* gdbtypes.h (builtin_type_f_character, builtin_type_f_logical,
[deliverable/binutils-gdb.git] / gdb / mipsnbsd-tdep.c
1 /* Target-dependent code for NetBSD/mips.
2
3 Copyright (C) 2002, 2003, 2004, 2006, 2007 Free Software Foundation, Inc.
4
5 Contributed by Wasabi Systems, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "regset.h"
28 #include "target.h"
29 #include "value.h"
30 #include "osabi.h"
31
32 #include "gdb_assert.h"
33 #include "gdb_string.h"
34
35 #include "nbsd-tdep.h"
36 #include "mipsnbsd-tdep.h"
37 #include "mips-tdep.h"
38
39 #include "solib-svr4.h"
40
41 /* Shorthand for some register numbers used below. */
42 #define MIPS_PC_REGNUM MIPS_EMBED_PC_REGNUM
43 #define MIPS_FP0_REGNUM MIPS_EMBED_FP0_REGNUM
44 #define MIPS_FSR_REGNUM MIPS_EMBED_FP0_REGNUM + 32
45
46 /* Core file support. */
47
48 /* Number of registers in `struct reg' from <machine/reg.h>. */
49 #define MIPSNBSD_NUM_GREGS 38
50
51 /* Number of registers in `struct fpreg' from <machine/reg.h>. */
52 #define MIPSNBSD_NUM_FPREGS 33
53
54 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
55 in the floating-point register set REGSET to register cache
56 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
57
58 static void
59 mipsnbsd_supply_fpregset (const struct regset *regset,
60 struct regcache *regcache,
61 int regnum, const void *fpregs, size_t len)
62 {
63 size_t regsize = mips_isa_regsize (get_regcache_arch (regcache));
64 const char *regs = fpregs;
65 int i;
66
67 gdb_assert (len >= MIPSNBSD_NUM_FPREGS * regsize);
68
69 for (i = MIPS_FP0_REGNUM; i <= MIPS_FSR_REGNUM; i++)
70 {
71 if (regnum == i || regnum == -1)
72 regcache_raw_supply (regcache, i,
73 regs + (i - MIPS_FP0_REGNUM) * regsize);
74 }
75 }
76
77 /* Supply register REGNUM from the buffer specified by GREGS and LEN
78 in the general-purpose register set REGSET to register cache
79 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
80
81 static void
82 mipsnbsd_supply_gregset (const struct regset *regset,
83 struct regcache *regcache, int regnum,
84 const void *gregs, size_t len)
85 {
86 size_t regsize = mips_isa_regsize (get_regcache_arch (regcache));
87 const char *regs = gregs;
88 int i;
89
90 gdb_assert (len >= MIPSNBSD_NUM_GREGS * regsize);
91
92 for (i = 0; i <= MIPS_PC_REGNUM; i++)
93 {
94 if (regnum == i || regnum == -1)
95 regcache_raw_supply (regcache, i, regs + i * regsize);
96 }
97
98 if (len >= (MIPSNBSD_NUM_GREGS + MIPSNBSD_NUM_FPREGS) * regsize)
99 {
100 regs += MIPSNBSD_NUM_GREGS * regsize;
101 len -= MIPSNBSD_NUM_GREGS * regsize;
102 mipsnbsd_supply_fpregset (regset, regcache, regnum, regs, len);
103 }
104 }
105
106 /* NetBSD/mips register sets. */
107
108 static struct regset mipsnbsd_gregset =
109 {
110 NULL,
111 mipsnbsd_supply_gregset
112 };
113
114 static struct regset mipsnbsd_fpregset =
115 {
116 NULL,
117 mipsnbsd_supply_fpregset
118 };
119
120 /* Return the appropriate register set for the core section identified
121 by SECT_NAME and SECT_SIZE. */
122
123 static const struct regset *
124 mipsnbsd_regset_from_core_section (struct gdbarch *gdbarch,
125 const char *sect_name, size_t sect_size)
126 {
127 size_t regsize = mips_isa_regsize (gdbarch);
128
129 if (strcmp (sect_name, ".reg") == 0
130 && sect_size >= MIPSNBSD_NUM_GREGS * regsize)
131 return &mipsnbsd_gregset;
132
133 if (strcmp (sect_name, ".reg2") == 0
134 && sect_size >= MIPSNBSD_NUM_FPREGS * regsize)
135 return &mipsnbsd_fpregset;
136
137 return NULL;
138 }
139 \f
140
141 /* Conveniently, GDB uses the same register numbering as the
142 ptrace register structure used by NetBSD/mips. */
143
144 void
145 mipsnbsd_supply_reg (struct regcache *regcache, const char *regs, int regno)
146 {
147 int i;
148
149 for (i = 0; i <= PC_REGNUM; i++)
150 {
151 if (regno == i || regno == -1)
152 {
