break; /* BOGUS Guess */
1104 }
1105 pc = read_signed_register (reg);
1106 }
1107 else
1108 pc += 2;
1109 break;
1110 }
1111 case 30:
1112 /* This is an instruction extension. Fetch the real instruction
1113 (which follows the extension) and decode things based on
1114 that. */
1115 {
1116 pc += 2;
1117 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1118 break;
1119 }
1120 default:
1121 {
1122 pc += 2;
1123 break;
1124 }
1125 }
1126 return pc;
1127 }
1128
1129 CORE_ADDR
1130 mips16_next_pc (CORE_ADDR pc)
1131 {
1132 unsigned int insn = fetch_mips_16 (pc);
1133 return extended_mips16_next_pc (pc, 0, insn);
1134 }
1135
1136 /* The mips_next_pc function supports single_step when the remote
1137 target monitor or stub is not developed enough to do a single_step.
1138 It works by decoding the current instruction and predicting where a
1139 branch will go. This isnt hard because all the data is available.
1140 The MIPS32 and MIPS16 variants are quite different */
1141 CORE_ADDR
1142 mips_next_pc (CORE_ADDR pc)
1143 {
1144 if (pc & 0x01)
1145 return mips16_next_pc (pc);
1146 else
1147 return mips32_next_pc (pc);
1148 }
1149
1150 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1151 NULL). */
1152
1153 void
1154 mips_find_saved_regs (struct frame_info *fci)
1155 {
1156 int ireg;
1157 CORE_ADDR reg_position;
1158 /* r0 bit means kernel trap */
1159 int kernel_trap;
1160 /* What registers have been saved? Bitmasks. */
1161 unsigned long gen_mask, float_mask;
1162 mips_extra_func_info_t proc_desc;
1163 t_inst inst;
1164
1165 frame_saved_regs_zalloc (fci);
1166
1167 /* If it is the frame for sigtramp, the saved registers are located
1168 in a sigcontext structure somewhere on the stack.
1169 If the stack layout for sigtramp changes we might have to change these
1170 constants and the companion fixup_sigtramp in mdebugread.c */
1171 #ifndef SIGFRAME_BASE
1172 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1173 above the sigtramp frame. */
1174 #define SIGFRAME_BASE MIPS_REGSIZE
1175 /* FIXME! Are these correct?? */
1176 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1177 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1178 #define SIGFRAME_FPREGSAVE_OFF \
1179 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1180 #endif
1181 #ifndef SIGFRAME_REG_SIZE
1182 /* FIXME! Is this correct?? */
1183 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1184 #endif
1185 if (fci->signal_handler_caller)
1186 {
1187 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1188 {
1189 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1190 + ireg * SIGFRAME_REG_SIZE;
1191 fci->saved_regs[ireg] = reg_position;
1192 }
1193 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1194 {
1195 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1196 + ireg * SIGFRAME_REG_SIZE;
1197 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1198 }
1199 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1200 return;
1201 }
1202
1203 proc_desc = fci->extra_info->proc_desc;
1204 if (proc_desc == NULL)
1205 /* I'm not sure how/whether this can happen. Normally when we can't
1206 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1207 and set the saved_regs right away. */
1208 return;
1209
1210 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1211 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1212 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1213
1214 if ( /* In any frame other than the innermost or a frame interrupted by
1215 a signal, we assume that all registers have been saved.
1216 This assumes that all register saves in a function happen before
1217 the first function call. */
1218 (fci->next == NULL || fci->next->signal_handler_caller)
1219
1220 /* In a dummy frame we know exactly where things are saved. */
1221 && !PROC_DESC_IS_DUMMY (proc_desc)
1222
1223 /* Don't bother unless we are inside a function prologue. Outside the
1224 prologue, we know where everything is. */
1225
1226 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1227
1228 /* Not sure exactly what kernel_trap means, but if it means
1229 the kernel saves the registers without a prologue doing it,
1230 we better not examine the prologue to see whether registers
1231 have been saved yet. */
1232 && !kernel_trap)
1233 {
1234 /* We need to figure out whether the registers that the proc_desc
1235 claims are saved have been saved yet. */
1236
1237 CORE_ADDR addr;
1238
1239 /* Bitmasks; set if we have found a save for the register. */
1240 unsigned long gen_save_found = 0;
1241 unsigned long float_save_found = 0;
1242 int instlen;
1243
1244 /* If the address is odd, assume this is MIPS16 code. */
1245 addr = PROC_LOW_ADDR (proc_desc);
1246 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1247
1248 /* Scan through this function's instructions preceding the current
1249 PC, and look for those that save registers. */
1250 while (addr < fci->pc)
1251 {
1252 inst = mips_fetch_instruction (addr);
1253 if (pc_is_mips16 (addr))
1254 mips16_decode_reg_save (inst, &gen_save_found);
1255 else
1256 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1257 addr += instlen;
1258 }
1259 gen_mask = gen_save_found;
1260 float_mask = float_save_found;
1261 }
1262
1263 /* Fill in the offsets for the registers which gen_mask says
1264 were saved. */
1265 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1266 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1267 if (gen_mask & 0x80000000)
1268 {
1269 fci->saved_regs[ireg] = reg_position;
1270 reg_position -= MIPS_SAVED_REGSIZE;
1271 }
1272
1273 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1274 of that normally used by gcc. Therefore, we have to fetch the first
1275 instruction of the function, and if it's an entry instruction that
1276 saves $s0 or $s1, correct their saved addresses. */
1277 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1278 {
1279 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1280 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1281 {
1282 int reg;
1283 int sreg_count = (inst >> 6) & 3;
1284
1285 /* Check if the ra register was pushed on the stack. */
1286 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1287 if (inst & 0x20)
1288 reg_position -= MIPS_SAVED_REGSIZE;
1289
1290 /* Check if the s0 and s1 registers were pushed on the stack. */
1291 for (reg = 16; reg < sreg_count + 16; reg++)
1292 {
1293 fci->saved_regs[reg] = reg_position;
1294 reg_position -= MIPS_SAVED_REGSIZE;
1295 }
1296 }
1297 }
1298
1299 /* Fill in the offsets for the registers which float_mask says
1300 were saved. */
1301 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1302
1303 /* The freg_offset points to where the first *double* register
1304 is saved. So skip to the high-order word. */
1305 if (!GDB_TARGET_IS_MIPS64)
1306 reg_position += MIPS_SAVED_REGSIZE;
1307
1308 /* Fill in the offsets for the float registers which float_mask says
1309 were saved. */
1310 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1311 if (float_mask & 0x80000000)
1312 {
1313 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1314 reg_position -= MIPS_SAVED_REGSIZE;
1315 }
1316
1317 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1318 }
1319
1320 static CORE_ADDR
1321 read_next_frame_reg (struct frame_info *fi, int regno)
1322 {
1323 for (; fi; fi = fi->next)
1324 {
1325 /* We have to get the saved sp from the sigcontext
1326 if it is a signal handler frame. */
1327 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1328 return fi->frame;
1329 else
1330 {
1331 if (fi->saved_regs == NULL)
1332 mips_find_saved_regs (fi);
1333 if (fi->saved_regs[regno])
1334 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1335 }
1336 }
1337 return read_signed_register (regno);
1338 }
1339
1340 /* mips_addr_bits_remove - remove useless address bits */
1341
1342 CORE_ADDR
1343 mips_addr_bits_remove (CORE_ADDR addr)
1344 {
1345 if (GDB_TARGET_IS_MIPS64)
1346 {
1347 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1348 {
1349 /* This hack is a work-around for existing boards using
1350 PMON, the simulator, and any other 64-bit targets that
1351 doesn't have true 64-bit addressing. On these targets,
1352 the upper 32 bits of addresses are ignored by the
1353 hardware. Thus, the PC or SP are likely to have been
1354 sign extended to all 1s by instruction sequences that
1355 load 32-bit addresses. For example, a typical piece of
1356 code that loads an address is this:
1357 lui $r2, <upper 16 bits>
1358 ori $r2, <lower 16 bits>
1359 But the lui sign-extends the value such that the upper 32
1360 bits may be all 1s. The workaround is simply to mask off
1361 these bits. In the future, gcc may be changed to support
1362 true 64-bit addressing, and this masking will have to be
1363 disabled. */
1364 addr &= (CORE_ADDR) 0xffffffff;
1365 }
1366 }
1367 else if (mips_mask_address_p ())
1368 {
1369 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1370 masking off bits, instead, the actual target should be asking
1371 for the address to be converted to a valid pointer. */
1372 /* Even when GDB is configured for some 32-bit targets
1373 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1374 so CORE_ADDR is 64 bits. So we still have to mask off
1375 useless bits from addresses. */
1376 addr &= (CORE_ADDR) 0xffffffff;
1377 }
1378 return addr;
1379 }
1380
1381 void
1382 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1383 {
1384 CORE_ADDR pc, tmp;
1385
1386 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1387 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1388 tmp = mips_skip_stub (pc);
1389 prev->pc = tmp ? tmp : pc;
1390 }
1391
1392
1393 CORE_ADDR
1394 mips_frame_saved_pc (struct frame_info *frame)
1395 {
1396 CORE_ADDR saved_pc;
1397 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1398 /* We have to get the saved pc from the sigcontext
1399 if it is a signal handler frame. */
1400 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1401 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1402
1403 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1404 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1405 else
1406 saved_pc = read_next_frame_reg (frame, pcreg);
1407
1408 return ADDR_BITS_REMOVE (saved_pc);
1409 }
1410
1411 static struct mips_extra_func_info temp_proc_desc;
1412 static CORE_ADDR temp_saved_regs[NUM_REGS];
1413
1414 /* Set a register's saved stack address in temp_saved_regs. If an address
1415 has already been set for this register, do nothing; this way we will
1416 only recognize the first save of a given register in a function prologue.
1417 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1418
1419 static void
1420 set_reg_offset (int regno, CORE_ADDR offset)
1421 {
1422 if (temp_saved_regs[regno] == 0)
1423 temp_saved_regs[regno] = offset;
1424 }
1425
1426
1427 /* Test whether the PC points to the return instruction at the
1428 end of a function. */
1429
1430 static int
1431 mips_about_to_return (CORE_ADDR pc)
1432 {
1433 if (pc_is_mips16 (pc))
1434 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1435 generates a "jr $ra"; other times it generates code to load
1436 the return address from the stack to an accessible register (such
1437 as $a3), then a "jr" using that register. This second case
1438 is almost impossible to distinguish from an indirect jump
1439 used for switch statements, so we don't even try. */
1440 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1441 else
1442 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1443 }
1444
1445
1446 /* This fencepost looks highly suspicious to me. Removing it also
1447 seems suspicious as it could affect remote debugging across serial
1448 lines. */
1449
1450 static CORE_ADDR
1451 heuristic_proc_start (CORE_ADDR pc)
1452 {
1453 CORE_ADDR start_pc;
1454 CORE_ADDR fence;
1455 int instlen;
1456 int seen_adjsp = 0;
1457
1458 pc = ADDR_BITS_REMOVE (pc);
1459 start_pc = pc;
1460 fence = start_pc - heuristic_fence_post;
1461 if (start_pc == 0)
1462 return 0;
1463
1464 if (heuristic_fence_post == UINT_MAX
1465 || fence < VM_MIN_ADDRESS)
1466 fence = VM_MIN_ADDRESS;
1467
1468 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1469
1470 /* search back for previous return */
1471 for (start_pc -= instlen;; start_pc -= instlen)
1472 if (start_pc < fence)
1473 {
1474 /* It's not clear to me why we reach this point when
1475 stop_soon_quietly, but with this test, at least we
1476 don't print out warnings for every child forked (eg, on
1477 decstation). 22apr93 rich@cygnus.com. */
1478 if (!stop_soon_quietly)
1479 {
1480 static int blurb_printed = 0;
1481
1482 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1483 paddr_nz (pc));
1484
1485 if (!blurb_printed)
1486 {
1487 /* This actually happens frequently in embedded
1488 development, when you first connect to a board
1489 and your stack pointer and pc are nowhere in
1490 particular. This message needs to give people
1491 in that situation enough information to
1492 determine that it's no big deal. */
1493 printf_filtered ("\n\
1494 GDB is unable to find the start of the function at 0x%s\n\
1495 and thus can't determine the size of that function's stack frame.\n\
1496 This means that GDB may be unable to access that stack frame, or\n\
1497 the frames below it.\n\
1498 This problem is most likely caused by an invalid program counter or\n\
1499 stack pointer.\n\
1500 However, if you think GDB should simply search farther back\n\
1501 from 0x%s for code which looks like the beginning of a\n\
1502 function, you can increase the range of the search using the `set\n\
1503 heuristic-fence-post' command.\n",
1504 paddr_nz (pc), paddr_nz (pc));
1505 blurb_printed = 1;
1506 }
1507 }
1508
1509 return 0;
1510 }
1511 else if (pc_is_mips16 (start_pc))
1512 {
1513 unsigned short inst;
1514
1515 /* On MIPS16, any one of the following is likely to be the
1516 start of a function:
1517 entry
1518 addiu sp,-n
1519 daddiu sp,-n
1520 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1521 inst = mips_fetch_instruction (start_pc);
1522 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1523 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1524 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1525 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1526 break;
1527 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1528 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1529 seen_adjsp = 1;
1530 else
1531 seen_adjsp = 0;
1532 }
1533 else if (mips_about_to_return (start_pc))
1534 {
1535 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1536 break;
1537 }
1538
1539 return start_pc;
1540 }
1541
1542 /* Fetch the immediate value from a MIPS16 instruction.
1543 If the previous instruction was an EXTEND, use it to extend
1544 the upper bits of the immediate value. This is a helper function
1545 for mips16_heuristic_proc_desc. */
1546
1547 static int
1548 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1549 unsigned short inst, /* current instruction */
1550 int nbits, /* number of bits in imm field */
1551 int scale, /* scale factor to be applied to imm */
1552 int is_signed) /* is the imm field signed? */
1553 {
1554 int offset;
1555
1556 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1557 {
1558 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1559 if (offset & 0x8000) /* check for negative extend */
1560 offset = 0 - (0x10000 - (offset & 0xffff));
1561 return offset | (inst & 0x1f);
1562 }
1563 else
1564 {
1565 int max_imm = 1 << nbits;
1566 int mask = max_imm - 1;
1567 int sign_bit = max_imm >> 1;
1568
1569 offset = inst & mask;
1570 if (is_signed && (offset & sign_bit))
1571 offset = 0 - (max_imm - offset);
1572 return offset * scale;
1573 }
1574 }
1575
1576
1577 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1578 stream from start_pc to limit_pc. */
1579
1580 static void
1581 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1582 struct frame_info *next_frame, CORE_ADDR sp)
1583 {
1584 CORE_ADDR cur_pc;
1585 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1586 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1587 unsigned inst = 0; /* current instruction */
1588 unsigned entry_inst = 0; /* the entry instruction */
1589 int reg, offset;
1590
1591 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1592 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1593
1594 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1595 {
1596 /* Save the previous instruction. If it's an EXTEND, we'll extract
1597 the immediate offset extension from it in mips16_get_imm. */
1598 prev_inst = inst;
1599
1600 /* Fetch and decode the instruction. */
1601 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1602 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1603 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1604 {
1605 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1606 if (offset < 0) /* negative stack adjustment? */
1607 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1608 else
1609 /* Exit loop if a positive stack adjustment is found, which
1610 usually means that the stack cleanup code in the function
1611 epilogue is reached. */
1612 break;
1613 }
1614 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1615 {
1616 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1617 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1618 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1619 set_reg_offset (reg, sp + offset);
1620 }
1621 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1622 {
1623 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1624 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1625 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1626 set_reg_offset (reg, sp + offset);
1627 }
1628 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1629 {
1630 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1631 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1632 set_reg_offset (RA_REGNUM, sp + offset);
1633 }
1634 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1635 {
1636 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1637 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1638 set_reg_offset (RA_REGNUM, sp + offset);
1639 }
1640 else if (inst == 0x673d) /* move $s1, $sp */
1641 {
1642 frame_addr = sp;
1643 PROC_FRAME_REG (&temp_proc_desc) = 17;
1644 }
1645 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1646 {
1647 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1648 frame_addr = sp + offset;
1649 PROC_FRAME_REG (&temp_proc_desc) = 17;
1650 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1651 }
1652 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1653 {
1654 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1655 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1656 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1657 set_reg_offset (reg, frame_addr + offset);
1658 }
1659 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1660 {
1661 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1662 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1663 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1664 set_reg_offset (reg, frame_addr + offset);
1665 }
1666 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1667 entry_inst = inst; /* save for later processing */
1668 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1669 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1670 }
1671
1672 /* The entry instruction is typically the first instruction in a function,
1673 and it stores registers at offsets relative to the value of the old SP
1674 (before the prologue). But the value of the sp parameter to this
1675 function is the new SP (after the prologue has been executed). So we
1676 can't calculate those offsets until we've seen the entire prologue,
1677 and can calculate what the old SP must have been. */
1678 if (entry_inst != 0)
1679 {
1680 int areg_count = (entry_inst >> 8) & 7;
1681 int sreg_count = (entry_inst >> 6) & 3;
1682
1683 /* The entry instruction always subtracts 32 from the SP. */
1684 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1685
1686 /* Now we can calculate what the SP must have been at the
1687 start of the function prologue. */
1688 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1689
1690 /* Check if a0-a3 were saved in the caller's argument save area. */
1691 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1692 {
1693 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1694 set_reg_offset (reg, sp + offset);
1695 offset += MIPS_SAVED_REGSIZE;
1696 }
1697
1698 /* Check if the ra register was pushed on the stack. */
1699 offset = -4;
1700 if (entry_inst & 0x20)
1701 {
1702 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1703 set_reg_offset (RA_REGNUM, sp + offset);
1704 offset -= MIPS_SAVED_REGSIZE;
1705 }
1706
1707 /* Check if the s0 and s1 registers were pushed on the stack. */
1708 for (reg = 16; reg < sreg_count + 16; reg++)
1709 {
1710 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1711 set_reg_offset (reg, sp + offset);
1712 offset -= MIPS_SAVED_REGSIZE;
1713 }
1714 }
1715 }
1716
1717 static void
1718 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1719 struct frame_info *next_frame, CORE_ADDR sp)
1720 {
1721 CORE_ADDR cur_pc;
1722 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1723 restart:
1724 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1725 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1726 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1727 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1728 {
1729 unsigned long inst, high_word, low_word;
1730 int reg;
1731
1732 /* Fetch the instruction. */
1733 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1734
1735 /* Save some code by pre-extracting some useful fields. */
1736 high_word = (inst >> 16) & 0xffff;
1737 low_word = inst & 0xffff;
1738 reg = high_word & 0x1f;
1739
1740 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1741 || high_word == 0x23bd /* addi $sp,$sp,-i */
1742 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1743 {
1744 if (low_word & 0x8000) /* negative stack adjustment? */
1745 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1746 else
1747 /* Exit loop if a positive stack adjustment is found, which
1748 usually means that the stack cleanup code in the function
1749 epilogue is reached. */
1750 break;
1751 }
1752 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1753 {
1754 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1755 set_reg_offset (reg, sp + low_word);
1756 }
1757 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1758 {
1759 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1760 but the register size used is only 32 bits. Make the address
1761 for the saved register point to the lower 32 bits. */
1762 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1763 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1764 }
1765 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1766 {
1767 /* Old gcc frame, r30 is virtual frame pointer. */
1768 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1769 frame_addr = sp + low_word;
1770 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1771 {
1772 unsigned alloca_adjust;
1773 PROC_FRAME_REG (&temp_proc_desc) = 30;
1774 frame_addr = read_next_frame_reg (next_frame, 30);
1775 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1776 if (alloca_adjust > 0)
1777 {
1778 /* FP > SP + frame_size. This may be because
1779 * of an alloca or somethings similar.
1780 * Fix sp to "pre-alloca" value, and try again.
1781 */
1782 sp += alloca_adjust;
1783 goto restart;
1784 }
1785 }
1786 }
1787 /* move $30,$sp. With different versions of gas this will be either
1788 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1789 Accept any one of these. */
1790 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1791 {
1792 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1793 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1794 {
1795 unsigned alloca_adjust;
1796 PROC_FRAME_REG (&temp_proc_desc) = 30;
1797 frame_addr = read_next_frame_reg (next_frame, 30);
1798 alloca_adjust = (unsigned) (frame_addr - sp);
1799 if (alloca_adjust > 0)
1800 {
1801 /* FP > SP + frame_size. This may be because
1802 * of an alloca or somethings similar.
1803 * Fix sp to "pre-alloca" value, and try again.
1804 */
1805 sp += alloca_adjust;
1806 goto restart;
1807 }
1808 }
1809 }
1810 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1811 {
1812 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1813 set_reg_offset (reg, frame_addr + low_word);
1814 }
1815 }
1816 }
1817
1818 static mips_extra_func_info_t
1819 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1820 struct frame_info *next_frame)
1821 {
1822 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1823
1824 if (start_pc == 0)
1825 return NULL;
1826 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1827 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1828 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1829 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1830 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1831
1832 if (start_pc + 200 < limit_pc)
1833 limit_pc = start_pc + 200;
1834 if (pc_is_mips16 (start_pc))
1835 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1836 else
1837 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1838 return &temp_proc_desc;
1839 }
1840
1841 static mips_extra_func_info_t
1842 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
1843 {
1844 CORE_ADDR startaddr;
1845 mips_extra_func_info_t proc_desc;
1846 struct block *b = block_for_pc (pc);
1847 struct symbol *sym;
1848
1849 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1850 if (addrptr)
1851 *addrptr = startaddr;
1852 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1853 sym = NULL;
1854 else
1855 {
1856 if (startaddr > BLOCK_START (b))
1857 /* This is the "pathological" case referred to in a comment in
1858 print_frame_info. It might be better to move this check into
1859 symbol reading. */
1860 sym = NULL;
1861 else
1862 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1863 }
1864
1865 /* If we never found a PDR for this function in symbol reading, then
1866 examine prologues to find the information. */
1867 if (sym)
1868 {
1869 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1870 if (PROC_FRAME_REG (proc_desc) == -1)
1871 return NULL;
1872 else
1873 return proc_desc;
1874 }
1875 else
1876 return NULL;
1877 }
1878
1879
1880 static mips_extra_func_info_t
1881 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
1882 {
1883 mips_extra_func_info_t proc_desc;
1884 CORE_ADDR startaddr;
1885
1886 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1887
1888 if (proc_desc)
1889 {
1890 /* IF this is the topmost frame AND
1891 * (this proc does not have debugging information OR
1892 * the PC is in the procedure prologue)
1893 * THEN create a "heuristic" proc_desc (by analyzing
1894 * the actual code) to replace the "official" proc_desc.
1895 */
1896 if (next_frame == NULL)
1897 {
1898 struct symtab_and_line val;
1899 struct symbol *proc_symbol =
1900 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
1901
1902 if (proc_symbol)
1903 {
1904 val = find_pc_line (BLOCK_START
1905 (SYMBOL_BLOCK_VALUE (proc_symbol)),
1906 0);
1907 val.pc = val.end ? val.end : pc;
1908 }
1909 if (!proc_symbol || pc < val.pc)
1910 {
1911 mips_extra_func_info_t found_heuristic =
1912 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1913 pc, next_frame);
1914 if (found_heuristic)
1915 proc_desc = found_heuristic;
1916 }
1917 }
1918 }
1919 else
1920 {
1921 /* Is linked_proc_desc_table really necessary? It only seems to be used
1922 by procedure call dummys. However, the procedures being called ought
1923 to have their own proc_descs, and even if they don't,
1924 heuristic_proc_desc knows how to create them! */
1925
1926 register struct linked_proc_info *link;
1927
1928 for (link = linked_proc_desc_table; link; link = link->next)
1929 if (PROC_LOW_ADDR (&link->info) <= pc
1930 && PROC_HIGH_ADDR (&link->info) > pc)
1931 return &link->info;
1932
1933 if (startaddr == 0)
1934 startaddr = heuristic_proc_start (pc);
1935
1936 proc_desc =
1937 heuristic_proc_desc (startaddr, pc, next_frame);
1938 }
1939 return proc_desc;
1940 }
1941
1942 static CORE_ADDR
1943 get_frame_pointer (struct frame_info *frame,
1944 mips_extra_func_info_t proc_desc)
1945 {
1946 return ADDR_BITS_REMOVE (
1947 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1948 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1949 }
1950
1951 mips_extra_func_info_t cached_proc_desc;
1952
1953 CORE_ADDR
1954 mips_frame_chain (struct frame_info *frame)
1955 {
1956 mips_extra_func_info_t proc_desc;
1957 CORE_ADDR tmp;
1958 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
1959
1960 if (saved_pc == 0 || inside_entry_file (saved_pc))
1961 return 0;
1962
1963 /* Check if the PC is inside a call stub. If it is, fetch the
1964 PC of the caller of that stub. */
1965 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1966 saved_pc = tmp;
1967
1968 /* Look up the procedure descriptor for this PC. */
1969 proc_desc = find_proc_desc (saved_pc, frame);
1970 if (!proc_desc)
1971 return 0;
1972
1973 cached_proc_desc = proc_desc;
1974
1975 /* If no frame pointer and frame size is zero, we must be at end
1976 of stack (or otherwise hosed). If we don't check frame size,
1977 we loop forever if we see a zero size frame. */
1978 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1979 && PROC_FRAME_OFFSET (proc_desc) == 0
1980 /* The previous frame from a sigtramp frame might be frameless
1981 and have frame size zero. */
1982 && !frame->signal_handler_caller)
1983 return 0;
1984 else
1985 return get_frame_pointer (frame, proc_desc);
1986 }
1987
1988 void
1989 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
1990 {
1991 int regnum;
1992
1993 /* Use proc_desc calculated in frame_chain */
1994 mips_extra_func_info_t proc_desc =
1995 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
1996
1997 fci->extra_info = (struct frame_extra_info *)
1998 frame_obstack_alloc (sizeof (struct frame_extra_info));
1999
2000 fci->saved_regs = NULL;
2001 fci->extra_info->proc_desc =
2002 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2003 if (proc_desc)
2004 {
2005 /* Fixup frame-pointer - only needed for top frame */
2006 /* This may not be quite right, if proc has a real frame register.
2007 Get the value of the frame relative sp, procedure might have been
2008 interrupted by a signal at it's very start. */
2009 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2010 && !PROC_DESC_IS_DUMMY (proc_desc))
2011 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2012 else
2013 fci->frame = get_frame_pointer (fci->next, proc_desc);
2014
2015 if (proc_desc == &temp_proc_desc)
2016 {
2017 char *name;
2018
2019 /* Do not set the saved registers for a sigtramp frame,
2020 mips_find_saved_registers will do that for us.
2021 We can't use fci->signal_handler_caller, it is not yet set. */
2022 find_pc_partial_function (fci->pc, &name,
2023 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2024 if (!IN_SIGTRAMP (fci->pc, name))
2025 {
2026 frame_saved_regs_zalloc (fci);
2027 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2028 fci->saved_regs[PC_REGNUM]
2029 = fci->saved_regs[RA_REGNUM];
2030 }
2031 }
2032
2033 /* hack: if argument regs are saved, guess these contain args */
2034 /* assume we can't tell how many args for now */
2035 fci->extra_info->num_args = -1;
2036 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2037 {
2038 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2039 {
2040 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2041 break;
2042 }
2043 }
2044 }
2045 }
2046
2047 /* MIPS stack frames are almost impenetrable. When execution stops,
2048 we basically have to look at symbol information for the function
2049 that we stopped in, which tells us *which* register (if any) is
2050 the base of the frame pointer, and what offset from that register
2051 the frame itself is at.
2052
2053 This presents a problem when trying to examine a stack in memory
2054 (that isn't executing at the moment), using the "frame" command. We
2055 don't have a PC, nor do we have any registers except SP.
2056
2057 This routine takes two arguments, SP and PC, and tries to make the
2058 cached frames look as if these two arguments defined a frame on the
2059 cache. This allows the rest of info frame to extract the important
2060 arguments without difficulty. */
2061
2062 struct frame_info *
2063 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2064 {
2065 if (argc != 2)
2066 error ("MIPS frame specifications require two arguments: sp and pc");
2067
2068 return create_new_frame (argv[0], argv[1]);
2069 }
2070
2071 /* According to the current ABI, should the type be passed in a
2072 floating-point register (assuming that there is space)? When there
2073 is no FPU, FP are not even considered as possibile candidates for
2074 FP registers and, consequently this returns false - forces FP
2075 arguments into integer registers. */
2076
2077 static int
2078 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2079 {
2080 return ((typecode == TYPE_CODE_FLT
2081 || (MIPS_EABI
2082 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2083 && TYPE_NFIELDS (arg_type) == 1
2084 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2085 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2086 }
2087
2088 CORE_ADDR
2089 mips_push_arguments (int nargs,
2090 value_ptr *args,
2091 CORE_ADDR sp,
2092 int struct_return,
2093 CORE_ADDR struct_addr)
2094 {
2095 int argreg;
2096 int float_argreg;
2097 int argnum;
2098 int len = 0;
2099 int stack_offset = 0;
2100
2101 /* Macros to round N up or down to the next A boundary; A must be
2102 a power of two. */
2103 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2104 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2105
2106 /* First ensure that the stack and structure return address (if any)
2107 are properly aligned. The stack has to be at least 64-bit aligned
2108 even on 32-bit machines, because doubles must be 64-bit aligned.
2109 On at least one MIPS variant, stack frames need to be 128-bit
2110 aligned, so we round to this widest known alignment. */
2111 sp = ROUND_DOWN (sp, 16);
2112 struct_addr = ROUND_DOWN (struct_addr, 16);
2113
2114 /* Now make space on the stack for the args. We allocate more
2115 than necessary for EABI, because the first few arguments are
2116 passed in registers, but that's OK. */
2117 for (argnum = 0; argnum < nargs; argnum++)
2118 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
2119 sp -= ROUND_UP (len, 16);
2120
2121 if (mips_debug)
2122 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2123 (long) sp, ROUND_UP (len, 16));
2124
2125 /* Initialize the integer and float register pointers. */
2126 argreg = A0_REGNUM;
2127 float_argreg = FPA0_REGNUM;
2128
2129 /* the struct_return pointer occupies the first parameter-passing reg */
2130 if (struct_return)
2131 {
2132 if (mips_debug)
2133 fprintf_unfiltered (gdb_stdlog,
2134 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
2135 argreg, (long) struct_addr);
2136 write_register (argreg++, struct_addr);
2137 if (MIPS_REGS_HAVE_HOME_P)
2138 stack_offset += MIPS_STACK_ARGSIZE;
2139 }
2140
2141 /* Now load as many as possible of the first arguments into
2142 registers, and push the rest onto the stack. Loop thru args
2143 from first to last. */
2144 for (argnum = 0; argnum < nargs; argnum++)
2145 {
2146 char *val;
2147 char valbuf[MAX_REGISTER_RAW_SIZE];
2148 value_ptr arg = args[argnum];
2149 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2150 int len = TYPE_LENGTH (arg_type);
2151 enum type_code typecode = TYPE_CODE (arg_type);
2152
2153 if (mips_debug)
2154 fprintf_unfiltered (gdb_stdlog,
2155 "mips_push_arguments: %d len=%d type=%d",
2156 argnum + 1, len, (int) typecode);
2157
2158 /* The EABI passes structures that do not fit in a register by
2159 reference. In all other cases, pass the structure by value. */
2160 if (MIPS_EABI
2161 && len > MIPS_SAVED_REGSIZE
2162 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2163 {
2164 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2165 typecode = TYPE_CODE_PTR;
2166 len = MIPS_SAVED_REGSIZE;
2167 val = valbuf;
2168 if (mips_debug)
2169 fprintf_unfiltered (gdb_stdlog, " push");
2170 }
2171 else
2172 val = (char *) VALUE_CONTENTS (arg);
2173
2174 /* 32-bit ABIs always start floating point arguments in an
2175 even-numbered floating point register. Round the FP register
2176 up before the check to see if there are any FP registers
2177 left. Non MIPS_EABI targets also pass the FP in the integer
2178 registers so also round up normal registers. */
2179 if (!FP_REGISTER_DOUBLE
2180 && fp_register_arg_p (typecode, arg_type))
2181 {
2182 if ((float_argreg & 1))
2183 float_argreg++;
2184 }
2185
2186 /* Floating point arguments passed in registers have to be
2187 treated specially. On 32-bit architectures, doubles
2188 are passed in register pairs; the even register gets
2189 the low word, and the odd register gets the high word.
2190 On non-EABI processors, the first two floating point arguments are
2191 also copied to general registers, because MIPS16 functions
2192 don't use float registers for arguments. This duplication of
2193 arguments in general registers can't hurt non-MIPS16 functions
2194 because those registers are normally skipped. */
2195 /* MIPS_EABI squeeses a struct that contains a single floating
2196 point value into an FP register instead of pusing it onto the
2197 stack. */
2198 if (fp_register_arg_p (typecode, arg_type)
2199 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2200 {
2201 if (!FP_REGISTER_DOUBLE && len == 8)
2202 {
2203 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2204 unsigned long regval;
2205
2206 /* Write the low word of the double to the even register(s). */
2207 regval = extract_unsigned_integer (val + low_offset, 4);
2208 if (mips_debug)
2209 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2210 float_argreg, phex (regval, 4));
2211 write_register (float_argreg++, regval);
2212 if (!MIPS_EABI)
2213 {
2214 if (mips_debug)
2215 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2216 argreg, phex (regval, 4));
2217 write_register (argreg++, regval);
2218 }
2219
2220 /* Write the high word of the double to the odd register(s). */
2221 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2222 if (mips_debug)
2223 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2224 float_argreg, phex (regval, 4));
2225 write_register (float_argreg++, regval);
2226 if (!MIPS_EABI)
2227 {
2228 if (mips_debug)
2229 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2230 argreg, phex (regval, 4));
2231 write_register (argreg++, regval);
2232 }
2233
2234 }
2235 else
2236 {
2237 /* This is a floating point value that fits entirely
2238 in a single register. */
2239 /* On 32 bit ABI's the float_argreg is further adjusted
2240 above to ensure that it is even register aligned. */
2241 LONGEST regval = extract_unsigned_integer (val, len);
2242 if (mips_debug)
2243 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2244 float_argreg, phex (regval, len));
2245 write_register (float_argreg++, regval);
2246 if (!MIPS_EABI)
2247 {
2248 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2249 registers for each argument. The below is (my
2250 guess) to ensure that the corresponding integer
2251 register has reserved the same space. */
2252 if (mips_debug)
2253 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2254 argreg, phex (regval, len));
2255 write_register (argreg, regval);
2256 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2257 }
2258 }
2259 /* Reserve space for the FP register. */
2260 if (MIPS_REGS_HAVE_HOME_P)
2261 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
2262 }
2263 else
2264 {
2265 /* Copy the argument to general registers or the stack in
2266 register-sized pieces. Large arguments are split between
2267 registers and stack. */
2268 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2269 are treated specially: Irix cc passes them in registers
2270 where gcc sometimes puts them on the stack. For maximum
2271 compatibility, we will put them in both places. */
2272 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2273 (len % MIPS_SAVED_REGSIZE != 0));
2274 /* Note: Floating-point values that didn't fit into an FP
2275 register are only written to memory. */
2276 while (len > 0)
2277 {
2278 /* Rememer if the argument was written to the stack. */
2279 int stack_used_p = 0;
2280 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2281
2282 if (mips_debug)
2283 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2284 partial_len);
2285
2286 /* Write this portion of the argument to the stack. */
2287 if (argreg > MIPS_LAST_ARG_REGNUM
2288 || odd_sized_struct
2289 || fp_register_arg_p (typecode, arg_type))
2290 {
2291 /* Should shorter than int integer values be
2292 promoted to int before being stored? */
2293 int longword_offset = 0;
2294 CORE_ADDR addr;
2295 stack_used_p = 1;
2296 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2297 {
2298 if (MIPS_STACK_ARGSIZE == 8 &&
2299 (typecode == TYPE_CODE_INT ||
2300 typecode == TYPE_CODE_PTR ||
2301 typecode == TYPE_CODE_FLT) && len <= 4)
2302 longword_offset = MIPS_STACK_ARGSIZE - len;
2303 else if ((typecode == TYPE_CODE_STRUCT ||
2304 typecode == TYPE_CODE_UNION) &&
2305 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2306 longword_offset = MIPS_STACK_ARGSIZE - len;
2307 }
2308
2309 if (mips_debug)
2310 {
2311 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
2312 (long) stack_offset);
2313 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2314 (long) longword_offset);
2315 }
2316
2317 addr = sp + stack_offset + longword_offset;
2318
2319 if (mips_debug)
2320 {
2321 int i;
2322 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2323 for (i = 0; i < partial_len; i++)
2324 {
2325 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2326 }
2327 }
2328 write_memory (addr, val, partial_len);
2329 }
2330
2331 /* Note!!! This is NOT an else clause. Odd sized
2332 structs may go thru BOTH paths. Floating point
2333 arguments will not. */
2334 /* Write this portion of the argument to a general
2335 purpose register. */
2336 if (argreg <= MIPS_LAST_ARG_REGNUM
2337 && !fp_register_arg_p (typecode, arg_type))
2338 {
2339 LONGEST regval = extract_unsigned_integer (val, partial_len);
2340
2341 /* A non-floating-point argument being passed in a
2342 general register. If a struct or union, and if
2343 the remaining length is smaller than the register
2344 size, we have to adjust the register value on
2345 big endian targets.
2346
2347 It does not seem to be necessary to do the
2348 same for integral types.
2349
2350 Also don't do this adjustment on EABI and O64
2351 binaries. */
2352
2353 if (!MIPS_EABI
2354 && MIPS_SAVED_REGSIZE < 8
2355 && TARGET_BYTE_ORDER == BIG_ENDIAN
2356 && partial_len < MIPS_SAVED_REGSIZE
2357 && (typecode == TYPE_CODE_STRUCT ||
2358 typecode == TYPE_CODE_UNION))
2359 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2360 TARGET_CHAR_BIT);
2361
2362 if (mips_debug)
2363 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2364 argreg,
2365 phex (regval, MIPS_SAVED_REGSIZE));
2366 write_register (argreg, regval);
2367 argreg++;
2368
2369 /* If this is the old ABI, prevent subsequent floating
2370 point arguments from being passed in floating point
2371 registers. */
2372 if (!MIPS_EABI)
2373 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2374 }
2375
2376 len -= partial_len;
2377 val += partial_len;
2378
2379 /* Compute the the offset into the stack at which we
2380 will copy the next parameter.
2381
2382 In older ABIs, the caller reserved space for
2383 registers that contained arguments. This was loosely
2384 refered to as their "home". Consequently, space is
2385 always allocated.
2386
2387 In the new EABI (and the NABI32), the stack_offset
2388 only needs to be adjusted when it has been used.. */
2389
2390 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
2391 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2392 }
2393 }
2394 if (mips_debug)
2395 fprintf_unfiltered (gdb_stdlog, "\n");
2396 }
2397
2398 /* Return adjusted stack pointer. */
2399 return sp;
2400 }
2401
2402 CORE_ADDR
2403 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2404 {
2405 /* Set the return address register to point to the entry
2406 point of the program, where a breakpoint lies in wait. */
2407 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2408 return sp;
2409 }
2410
2411 static void
2412 mips_push_register (CORE_ADDR * sp, int regno)
2413 {
2414 char buffer[MAX_REGISTER_RAW_SIZE];
2415 int regsize;
2416 int offset;
2417 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2418 {
2419 regsize = MIPS_SAVED_REGSIZE;
2420 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2421 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2422 : 0);
2423 }
2424 else
2425 {
2426 regsize = REGISTER_RAW_SIZE (regno);
2427 offset = 0;
2428 }
2429 *sp -= regsize;
2430 read_register_gen (regno, buffer);
2431 write_memory (*sp, buffer + offset, regsize);
2432 }
2433
2434 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2435 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2436
2437 void
2438 mips_push_dummy_frame (void)
2439 {
2440 int ireg;
2441 struct linked_proc_info *link = (struct linked_proc_info *)
2442 xmalloc (sizeof (struct linked_proc_info));
2443 mips_extra_func_info_t proc_desc = &link->info;
2444 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
2445 CORE_ADDR old_sp = sp;
2446 link->next = linked_proc_desc_table;
2447 linked_proc_desc_table = link;
2448
2449 /* FIXME! are these correct ? */
2450 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2451 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2452 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2453 #define FLOAT_SINGLE_REG_SAVE_MASK \
2454 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2455 /*
2456 * The registers we must save are all those not preserved across
2457 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2458 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2459 * and FP Control/Status registers.
2460 *
2461 *
2462 * Dummy frame layout:
2463 * (high memory)
2464 * Saved PC
2465 * Saved MMHI, MMLO, FPC_CSR
2466 * Saved R31
2467 * Saved R28
2468 * ...
2469 * Saved R1
2470 * Saved D18 (i.e. F19, F18)
2471 * ...
2472 * Saved D0 (i.e. F1, F0)
2473 * Argument build area and stack arguments written via mips_push_arguments
2474 * (low memory)
2475 */
2476
2477 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2478 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2479 PROC_FRAME_OFFSET (proc_desc) = 0;
2480 PROC_FRAME_ADJUST (proc_desc) = 0;
2481 mips_push_register (&sp, PC_REGNUM);
2482 mips_push_register (&sp, HI_REGNUM);
2483 mips_push_register (&sp, LO_REGNUM);
2484 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2485
2486 /* Save general CPU registers */
2487 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2488 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2489 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2490 for (ireg = 32; --ireg >= 0;)
2491 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2492 mips_push_register (&sp, ireg);
2493
2494 /* Save floating point registers starting with high order word */
2495 PROC_FREG_MASK (proc_desc) =
2496 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2497 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2498 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2499 from FP. */
2500 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2501 for (ireg = 32; --ireg >= 0;)
2502 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2503 mips_push_register (&sp, ireg + FP0_REGNUM);
2504
2505 /* Update the frame pointer for the call dummy and the stack pointer.
2506 Set the procedure's starting and ending addresses to point to the
2507 call dummy address at the entry point. */
2508 write_register (PUSH_FP_REGNUM, old_sp);
2509 write_register (SP_REGNUM, sp);
2510 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2511 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2512 SET_PROC_DESC_IS_DUMMY (proc_desc);
2513 PROC_PC_REG (proc_desc) = RA_REGNUM;
2514 }
2515
2516 void
2517 mips_pop_frame (void)
2518 {
2519 register int regnum;
2520 struct frame_info *frame = get_current_frame ();
2521 CORE_ADDR new_sp = FRAME_FP (frame);
2522
2523 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2524
2525 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2526 if (frame->saved_regs == NULL)
2527 mips_find_saved_regs (frame);
2528 for (regnum = 0; regnum < NUM_REGS; regnum++)
2529 {
2530 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2531 && frame->saved_regs[regnum])
2532 write_register (regnum,
2533 read_memory_integer (frame->saved_regs[regnum],
2534 MIPS_SAVED_REGSIZE));
2535 }
2536 write_register (SP_REGNUM, new_sp);
2537 flush_cached_frames ();
2538
2539 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2540 {
2541 struct linked_proc_info *pi_ptr, *prev_ptr;
2542
2543 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2544 pi_ptr != NULL;
2545 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2546 {
2547 if (&pi_ptr->info == proc_desc)
2548 break;
2549 }
2550
2551 if (pi_ptr == NULL)
2552 error ("Can't locate dummy extra frame info\n");
2553
2554 if (prev_ptr != NULL)
2555 prev_ptr->next = pi_ptr->next;
2556 else
2557 linked_proc_desc_table = pi_ptr->next;
2558
2559 xfree (pi_ptr);
2560
2561 write_register (HI_REGNUM,
2562 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2563 MIPS_SAVED_REGSIZE));
2564 write_register (LO_REGNUM,
2565 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2566 MIPS_SAVED_REGSIZE));
2567 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2568 write_register (FCRCS_REGNUM,
2569 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2570 MIPS_SAVED_REGSIZE));
2571 }
2572 }
2573
2574 static void
2575 mips_print_register (int regnum, int all)
2576 {
2577 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2578
2579 /* Get the data in raw format. */
2580 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2581 {
2582 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2583 return;
2584 }
2585
2586 /* If an even floating point register, also print as double. */
2587 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2588 && !((regnum - FP0_REGNUM) & 1))
2589 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
2590 {
2591 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2592
2593 read_relative_register_raw_bytes (regnum, dbuffer);
2594 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
2595 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2596
2597 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2598 val_print (builtin_type_double, dbuffer, 0, 0,
2599 gdb_stdout, 0, 1, 0, Val_pretty_default);
2600 printf_filtered ("); ");
2601 }
2602 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2603
2604 /* The problem with printing numeric register names (r26, etc.) is that
2605 the user can't use them on input. Probably the best solution is to
2606 fix it so that either the numeric or the funky (a2, etc.) names
2607 are accepted on input. */
2608 if (regnum < MIPS_NUMREGS)
2609 printf_filtered ("(r%d): ", regnum);
2610 else
2611 printf_filtered (": ");
2612
2613 /* If virtual format is floating, print it that way. */
2614 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2615 if (FP_REGISTER_DOUBLE)
2616 { /* show 8-byte floats as float AND double: */
2617 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2618
2619 printf_filtered (" (float) ");
2620 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2621 gdb_stdout, 0, 1, 0, Val_pretty_default);
2622 printf_filtered (", (double) ");
2623 val_print (builtin_type_double, raw_buffer, 0, 0,
2624 gdb_stdout, 0, 1, 0, Val_pretty_default);
2625 }
2626 else
2627 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2628 gdb_stdout, 0, 1, 0, Val_pretty_default);
2629 /* Else print as integer in hex. */
2630 else
2631 {
2632 int offset;
2633
2634 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2635 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2636 else
2637 offset = 0;
2638
2639 print_scalar_formatted (raw_buffer + offset,
2640 REGISTER_VIRTUAL_TYPE (regnum),
2641 'x', 0, gdb_stdout);
2642 }
2643 }
2644
2645 /* Replacement for generic do_registers_info.
2646 Print regs in pretty columns. */
2647
2648 static int
2649 do_fp_register_row (int regnum)
2650 { /* do values for FP (float) regs */
2651 char *raw_buffer[2];
2652 char *dbl_buffer;
2653 /* use HI and LO to control the order of combining two flt regs */
2654 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2655 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2656 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2657 int inv1, inv2, inv3;
2658
2659 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2660 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2661 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2662
2663 /* Get the data in raw format. */
2664 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2665 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2666 if (REGISTER_RAW_SIZE (regnum) == 4)
2667 {
2668 /* 4-byte registers: we can fit two registers per row. */
2669 /* Also print every pair of 4-byte regs as an 8-byte double. */
2670 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
2671 error ("can't read register %d (%s)",
2672 regnum + 1, REGISTER_NAME (regnum + 1));
2673
2674 /* copy the two floats into one double, and unpack both */
2675 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2676 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2677 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2678 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2679
2680 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2681 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2682 printf_filtered (inv2 ? " %-5s: <invalid float>" :
2683 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
2684 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2685 " dbl: %-24.17g\n", doub);
2686 /* may want to do hex display here (future enhancement) */
2687 regnum += 2;
2688 }
2689 else
2690 { /* eight byte registers: print each one as float AND as double. */
2691 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2692
2693 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2694 flt1 = unpack_double (builtin_type_float,
2695 &raw_buffer[HI][offset], &inv1);
2696 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2697
2698 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2699 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
2700 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2701 " dbl: %-24.17g\n", doub);
2702 /* may want to do hex display here (future enhancement) */
2703 regnum++;
2704 }
2705 return regnum;
2706 }
2707
2708 /* Print a row's worth of GP (int) registers, with name labels above */
2709
2710 static int
2711 do_gp_register_row (int regnum)
2712 {
2713 /* do values for GP (int) regs */
2714 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2715 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2716 int col, byte;
2717 int start_regnum = regnum;
2718 int numregs = NUM_REGS;
2719
2720
2721 /* For GP registers, we print a separate row of names above the vals */
2722 printf_filtered (" ");
2723 for (col = 0; col < ncols && regnum < numregs; regnum++)
2724 {
2725 if (*REGISTER_NAME (regnum) == '\0')
2726 continue; /* unused register */
2727 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2728 break; /* end the row: reached FP register */
2729 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
2730 REGISTER_NAME (regnum));
2731 col++;
2732 }
2733 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
2734 start_regnum); /* print the R0 to R31 names */
2735
2736 regnum = start_regnum; /* go back to start of row */
2737 /* now print the values in hex, 4 or 8 to the row */
2738 for (col = 0; col < ncols && regnum < numregs; regnum++)
2739 {
2740 if (*REGISTER_NAME (regnum) == '\0')
2741 continue; /* unused register */
2742 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2743 break; /* end row: reached FP register */
2744 /* OK: get the data in raw format. */
2745 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2746 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2747 /* pad small registers */
2748 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
2749 printf_filtered (" ");
2750 /* Now print the register value in hex, endian order. */
2751 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2752 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2753 byte < REGISTER_RAW_SIZE (regnum);
2754 byte++)
2755 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2756 else
2757 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2758 byte >= 0;
2759 byte--)
2760 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2761 printf_filtered (" ");
2762 col++;
2763 }
2764 if (col > 0) /* ie. if we actually printed anything... */
2765 printf_filtered ("\n");
2766
2767 return regnum;
2768 }
2769
2770 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2771
2772 void
2773 mips_do_registers_info (int regnum, int fpregs)
2774 {
2775 if (regnum != -1) /* do one specified register */
2776 {
2777 if (*(REGISTER_NAME (regnum)) == '\0')
2778 error ("Not a valid register for the current processor type");
2779
2780 mips_print_register (regnum, 0);
2781 printf_filtered ("\n");
2782 }
2783 else
2784 /* do all (or most) registers */
2785 {
2786 regnum = 0;
2787 while (regnum < NUM_REGS)
2788 {
2789 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2790 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
2791 regnum = do_fp_register_row (regnum); /* FP regs */
2792 else
2793 regnum += MIPS_NUMREGS; /* skip floating point regs */
2794 else
2795 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2796 }
2797 }
2798 }
2799
2800 /* Return number of args passed to a frame. described by FIP.
2801 Can return -1, meaning no way to tell. */
2802
2803 int
2804 mips_frame_num_args (struct frame_info *frame)
2805 {
2806 return -1;
2807 }
2808
2809 /* Is this a branch with a delay slot? */
2810
2811 static int is_delayed (unsigned long);
2812
2813 static int
2814 is_delayed (unsigned long insn)
2815 {
2816 int i;
2817 for (i = 0; i < NUMOPCODES; ++i)
2818 if (mips_opcodes[i].pinfo != INSN_MACRO
2819 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2820 break;
2821 return (i < NUMOPCODES
2822 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2823 | INSN_COND_BRANCH_DELAY
2824 | INSN_COND_BRANCH_LIKELY)));
2825 }
2826
2827 int
2828 mips_step_skips_delay (CORE_ADDR pc)
2829 {
2830 char buf[MIPS_INSTLEN];
2831
2832 /* There is no branch delay slot on MIPS16. */
2833 if (pc_is_mips16 (pc))
2834 return 0;
2835
2836 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2837 /* If error reading memory, guess that it is not a delayed branch. */
2838 return 0;
2839 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
2840 }
2841
2842
2843 /* Skip the PC past function prologue instructions (32-bit version).
2844 This is a helper function for mips_skip_prologue. */
2845
2846 static CORE_ADDR
2847 mips32_skip_prologue (CORE_ADDR pc)
2848 {
2849 t_inst inst;
2850 CORE_ADDR end_pc;
2851 int seen_sp_adjust = 0;
2852 int load_immediate_bytes = 0;
2853
2854 /* Skip the typical prologue instructions. These are the stack adjustment
2855 instruction and the instructions that save registers on the stack
2856 or in the gcc frame. */
2857 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2858 {
2859 unsigned long high_word;
2860
2861 inst = mips_fetch_instruction (pc);
2862 high_word = (inst >> 16) & 0xffff;
2863
2864 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2865 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2866 seen_sp_adjust = 1;
2867 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2868 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2869 seen_sp_adjust = 1;
2870 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2871 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2872 && (inst & 0x001F0000)) /* reg != $zero */
2873 continue;
2874
2875 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2876 continue;
2877 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2878 /* sx reg,n($s8) */
2879 continue; /* reg != $zero */
2880
2881 /* move $s8,$sp. With different versions of gas this will be either
2882 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2883 Accept any one of these. */
2884 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2885 continue;
2886
2887 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2888 continue;
2889 else if (high_word == 0x3c1c) /* lui $gp,n */
2890 continue;
2891 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2892 continue;
2893 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2894 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2895 continue;
2896 /* The following instructions load $at or $t0 with an immediate
2897 value in preparation for a stack adjustment via
2898 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2899 a local variable, so we accept them only before a stack adjustment
2900 instruction was seen. */
2901 else if (!seen_sp_adjust)
2902 {
2903 if (high_word == 0x3c01 || /* lui $at,n */
2904 high_word == 0x3c08) /* lui $t0,n */
2905 {
2906 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2907 continue;
2908 }
2909 else if (high_word == 0x3421 || /* ori $at,$at,n */
2910 high_word == 0x3508 || /* ori $t0,$t0,n */
2911 high_word == 0x3401 || /* ori $at,$zero,n */
2912 high_word == 0x3408) /* ori $t0,$zero,n */
2913 {
2914 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2915 continue;
2916 }
2917 else
2918 break;
2919 }
2920 else
2921 break;
2922 }
2923
2924 /* In a frameless function, we might have incorrectly
2925 skipped some load immediate instructions. Undo the skipping
2926 if the load immediate was not followed by a stack adjustment. */
2927 if (load_immediate_bytes && !seen_sp_adjust)
2928 pc -= load_immediate_bytes;
2929 return pc;
2930 }
2931
2932 /* Skip the PC past function prologue instructions (16-bit version).
2933 This is a helper function for mips_skip_prologue. */
2934
2935 static CORE_ADDR
2936 mips16_skip_prologue (CORE_ADDR pc)
2937 {
2938 CORE_ADDR end_pc;
2939 int extend_bytes = 0;
2940 int prev_extend_bytes;
2941
2942 /* Table of instructions likely to be found in a function prologue. */
2943 static struct
2944 {
2945 unsigned short inst;
2946 unsigned short mask;
2947 }
2948 table[] =
2949 {
2950 {
2951 0x6300, 0xff00
2952 }
2953 , /* addiu $sp,offset */
2954 {
2955 0xfb00, 0xff00
2956 }
2957 , /* daddiu $sp,offset */
2958 {
2959 0xd000, 0xf800
2960 }
2961 , /* sw reg,n($sp) */
2962 {
2963 0xf900, 0xff00
2964 }
2965 , /* sd reg,n($sp) */
2966 {
2967 0x6200, 0xff00
2968 }
2969 , /* sw $ra,n($sp) */
2970 {
2971 0xfa00, 0xff00
2972 }
2973 , /* sd $ra,n($sp) */
2974 {
2975 0x673d, 0xffff
2976 }
2977 , /* move $s1,sp */
2978 {
2979 0xd980, 0xff80
2980 }
2981 , /* sw $a0-$a3,n($s1) */
2982 {
2983 0x6704, 0xff1c
2984 }
2985 , /* move reg,$a0-$a3 */
2986 {
2987 0xe809, 0xf81f
2988 }
2989 , /* entry pseudo-op */
2990 {
2991 0x0100, 0xff00
2992 }
2993 , /* addiu $s1,$sp,n */
2994 {
2995 0, 0
2996 } /* end of table marker */
2997 };
2998
2999 /* Skip the typical prologue instructions. These are the stack adjustment
3000 instruction and the instructions that save registers on the stack
3001 or in the gcc frame. */
3002 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3003 {
3004 unsigned short inst;
3005 int i;
3006
3007 inst = mips_fetch_instruction (pc);
3008
3009 /* Normally we ignore an extend instruction. However, if it is
3010 not followed by a valid prologue instruction, we must adjust
3011 the pc back over the extend so that it won't be considered
3012 part of the prologue. */
3013 if ((inst & 0xf800) == 0xf000) /* extend */
3014 {
3015 extend_bytes = MIPS16_INSTLEN;
3016 continue;
3017 }
3018 prev_extend_bytes = extend_bytes;
3019 extend_bytes = 0;
3020
3021 /* Check for other valid prologue instructions besides extend. */
3022 for (i = 0; table[i].mask != 0; i++)
3023 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3024 break;
3025 if (table[i].mask != 0) /* it was in table? */
3026 continue; /* ignore it */
3027 else
3028 /* non-prologue */
3029 {
3030 /* Return the current pc, adjusted backwards by 2 if
3031 the previous instruction was an extend. */
3032 return pc - prev_extend_bytes;
3033 }
3034 }
3035 return pc;
3036 }
3037
3038 /* To skip prologues, I use this predicate. Returns either PC itself
3039 if the code at PC does not look like a function prologue; otherwise
3040 returns an address that (if we're lucky) follows the prologue. If
3041 LENIENT, then we must skip everything which is involved in setting
3042 up the frame (it's OK to skip more, just so long as we don't skip
3043 anything which might clobber the registers which are being saved.
3044 We must skip more in the case where part of the prologue is in the
3045 delay slot of a non-prologue instruction). */
3046
3047 CORE_ADDR
3048 mips_skip_prologue (CORE_ADDR pc)
3049 {
3050 /* See if we can determine the end of the prologue via the symbol table.
3051 If so, then return either PC, or the PC after the prologue, whichever
3052 is greater. */
3053
3054 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3055
3056 if (post_prologue_pc != 0)
3057 return max (pc, post_prologue_pc);
3058
3059 /* Can't determine prologue from the symbol table, need to examine
3060 instructions. */
3061
3062 if (pc_is_mips16 (pc))
3063 return mips16_skip_prologue (pc);
3064 else
3065 return mips32_skip_prologue (pc);
3066 }
3067
3068 /* Determine how a return value is stored within the MIPS register
3069 file, given the return type `valtype'. */
3070
3071 struct return_value_word
3072 {
3073 int len;
3074 int reg;
3075 int reg_offset;
3076 int buf_offset;
3077 };
3078
3079 static void
3080 return_value_location (struct type *valtype,
3081 struct return_value_word *hi,
3082 struct return_value_word *lo)
3083 {
3084 int len = TYPE_LENGTH (valtype);
3085
3086 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3087 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3088 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3089 {
3090 if (!FP_REGISTER_DOUBLE && len == 8)
3091 {
3092 /* We need to break a 64bit float in two 32 bit halves and
3093 spread them across a floating-point register pair. */
3094 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3095 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3096 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3097 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3098 ? 4 : 0);
3099 hi->reg_offset = lo->reg_offset;
3100 lo->reg = FP0_REGNUM + 0;
3101 hi->reg = FP0_REGNUM + 1;
3102 lo->len = 4;
3103 hi->len = 4;
3104 }
3105 else
3106 {
3107 /* The floating point value fits in a single floating-point
3108 register. */
3109 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3110 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3111 && len == 4)
3112 ? 4 : 0);
3113 lo->reg = FP0_REGNUM;
3114 lo->len = len;
3115 lo->buf_offset = 0;
3116 hi->len = 0;
3117 hi->reg_offset = 0;
3118 hi->buf_offset = 0;
3119 hi->reg = 0;
3120 }
3121 }
3122 else
3123 {
3124 /* Locate a result possibly spread across two registers. */
3125 int regnum = 2;
3126 lo->reg = regnum + 0;
3127 hi->reg = regnum + 1;
3128 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3129 && len < MIPS_SAVED_REGSIZE)
3130 {
3131 /* "un-left-justify" the value in the low register */
3132 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3133 lo->len = len;
3134 hi->reg_offset = 0;
3135 hi->len = 0;
3136 }
3137 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3138 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3139 && len < MIPS_SAVED_REGSIZE * 2
3140 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3141 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3142 {
3143 /* "un-left-justify" the value spread across two registers. */
3144 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3145 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3146 hi->reg_offset = 0;
3147 hi->len = len - lo->len;
3148 }
3149 else
3150 {
3151 /* Only perform a partial copy of the second register. */
3152 lo->reg_offset = 0;
3153 hi->reg_offset = 0;
3154 if (len > MIPS_SAVED_REGSIZE)
3155 {
3156 lo->len = MIPS_SAVED_REGSIZE;
3157 hi->len = len - MIPS_SAVED_REGSIZE;
3158 }
3159 else
3160 {
3161 lo->len = len;
3162 hi->len = 0;
3163 }
3164 }
3165 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3166 && REGISTER_RAW_SIZE (regnum) == 8
3167 && MIPS_SAVED_REGSIZE == 4)
3168 {
3169 /* Account for the fact that only the least-signficant part
3170 of the register is being used */
3171 lo->reg_offset += 4;
3172 hi->reg_offset += 4;
3173 }
3174 lo->buf_offset = 0;
3175 hi->buf_offset = lo->len;
3176 }
3177 }
3178
3179 /* Given a return value in `regbuf' with a type `valtype', extract and
3180 copy its value into `valbuf'. */
3181
3182 void
3183 mips_extract_return_value (struct type *valtype,
3184 char regbuf[REGISTER_BYTES],
3185 char *valbuf)
3186 {
3187 struct return_value_word lo;
3188 struct return_value_word hi;
3189 return_value_location (valtype, &lo, &hi);
3190
3191 memcpy (valbuf + lo.buf_offset,
3192 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3193 lo.len);
3194
3195 if (hi.len > 0)
3196 memcpy (valbuf + hi.buf_offset,
3197 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3198 hi.len);
3199 }
3200
3201 /* Given a return value in `valbuf' with a type `valtype', write it's
3202 value into the appropriate register. */
3203
3204 void
3205 mips_store_return_value (struct type *valtype, char *valbuf)
3206 {
3207 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3208 struct return_value_word lo;
3209 struct return_value_word hi;
3210 return_value_location (valtype, &lo, &hi);
3211
3212 memset (raw_buffer, 0, sizeof (raw_buffer));
3213 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3214 write_register_bytes (REGISTER_BYTE (lo.reg),
3215 raw_buffer,
3216 REGISTER_RAW_SIZE (lo.reg));
3217
3218 if (hi.len > 0)
3219 {
3220 memset (raw_buffer, 0, sizeof (raw_buffer));
3221 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3222 write_register_bytes (REGISTER_BYTE (hi.reg),
3223 raw_buffer,
3224 REGISTER_RAW_SIZE (hi.reg));
3225 }
3226 }
3227
3228 /* Exported procedure: Is PC in the signal trampoline code */
3229
3230 int
3231 in_sigtramp (CORE_ADDR pc, char *ignore)
3232 {
3233 if (sigtramp_address == 0)
3234 fixup_sigtramp ();
3235 return (pc >= sigtramp_address && pc < sigtramp_end);
3236 }
3237
3238 /* Root of all "set mips "/"show mips " commands. This will eventually be
3239 used for all MIPS-specific commands. */
3240
3241 static void
3242 show_mips_command (char *args, int from_tty)
3243 {
3244 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3245 }
3246
3247 static void
3248 set_mips_command (char *args, int from_tty)
3249 {
3250 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3251 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3252 }
3253
3254 /* Commands to show/set the MIPS FPU type. */
3255
3256 static void
3257 show_mipsfpu_command (char *args, int from_tty)
3258 {
3259 char *msg;
3260 char *fpu;
3261 switch (MIPS_FPU_TYPE)
3262 {
3263 case MIPS_FPU_SINGLE:
3264 fpu = "single-precision";
3265 break;
3266 case MIPS_FPU_DOUBLE:
3267 fpu = "double-precision";
3268 break;
3269 case MIPS_FPU_NONE:
3270 fpu = "absent (none)";
3271 break;
3272 }
3273 if (mips_fpu_type_auto)
3274 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3275 fpu);
3276 else
3277 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3278 fpu);
3279 }
3280
3281
3282 static void
3283 set_mipsfpu_command (char *args, int from_tty)
3284 {
3285 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3286 show_mipsfpu_command (args, from_tty);
3287 }
3288
3289 static void
3290 set_mipsfpu_single_command (char *args, int from_tty)
3291 {
3292 mips_fpu_type = MIPS_FPU_SINGLE;
3293 mips_fpu_type_auto = 0;
3294 if (GDB_MULTI_ARCH)
3295 {
3296 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3297 }
3298 }
3299
3300 static void
3301 set_mipsfpu_double_command (char *args, int from_tty)
3302 {
3303 mips_fpu_type = MIPS_FPU_DOUBLE;
3304 mips_fpu_type_auto = 0;
3305 if (GDB_MULTI_ARCH)
3306 {
3307 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3308 }
3309 }
3310
3311 static void
3312 set_mipsfpu_none_command (char *args, int from_tty)
3313 {
3314 mips_fpu_type = MIPS_FPU_NONE;
3315 mips_fpu_type_auto = 0;
3316 if (GDB_MULTI_ARCH)
3317 {
3318 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3319 }
3320 }
3321
3322 static void
3323 set_mipsfpu_auto_command (char *args, int from_tty)
3324 {
3325 mips_fpu_type_auto = 1;
3326 }
3327
3328 /* Command to set the processor type. */
3329
3330 void
3331 mips_set_processor_type_command (char *args, int from_tty)
3332 {
3333 int i;
3334
3335 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3336 {
3337 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3338 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3339 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3340
3341 /* Restore the value. */
3342 tmp_mips_processor_type = xstrdup (mips_processor_type);
3343
3344 return;
3345 }
3346
3347 if (!mips_set_processor_type (tmp_mips_processor_type))
3348 {
3349 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3350 /* Restore its value. */
3351 tmp_mips_processor_type = xstrdup (mips_processor_type);
3352 }
3353 }
3354
3355 static void
3356 mips_show_processor_type_command (char *args, int from_tty)
3357 {
3358 }
3359
3360 /* Modify the actual processor type. */
3361
3362 int
3363 mips_set_processor_type (char *str)
3364 {
3365 int i, j;
3366
3367 if (str == NULL)
3368 return 0;
3369
3370 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3371 {
3372 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3373 {
3374 mips_processor_type = str;
3375 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3376 return 1;
3377 /* FIXME tweak fpu flag too */
3378 }
3379 }
3380
3381 return 0;
3382 }
3383
3384 /* Attempt to identify the particular processor model by reading the
3385 processor id. */
3386
3387 char *
3388 mips_read_processor_type (void)
3389 {
3390 CORE_ADDR prid;
3391
3392 prid = read_register (PRID_REGNUM);
3393
3394 if ((prid & ~0xf) == 0x700)
3395 return savestring ("r3041", strlen ("r3041"));
3396
3397 return NULL;
3398 }
3399
3400 /* Just like reinit_frame_cache, but with the right arguments to be
3401 callable as an sfunc. */
3402
3403 static void
3404 reinit_frame_cache_sfunc (char *args, int from_tty,
3405 struct cmd_list_element *c)
3406 {
3407 reinit_frame_cache ();
3408 }
3409
3410 int
3411 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
3412 {
3413 mips_extra_func_info_t proc_desc;
3414
3415 /* Search for the function containing this address. Set the low bit
3416 of the address when searching, in case we were given an even address
3417 that is the start of a 16-bit function. If we didn't do this,
3418 the search would fail because the symbol table says the function
3419 starts at an odd address, i.e. 1 byte past the given address. */
3420 memaddr = ADDR_BITS_REMOVE (memaddr);
3421 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3422
3423 /* Make an attempt to determine if this is a 16-bit function. If
3424 the procedure descriptor exists and the address therein is odd,
3425 it's definitely a 16-bit function. Otherwise, we have to just
3426 guess that if the address passed in is odd, it's 16-bits. */
3427 if (proc_desc)
3428 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3429 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3430 else
3431 info->mach = pc_is_mips16 (memaddr) ?
3432 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3433
3434 /* Round down the instruction address to the appropriate boundary. */
3435 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
3436
3437 /* Call the appropriate disassembler based on the target endian-ness. */
3438 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3439 return print_insn_big_mips (memaddr, info);
3440 else
3441 return print_insn_little_mips (memaddr, info);
3442 }
3443
3444 /* Old-style breakpoint macros.
3445 The IDT board uses an unusual breakpoint value, and sometimes gets
3446 confused when it sees the usual MIPS breakpoint instruction. */
3447
3448 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3449 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3450 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3451 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3452 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3453 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3454 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3455 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3456
3457 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3458 counter value to determine whether a 16- or 32-bit breakpoint should be
3459 used. It returns a pointer to a string of bytes that encode a breakpoint
3460 instruction, stores the length of the string to *lenptr, and adjusts pc
3461 (if necessary) to point to the actual memory location where the
3462 breakpoint should be inserted. */
3463
3464 unsigned char *
3465 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
3466 {
3467 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3468 {
3469 if (pc_is_mips16 (*pcptr))
3470 {
3471 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3472 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3473 *lenptr = sizeof (mips16_big_breakpoint);
3474 return mips16_big_breakpoint;
3475 }
3476 else
3477 {
3478 static char big_breakpoint[] = BIG_BREAKPOINT;
3479 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3480 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3481
3482 *lenptr = sizeof (big_breakpoint);
3483
3484 if (strcmp (target_shortname, "mips") == 0)
3485 return idt_big_breakpoint;
3486 else if (strcmp (target_shortname, "ddb") == 0
3487 || strcmp (target_shortname, "pmon") == 0
3488 || strcmp (target_shortname, "lsi") == 0)
3489 return pmon_big_breakpoint;
3490 else
3491 return big_breakpoint;
3492 }
3493 }
3494 else
3495 {
3496 if (pc_is_mips16 (*pcptr))
3497 {
3498 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3499 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3500 *lenptr = sizeof (mips16_little_breakpoint);
3501 return mips16_little_breakpoint;
3502 }
3503 else
3504 {
3505 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3506 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3507 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3508
3509 *lenptr = sizeof (little_breakpoint);
3510
3511 if (strcmp (target_shortname, "mips") == 0)
3512 return idt_little_breakpoint;
3513 else if (strcmp (target_shortname, "ddb") == 0
3514 || strcmp (target_shortname, "pmon") == 0
3515 || strcmp (target_shortname, "lsi") == 0)
3516 return pmon_little_breakpoint;
3517 else
3518 return little_breakpoint;
3519 }
3520 }
3521 }
3522
3523 /* If PC is in a mips16 call or return stub, return the address of the target
3524 PC, which is either the callee or the caller. There are several
3525 cases which must be handled:
3526
3527 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3528 target PC is in $31 ($ra).
3529 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3530 and the target PC is in $2.
3531 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3532 before the jal instruction, this is effectively a call stub
3533 and the the target PC is in $2. Otherwise this is effectively
3534 a return stub and the target PC is in $18.
3535
3536 See the source code for the stubs in gcc/config/mips/mips16.S for
3537 gory details.
3538
3539 This function implements the SKIP_TRAMPOLINE_CODE macro.
3540 */
3541
3542 CORE_ADDR
3543 mips_skip_stub (CORE_ADDR pc)
3544 {
3545 char *name;
3546 CORE_ADDR start_addr;
3547
3548 /* Find the starting address and name of the function containing the PC. */
3549 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3550 return 0;
3551
3552 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3553 target PC is in $31 ($ra). */
3554 if (strcmp (name, "__mips16_ret_sf") == 0
3555 || strcmp (name, "__mips16_ret_df") == 0)
3556 return read_signed_register (RA_REGNUM);
3557
3558 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3559 {
3560 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3561 and the target PC is in $2. */
3562 if (name[19] >= '0' && name[19] <= '9')
3563 return read_signed_register (2);
3564
3565 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3566 before the jal instruction, this is effectively a call stub
3567 and the the target PC is in $2. Otherwise this is effectively
3568 a return stub and the target PC is in $18. */
3569 else if (name[19] == 's' || name[19] == 'd')
3570 {
3571 if (pc == start_addr)
3572 {
3573 /* Check if the target of the stub is a compiler-generated
3574 stub. Such a stub for a function bar might have a name
3575 like __fn_stub_bar, and might look like this:
3576 mfc1 $4,$f13
3577 mfc1 $5,$f12
3578 mfc1 $6,$f15
3579 mfc1 $7,$f14
3580 la $1,bar (becomes a lui/addiu pair)
3581 jr $1
3582 So scan down to the lui/addi and extract the target
3583 address from those two instructions. */
3584
3585 CORE_ADDR target_pc = read_signed_register (2);
3586 t_inst inst;
3587 int i;
3588
3589 /* See if the name of the target function is __fn_stub_*. */
3590 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3591 return target_pc;
3592 if (strncmp (name, "__fn_stub_", 10) != 0
3593 && strcmp (name, "etext") != 0
3594 && strcmp (name, "_etext") != 0)
3595 return target_pc;
3596
3597 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3598 The limit on the search is arbitrarily set to 20
3599 instructions. FIXME. */
3600 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3601 {
3602 inst = mips_fetch_instruction (target_pc);
3603 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3604 pc = (inst << 16) & 0xffff0000; /* high word */
3605 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3606 return pc | (inst & 0xffff); /* low word */
3607 }
3608
3609 /* Couldn't find the lui/addui pair, so return stub address. */
3610 return target_pc;
3611 }
3612 else
3613 /* This is the 'return' part of a call stub. The return
3614 address is in $r18. */
3615 return read_signed_register (18);
3616 }
3617 }
3618 return 0; /* not a stub */
3619 }
3620
3621
3622 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3623 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3624
3625 int
3626 mips_in_call_stub (CORE_ADDR pc, char *name)
3627 {
3628 CORE_ADDR start_addr;
3629
3630 /* Find the starting address of the function containing the PC. If the
3631 caller didn't give us a name, look it up at the same time. */
3632 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3633 return 0;
3634
3635 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3636 {
3637 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3638 if (name[19] >= '0' && name[19] <= '9')
3639 return 1;
3640 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3641 before the jal instruction, this is effectively a call stub. */
3642 else if (name[19] == 's' || name[19] == 'd')
3643 return pc == start_addr;
3644 }
3645
3646 return 0; /* not a stub */
3647 }
3648
3649
3650 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3651 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3652
3653 int
3654 mips_in_return_stub (CORE_ADDR pc, char *name)
3655 {
3656 CORE_ADDR start_addr;
3657
3658 /* Find the starting address of the function containing the PC. */
3659 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3660 return 0;
3661
3662 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3663 if (strcmp (name, "__mips16_ret_sf") == 0
3664 || strcmp (name, "__mips16_ret_df") == 0)
3665 return 1;
3666
3667 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
3668 i.e. after the jal instruction, this is effectively a return stub. */
3669 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3670 && (name[19] == 's' || name[19] == 'd')
3671 && pc != start_addr)
3672 return 1;
3673
3674 return 0; /* not a stub */
3675 }
3676
3677
3678 /* Return non-zero if the PC is in a library helper function that should
3679 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3680
3681 int
3682 mips_ignore_helper (CORE_ADDR pc)
3683 {
3684 char *name;
3685
3686 /* Find the starting address and name of the function containing the PC. */
3687 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3688 return 0;
3689
3690 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3691 that we want to ignore. */
3692 return (strcmp (name, "__mips16_ret_sf") == 0
3693 || strcmp (name, "__mips16_ret_df") == 0);
3694 }
3695
3696
3697 /* Return a location where we can set a breakpoint that will be hit
3698 when an inferior function call returns. This is normally the
3699 program's entry point. Executables that don't have an entry
3700 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3701 whose address is the location where the breakpoint should be placed. */
3702
3703 CORE_ADDR
3704 mips_call_dummy_address (void)
3705 {
3706 struct minimal_symbol *sym;
3707
3708 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3709 if (sym)
3710 return SYMBOL_VALUE_ADDRESS (sym);
3711 else
3712 return entry_point_address ();
3713 }
3714
3715
3716 /* If the current gcc for this target does not produce correct debugging
3717 information for float parameters, both prototyped and unprototyped, then
3718 define this macro. This forces gdb to always assume that floats are
3719 passed as doubles and then converted in the callee.
3720
3721 For the mips chip, it appears that the debug info marks the parameters as
3722 floats regardless of whether the function is prototyped, but the actual
3723 values are passed as doubles for the non-prototyped case and floats for
3724 the prototyped case. Thus we choose to make the non-prototyped case work
3725 for C and break the prototyped case, since the non-prototyped case is
3726 probably much more common. (FIXME). */
3727
3728 static int
3729 mips_coerce_float_to_double (struct type *formal, struct type *actual)
3730 {
3731 return current_language->la_language == language_c;
3732 }
3733
3734 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3735 the register stored on the stack (32) is different to its real raw
3736 size (64). The below ensures that registers are fetched from the
3737 stack using their ABI size and then stored into the RAW_BUFFER
3738 using their raw size.
3739
3740 The alternative to adding this function would be to add an ABI
3741 macro - REGISTER_STACK_SIZE(). */
3742
3743 static void
3744 mips_get_saved_register (char *raw_buffer,
3745 int *optimized,
3746 CORE_ADDR *addrp,
3747 struct frame_info *frame,
3748 int regnum,
3749 enum lval_type *lval)
3750 {
3751 CORE_ADDR addr;
3752
3753 if (!target_has_registers)
3754 error ("No registers.");
3755
3756 /* Normal systems don't optimize out things with register numbers. */
3757 if (optimized != NULL)
3758 *optimized = 0;
3759 addr = find_saved_register (frame, regnum);
3760 if (addr != 0)
3761 {
3762 if (lval != NULL)
3763 *lval = lval_memory;
3764 if (regnum == SP_REGNUM)
3765 {
3766 if (raw_buffer != NULL)
3767 {
3768 /* Put it back in target format. */
3769 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3770 (LONGEST) addr);
3771 }
3772 if (addrp != NULL)
3773 *addrp = 0;
3774 return;
3775 }
3776 if (raw_buffer != NULL)
3777 {
3778 LONGEST val;
3779 if (regnum < 32)
3780 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3781 saved. */
3782 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3783 else
3784 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3785 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3786 }
3787 }
3788 else
3789 {
3790 if (lval != NULL)
3791 *lval = lval_register;
3792 addr = REGISTER_BYTE (regnum);
3793 if (raw_buffer != NULL)
3794 read_register_gen (regnum, raw_buffer);
3795 }
3796 if (addrp != NULL)
3797 *addrp = addr;
3798 }
3799
3800 /* Immediately after a function call, return the saved pc.
3801 Can't always go through the frames for this because on some machines
3802 the new frame is not set up until the new function executes
3803 some instructions. */
3804
3805 static CORE_ADDR
3806 mips_saved_pc_after_call (struct frame_info *frame)
3807 {
3808 return read_signed_register (RA_REGNUM);
3809 }
3810
3811
3812 /* Convert a dbx stab register number (from `r' declaration) to a gdb
3813 REGNUM */
3814
3815 static int
3816 mips_stab_reg_to_regnum (int num)
3817 {
3818 if (num < 32)
3819 return num;
3820 else
3821 return num + FP0_REGNUM - 38;
3822 }
3823
3824 /* Convert a ecoff register number to a gdb REGNUM */
3825
3826 static int
3827 mips_ecoff_reg_to_regnum (int num)
3828 {
3829 if (num < 32)
3830 return num;
3831 else
3832 return num + FP0_REGNUM - 32;
3833 }
3834
3835 static struct gdbarch *
3836 mips_gdbarch_init (struct gdbarch_info info,
3837 struct gdbarch_list *arches)
3838 {
3839 static LONGEST mips_call_dummy_words[] =
3840 {0};
3841 struct gdbarch *gdbarch;
3842 struct gdbarch_tdep *tdep;
3843 int elf_flags;
3844 enum mips_abi mips_abi;
3845
3846 /* Extract the elf_flags if available */
3847 if (info.abfd != NULL
3848 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3849 elf_flags = elf_elfheader (info.abfd)->e_flags;
3850 else
3851 elf_flags = 0;
3852
3853 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3854 switch ((elf_flags & EF_MIPS_ABI))
3855 {
3856 case E_MIPS_ABI_O32:
3857 mips_abi = MIPS_ABI_O32;
3858 break;
3859 case E_MIPS_ABI_O64:
3860 mips_abi = MIPS_ABI_O64;
3861 break;
3862 case E_MIPS_ABI_EABI32:
3863 mips_abi = MIPS_ABI_EABI32;
3864 break;
3865 case E_MIPS_ABI_EABI64:
3866 mips_abi = MIPS_ABI_EABI64;
3867 break;
3868 default:
3869 if ((elf_flags & EF_MIPS_ABI2))
3870 mips_abi = MIPS_ABI_N32;
3871 else
3872 mips_abi = MIPS_ABI_UNKNOWN;
3873 break;
3874 }
3875
3876 /* Try the architecture for any hint of the corect ABI */
3877 if (mips_abi == MIPS_ABI_UNKNOWN
3878 && info.bfd_arch_info != NULL
3879 && info.bfd_arch_info->arch == bfd_arch_mips)
3880 {
3881 switch (info.bfd_arch_info->mach)
3882 {
3883 case bfd_mach_mips3900:
3884 mips_abi = MIPS_ABI_EABI32;
3885 break;
3886 case bfd_mach_mips4100:
3887 case bfd_mach_mips5000:
3888 mips_abi = MIPS_ABI_EABI64;
3889 break;
3890 }
3891 }
3892 #ifdef MIPS_DEFAULT_ABI
3893 if (mips_abi == MIPS_ABI_UNKNOWN)
3894 mips_abi = MIPS_DEFAULT_ABI;
3895 #endif
3896
3897 if (gdbarch_debug)
3898 {
3899 fprintf_unfiltered (gdb_stdlog,
3900 "mips_gdbarch_init: elf_flags = 0x%08x\n",
3901 elf_flags);
3902 fprintf_unfiltered (gdb_stdlog,
3903 "mips_gdbarch_init: mips_abi = %d\n",
3904 mips_abi);
3905 }
3906
3907 /* try to find a pre-existing architecture */
3908 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3909 arches != NULL;
3910 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3911 {
3912 /* MIPS needs to be pedantic about which ABI the object is
3913 using. */
3914 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
3915 continue;
3916 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
3917 continue;
3918 return arches->gdbarch;
3919 }
3920
3921 /* Need a new architecture. Fill in a target specific vector. */
3922 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3923 gdbarch = gdbarch_alloc (&info, tdep);
3924 tdep->elf_flags = elf_flags;
3925
3926 /* Initially set everything according to the ABI. */
3927 set_gdbarch_short_bit (gdbarch, 16);
3928 set_gdbarch_int_bit (gdbarch, 32);
3929 set_gdbarch_float_bit (gdbarch, 32);
3930 set_gdbarch_double_bit (gdbarch, 64);
3931 set_gdbarch_long_double_bit (gdbarch, 64);
3932 tdep->mips_abi = mips_abi;
3933 switch (mips_abi)
3934 {
3935 case MIPS_ABI_O32:
3936 tdep->mips_abi_string = "o32";
3937 tdep->mips_default_saved_regsize = 4;
3938 tdep->mips_default_stack_argsize = 4;
3939 tdep->mips_fp_register_double = 0;
3940 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3941 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
3942 tdep->mips_regs_have_home_p = 1;
3943 tdep->gdb_target_is_mips64 = 0;
3944 tdep->default_mask_address_p = 0;
3945 set_gdbarch_long_bit (gdbarch, 32);
3946 set_gdbarch_ptr_bit (gdbarch, 32);
3947 set_gdbarch_long_long_bit (gdbarch, 64);
3948 break;
3949 case MIPS_ABI_O64:
3950 tdep->mips_abi_string = "o64";
3951 tdep->mips_default_saved_regsize = 8;
3952 tdep->mips_default_stack_argsize = 8;
3953 tdep->mips_fp_register_double = 1;
3954 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3955 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
3956 tdep->mips_regs_have_home_p = 1;
3957 tdep->gdb_target_is_mips64 = 1;
3958 tdep->default_mask_address_p = 0;
3959 set_gdbarch_long_bit (gdbarch, 32);
3960 set_gdbarch_ptr_bit (gdbarch, 32);
3961 set_gdbarch_long_long_bit (gdbarch, 64);
3962 break;
3963 case MIPS_ABI_EABI32:
3964 tdep->mips_abi_string = "eabi32";
3965 tdep->mips_default_saved_regsize = 4;
3966 tdep->mips_default_stack_argsize = 4;
3967 tdep->mips_fp_register_double = 0;
3968 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3969 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
3970 tdep->mips_regs_have_home_p = 0;
3971 tdep->gdb_target_is_mips64 = 0;
3972 tdep->default_mask_address_p = 0;
3973 set_gdbarch_long_bit (gdbarch, 32);
3974 set_gdbarch_ptr_bit (gdbarch, 32);
3975 set_gdbarch_long_long_bit (gdbarch, 64);
3976 break;
3977 case MIPS_ABI_EABI64:
3978 tdep->mips_abi_string = "eabi64";
3979 tdep->mips_default_saved_regsize = 8;
3980 tdep->mips_default_stack_argsize = 8;
3981 tdep->mips_fp_register_double = 1;
3982 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3983 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
3984 tdep->mips_regs_have_home_p = 0;
3985 tdep->gdb_target_is_mips64 = 1;
3986 tdep->default_mask_address_p = 0;
3987 set_gdbarch_long_bit (gdbarch, 64);
3988 set_gdbarch_ptr_bit (gdbarch, 64);
3989 set_gdbarch_long_long_bit (gdbarch, 64);
3990 break;
3991 case MIPS_ABI_N32:
3992 tdep->mips_abi_string = "n32";
3993 tdep->mips_default_saved_regsize = 4;
3994 tdep->mips_default_stack_argsize = 8;
3995 tdep->mips_fp_register_double = 1;
3996 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3997 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
3998 tdep->mips_regs_have_home_p = 0;
3999 tdep->gdb_target_is_mips64 = 0;
4000 tdep->default_mask_address_p = 0;
4001 set_gdbarch_long_bit (gdbarch, 32);
4002 set_gdbarch_ptr_bit (gdbarch, 32);
4003 set_gdbarch_long_long_bit (gdbarch, 64);
4004 break;
4005 default:
4006 tdep->mips_abi_string = "default";
4007 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
4008 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
4009 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
4010 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4011 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4012 tdep->mips_regs_have_home_p = 1;
4013 tdep->gdb_target_is_mips64 = 0;
4014 tdep->default_mask_address_p = 0;
4015 set_gdbarch_long_bit (gdbarch, 32);
4016 set_gdbarch_ptr_bit (gdbarch, 32);
4017 set_gdbarch_long_long_bit (gdbarch, 64);
4018 break;
4019 }
4020
4021 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4022 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4023 comment:
4024
4025 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4026 flag in object files because to do so would make it impossible to
4027 link with libraries compiled without "-gp32". This is
4028 unnecessarily restrictive.
4029
4030 We could solve this problem by adding "-gp32" multilibs to gcc,
4031 but to set this flag before gcc is built with such multilibs will
4032 break too many systems.''
4033
4034 But even more unhelpfully, the default linker output target for
4035 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4036 for 64-bit programs - you need to change the ABI to change this,
4037 and not all gcc targets support that currently. Therefore using
4038 this flag to detect 32-bit mode would do the wrong thing given
4039 the current gcc - it would make GDB treat these 64-bit programs
4040 as 32-bit programs by default. */
4041
4042 /* enable/disable the MIPS FPU */
4043 if (!mips_fpu_type_auto)
4044 tdep->mips_fpu_type = mips_fpu_type;
4045 else if (info.bfd_arch_info != NULL
4046 && info.bfd_arch_info->arch == bfd_arch_mips)
4047 switch (info.bfd_arch_info->mach)
4048 {
4049 case bfd_mach_mips3900:
4050 case bfd_mach_mips4100:
4051 case bfd_mach_mips4111:
4052 tdep->mips_fpu_type = MIPS_FPU_NONE;
4053 break;
4054 case bfd_mach_mips4650:
4055 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4056 break;
4057 default:
4058 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4059 break;
4060 }
4061 else
4062 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4063
4064 /* MIPS version of register names. NOTE: At present the MIPS
4065 register name management is part way between the old -
4066 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4067 Further work on it is required. */
4068 set_gdbarch_register_name (gdbarch, mips_register_name);
4069 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4070 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4071 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4072 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4073 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4074 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4075
4076 /* Map debug register numbers onto internal register numbers. */
4077 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4078 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4079
4080 /* Initialize a frame */
4081 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4082
4083 /* MIPS version of CALL_DUMMY */
4084
4085 set_gdbarch_call_dummy_p (gdbarch, 1);
4086 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4087 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4088 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4089 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4090 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4091 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4092 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4093 set_gdbarch_call_dummy_length (gdbarch, 0);
4094 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4095 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4096 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4097 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4098 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4099 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4100 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4101
4102 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4103 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4104
4105 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4106 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4107 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4108 set_gdbarch_ieee_float (gdbarch, 1);
4109
4110 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4111 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4112
4113 return gdbarch;
4114 }
4115
4116 static void
4117 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4118 {
4119 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4120 if (tdep != NULL)
4121 {
4122 int ef_mips_arch;
4123 int ef_mips_32bitmode;
4124 /* determine the ISA */
4125 switch (tdep->elf_flags & EF_MIPS_ARCH)
4126 {
4127 case E_MIPS_ARCH_1:
4128 ef_mips_arch = 1;
4129 break;
4130 case E_MIPS_ARCH_2:
4131 ef_mips_arch = 2;
4132 break;
4133 case E_MIPS_ARCH_3:
4134 ef_mips_arch = 3;
4135 break;
4136 case E_MIPS_ARCH_4:
4137 ef_mips_arch = 0;
4138 break;
4139 default:
4140 break;
4141 }
4142 /* determine the size of a pointer */
4143 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4144 fprintf_unfiltered (file,
4145 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
4146 tdep->elf_flags);
4147 fprintf_unfiltered (file,
4148 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4149 ef_mips_32bitmode);
4150 fprintf_unfiltered (file,
4151 "mips_dump_tdep: ef_mips_arch = %d\n",
4152 ef_mips_arch);
4153 fprintf_unfiltered (file,
4154 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4155 tdep->mips_abi,
4156 tdep->mips_abi_string);
4157 fprintf_unfiltered (file,
4158 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4159 mips_mask_address_p (),
4160 tdep->default_mask_address_p);
4161 }
4162 fprintf_unfiltered (file,
4163 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4164 FP_REGISTER_DOUBLE);
4165 fprintf_unfiltered (file,
4166 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4167 MIPS_DEFAULT_FPU_TYPE,
4168 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4169 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4170 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4171 : "???"));
4172 fprintf_unfiltered (file,
4173 "mips_dump_tdep: MIPS_EABI = %d\n",
4174 MIPS_EABI);
4175 fprintf_unfiltered (file,
4176 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4177 MIPS_LAST_FP_ARG_REGNUM,
4178 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4179 fprintf_unfiltered (file,
4180 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4181 MIPS_FPU_TYPE,
4182 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4183 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4184 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4185 : "???"));
4186 fprintf_unfiltered (file,
4187 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4188 MIPS_DEFAULT_SAVED_REGSIZE);
4189 fprintf_unfiltered (file,
4190 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4191 FP_REGISTER_DOUBLE);
4192 fprintf_unfiltered (file,
4193 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4194 MIPS_REGS_HAVE_HOME_P);
4195 fprintf_unfiltered (file,
4196 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4197 MIPS_DEFAULT_STACK_ARGSIZE);
4198 fprintf_unfiltered (file,
4199 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4200 MIPS_STACK_ARGSIZE);
4201 fprintf_unfiltered (file,
4202 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4203 MIPS_REGSIZE);
4204 fprintf_unfiltered (file,
4205 "mips_dump_tdep: A0_REGNUM = %d\n",
4206 A0_REGNUM);
4207 fprintf_unfiltered (file,
4208 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4209 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4210 fprintf_unfiltered (file,
4211 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4212 XSTRING (ATTACH_DETACH));
4213 fprintf_unfiltered (file,
4214 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4215 BADVADDR_REGNUM);
4216 fprintf_unfiltered (file,
4217 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4218 fprintf_unfiltered (file,
4219 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4220 CAUSE_REGNUM);
4221 fprintf_unfiltered (file,
4222 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4223 CPLUS_MARKER);
4224 fprintf_unfiltered (file,
4225 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4226 DEFAULT_MIPS_TYPE);
4227 fprintf_unfiltered (file,
4228 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4229 XSTRING (DO_REGISTERS_INFO));
4230 fprintf_unfiltered (file,
4231 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4232 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4233 fprintf_unfiltered (file,
4234 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4235 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4236 fprintf_unfiltered (file,
4237 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4238 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4239 fprintf_unfiltered (file,
4240 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4241 FCRCS_REGNUM);
4242 fprintf_unfiltered (file,
4243 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4244 FCRIR_REGNUM);
4245 fprintf_unfiltered (file,
4246 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4247 FIRST_EMBED_REGNUM);
4248 fprintf_unfiltered (file,
4249 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4250 FPA0_REGNUM);
4251 fprintf_unfiltered (file,
4252 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4253 GDB_TARGET_IS_MIPS64);
4254 fprintf_unfiltered (file,
4255 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4256 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4257 fprintf_unfiltered (file,
4258 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4259 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4260 fprintf_unfiltered (file,
4261 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4262 GEN_REG_SAVE_MASK);
4263 fprintf_unfiltered (file,
4264 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4265 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4266 fprintf_unfiltered (file,
4267 "mips_dump_tdep: HI_REGNUM = %d\n",
4268 HI_REGNUM);
4269 fprintf_unfiltered (file,
4270 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4271 fprintf_unfiltered (file,
4272 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4273 fprintf_unfiltered (file,
4274 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4275 XSTRING (IGNORE_HELPER_CALL (PC)));
4276 fprintf_unfiltered (file,
4277 "mips_dump_tdep: INIT_FRAME_PC # %s\n",
4278 XSTRING (INIT_FRAME_PC (FROMLEAF, PREV)));
4279 fprintf_unfiltered (file,
4280 "mips_dump_tdep: INIT_FRAME_PC_FIRST # %s\n",
4281 XSTRING (INIT_FRAME_PC_FIRST (FROMLEAF, PREV)));
4282 fprintf_unfiltered (file,
4283 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4284 XSTRING (IN_SIGTRAMP (PC, NAME)));
4285 fprintf_unfiltered (file,
4286 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4287 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4288 fprintf_unfiltered (file,
4289 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4290 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4291 fprintf_unfiltered (file,
4292 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4293 fprintf_unfiltered (file,
4294 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4295 LAST_EMBED_REGNUM);
4296 fprintf_unfiltered (file,
4297 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4298 fprintf_unfiltered (file,
4299 "mips_dump_tdep: LO_REGNUM = %d\n",
4300 LO_REGNUM);
4301 #ifdef MACHINE_CPROC_FP_OFFSET
4302 fprintf_unfiltered (file,
4303 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4304 MACHINE_CPROC_FP_OFFSET);
4305 #endif
4306 #ifdef MACHINE_CPROC_PC_OFFSET
4307 fprintf_unfiltered (file,
4308 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4309 MACHINE_CPROC_PC_OFFSET);
4310 #endif
4311 #ifdef MACHINE_CPROC_SP_OFFSET
4312 fprintf_unfiltered (file,
4313 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4314 MACHINE_CPROC_SP_OFFSET);
4315 #endif
4316 fprintf_unfiltered (file,
4317 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4318 fprintf_unfiltered (file,
4319 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4320 fprintf_unfiltered (file,
4321 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4322 MIPS16_INSTLEN);
4323 fprintf_unfiltered (file,
4324 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4325 fprintf_unfiltered (file,
4326 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4327 fprintf_unfiltered (file,
4328 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4329 fprintf_unfiltered (file,
4330 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4331 MIPS_INSTLEN);
4332 fprintf_unfiltered (file,
4333 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4334 MIPS_LAST_ARG_REGNUM,
4335 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
4336 fprintf_unfiltered (file,
4337 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4338 MIPS_NUMREGS);
4339 fprintf_unfiltered (file,
4340 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4341 fprintf_unfiltered (file,
4342 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4343 MIPS_SAVED_REGSIZE);
4344 fprintf_unfiltered (file,
4345 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4346 fprintf_unfiltered (file,
4347 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4348 XSTRING (MSYMBOL_SIZE (MSYM)));
4349 fprintf_unfiltered (file,
4350 "mips_dump_tdep: OP_LDFPR = used?\n");
4351 fprintf_unfiltered (file,
4352 "mips_dump_tdep: OP_LDGPR = used?\n");
4353 fprintf_unfiltered (file,
4354 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4355 fprintf_unfiltered (file,
4356 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4357 fprintf_unfiltered (file,
4358 "mips_dump_tdep: PRID_REGNUM = %d\n",
4359 PRID_REGNUM);
4360 fprintf_unfiltered (file,
4361 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4362 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4363 fprintf_unfiltered (file,
4364 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4365 fprintf_unfiltered (file,
4366 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4367 fprintf_unfiltered (file,
4368 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4369 fprintf_unfiltered (file,
4370 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4371 fprintf_unfiltered (file,
4372 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4373 fprintf_unfiltered (file,
4374 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4375 fprintf_unfiltered (file,
4376 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4377 fprintf_unfiltered (file,
4378 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4379 fprintf_unfiltered (file,
4380 "mips_dump_tdep: PROC_PC_REG = function?\n");
4381 fprintf_unfiltered (file,
4382 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4383 fprintf_unfiltered (file,
4384 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4387 fprintf_unfiltered (file,
4388 "mips_dump_tdep: PS_REGNUM = %d\n",
4389 PS_REGNUM);
4390 fprintf_unfiltered (file,
4391 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4392 PUSH_FP_REGNUM);
4393 fprintf_unfiltered (file,
4394 "mips_dump_tdep: RA_REGNUM = %d\n",
4395 RA_REGNUM);
4396 fprintf_unfiltered (file,
4397 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4398 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4399 fprintf_unfiltered (file,
4400 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4401 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4402 fprintf_unfiltered (file,
4403 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4404 fprintf_unfiltered (file,
4405 "mips_dump_tdep: ROUND_DOWN = function?\n");
4406 fprintf_unfiltered (file,
4407 "mips_dump_tdep: ROUND_UP = function?\n");
4408 #ifdef SAVED_BYTES
4409 fprintf_unfiltered (file,
4410 "mips_dump_tdep: SAVED_BYTES = %d\n",
4411 SAVED_BYTES);
4412 #endif
4413 #ifdef SAVED_FP
4414 fprintf_unfiltered (file,
4415 "mips_dump_tdep: SAVED_FP = %d\n",
4416 SAVED_FP);
4417 #endif
4418 #ifdef SAVED_PC
4419 fprintf_unfiltered (file,
4420 "mips_dump_tdep: SAVED_PC = %d\n",
4421 SAVED_PC);
4422 #endif
4423 fprintf_unfiltered (file,
4424 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4425 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4426 fprintf_unfiltered (file,
4427 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4428 fprintf_unfiltered (file,
4429 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4430 SIGFRAME_BASE);
4431 fprintf_unfiltered (file,
4432 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4433 SIGFRAME_FPREGSAVE_OFF);
4434 fprintf_unfiltered (file,
4435 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4436 SIGFRAME_PC_OFF);
4437 fprintf_unfiltered (file,
4438 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4439 SIGFRAME_REGSAVE_OFF);
4440 fprintf_unfiltered (file,
4441 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4442 SIGFRAME_REG_SIZE);
4443 fprintf_unfiltered (file,
4444 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4445 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4446 fprintf_unfiltered (file,
4447 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4448 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4449 fprintf_unfiltered (file,
4450 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4451 SOFTWARE_SINGLE_STEP_P);
4452 fprintf_unfiltered (file,
4453 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4454 SOFTWARE_SINGLE_STEP_P);
4455 fprintf_unfiltered (file,
4456 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4457 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4458 #ifdef STACK_END_ADDR
4459 fprintf_unfiltered (file,
4460 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4461 STACK_END_ADDR);
4462 #endif
4463 fprintf_unfiltered (file,
4464 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4465 XSTRING (STEP_SKIPS_DELAY (PC)));
4466 fprintf_unfiltered (file,
4467 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4468 STEP_SKIPS_DELAY_P);
4469 fprintf_unfiltered (file,
4470 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4471 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4472 fprintf_unfiltered (file,
4473 "mips_dump_tdep: T9_REGNUM = %d\n",
4474 T9_REGNUM);
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4477 fprintf_unfiltered (file,
4478 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4479 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4480 fprintf_unfiltered (file,
4481 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4482 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4483 fprintf_unfiltered (file,
4484 "mips_dump_tdep: TARGET_MIPS = used?\n");
4485 fprintf_unfiltered (file,
4486 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4487 XSTRING (TM_PRINT_INSN_MACH));
4488 #ifdef TRACE_CLEAR
4489 fprintf_unfiltered (file,
4490 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4491 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4492 #endif
4493 #ifdef TRACE_FLAVOR
4494 fprintf_unfiltered (file,
4495 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4496 TRACE_FLAVOR);
4497 #endif
4498 #ifdef TRACE_FLAVOR_SIZE
4499 fprintf_unfiltered (file,
4500 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4501 TRACE_FLAVOR_SIZE);
4502 #endif
4503 #ifdef TRACE_SET
4504 fprintf_unfiltered (file,
4505 "mips_dump_tdep: TRACE_SET # %s\n",
4506 XSTRING (TRACE_SET (X,STATE)));
4507 #endif
4508 fprintf_unfiltered (file,
4509 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4510 #ifdef UNUSED_REGNUM
4511 fprintf_unfiltered (file,
4512 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4513 UNUSED_REGNUM);
4514 #endif
4515 fprintf_unfiltered (file,
4516 "mips_dump_tdep: V0_REGNUM = %d\n",
4517 V0_REGNUM);
4518 fprintf_unfiltered (file,
4519 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4520 (long) VM_MIN_ADDRESS);
4521 #ifdef VX_NUM_REGS
4522 fprintf_unfiltered (file,
4523 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4524 VX_NUM_REGS);
4525 #endif
4526 fprintf_unfiltered (file,
4527 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4528 ZERO_REGNUM);
4529 fprintf_unfiltered (file,
4530 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4531 _PROC_MAGIC_);
4532 }
4533
4534 void
4535 _initialize_mips_tdep (void)
4536 {
4537 static struct cmd_list_element *mipsfpulist = NULL;
4538 struct cmd_list_element *c;
4539
4540 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
4541 if (!tm_print_insn) /* Someone may have already set it */
4542 tm_print_insn = gdb_print_insn_mips;
4543
4544 /* Add root prefix command for all "set mips"/"show mips" commands */
4545 add_prefix_cmd ("mips", no_class, set_mips_command,
4546 "Various MIPS specific commands.",
4547 &setmipscmdlist, "set mips ", 0, &setlist);
4548
4549 add_prefix_cmd ("mips", no_class, show_mips_command,
4550 "Various MIPS specific commands.",
4551 &showmipscmdlist, "show mips ", 0, &showlist);
4552
4553 /* Allow the user to override the saved register size. */
4554 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4555 class_obscure,
4556 size_enums,
4557 &mips_saved_regsize_string, "\
4558 Set size of general purpose registers saved on the stack.\n\
4559 This option can be set to one of:\n\
4560 32 - Force GDB to treat saved GP registers as 32-bit\n\
4561 64 - Force GDB to treat saved GP registers as 64-bit\n\
4562 auto - Allow GDB to use the target's default setting or autodetect the\n\
4563 saved GP register size from information contained in the executable.\n\
4564 (default: auto)",
4565 &setmipscmdlist),
4566 &showmipscmdlist);
4567
4568 /* Allow the user to override the argument stack size. */
4569 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4570 class_obscure,
4571 size_enums,
4572 &mips_stack_argsize_string, "\
4573 Set the amount of stack space reserved for each argument.\n\
4574 This option can be set to one of:\n\
4575 32 - Force GDB to allocate 32-bit chunks per argument\n\
4576 64 - Force GDB to allocate 64-bit chunks per argument\n\
4577 auto - Allow GDB to determine the correct setting from the current\n\
4578 target and executable (default)",
4579 &setmipscmdlist),
4580 &showmipscmdlist);
4581
4582 /* Let the user turn off floating point and set the fence post for
4583 heuristic_proc_start. */
4584
4585 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4586 "Set use of MIPS floating-point coprocessor.",
4587 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4588 add_cmd ("single", class_support, set_mipsfpu_single_command,
4589 "Select single-precision MIPS floating-point coprocessor.",
4590 &mipsfpulist);
4591 add_cmd ("double", class_support, set_mipsfpu_double_command,
4592 "Select double-precision MIPS floating-point coprocessor.",
4593 &mipsfpulist);
4594 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4595 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4596 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4597 add_cmd ("none", class_support, set_mipsfpu_none_command,
4598 "Select no MIPS floating-point coprocessor.",
4599 &mipsfpulist);
4600 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4601 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4602 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4603 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4604 "Select MIPS floating-point coprocessor automatically.",
4605 &mipsfpulist);
4606 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4607 "Show current use of MIPS floating-point coprocessor target.",
4608 &showlist);
4609
4610 #if !GDB_MULTI_ARCH
4611 c = add_set_cmd ("processor", class_support, var_string_noescape,
4612 (char *) &tmp_mips_processor_type,
4613 "Set the type of MIPS processor in use.\n\
4614 Set this to be able to access processor-type-specific registers.\n\
4615 ",
4616 &setlist);
4617 c->function.cfunc = mips_set_processor_type_command;
4618 c = add_show_from_set (c, &showlist);
4619 c->function.cfunc = mips_show_processor_type_command;
4620
4621 tmp_mips_processor_type = xstrdup (DEFAULT_MIPS_TYPE);
4622 mips_set_processor_type_command (xstrdup (DEFAULT_MIPS_TYPE), 0);
4623 #endif
4624
4625 /* We really would like to have both "0" and "unlimited" work, but
4626 command.c doesn't deal with that. So make it a var_zinteger
4627 because the user can always use "999999" or some such for unlimited. */
4628 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4629 (char *) &heuristic_fence_post,
4630 "\
4631 Set the distance searched for the start of a function.\n\
4632 If you are debugging a stripped executable, GDB needs to search through the\n\
4633 program for the start of a function. This command sets the distance of the\n\
4634 search. The only need to set it is when debugging a stripped executable.",
4635 &setlist);
4636 /* We need to throw away the frame cache when we set this, since it
4637 might change our ability to get backtraces. */
4638 c->function.sfunc = reinit_frame_cache_sfunc;
4639 add_show_from_set (c, &showlist);
4640
4641 /* Allow the user to control whether the upper bits of 64-bit
4642 addresses should be zeroed. */
4643 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4644 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4645 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4646 the correct value.\n",
4647 &setmipscmdlist);
4648 add_cmd ("mask-address", no_class, show_mask_address,
4649 "Show current mask-address value", &showmipscmdlist);
4650
4651 /* Allow the user to control the size of 32 bit registers within the
4652 raw remote packet. */
4653 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4654 class_obscure,
4655 var_boolean,
4656 (char *)&mips64_transfers_32bit_regs_p, "\
4657 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4658 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4659 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
4660 64 bits for others. Use \"off\" to disable compatibility mode",
4661 &setlist),
4662 &showlist);
4663
4664 /* Debug this files internals. */
4665 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4666 &mips_debug, "Set mips debugging.\n\
4667 When non-zero, mips specific debugging is enabled.", &setdebuglist),
4668 &showdebuglist);
4669 }
4670
This page took 0.211527 seconds and 5 git commands to generate.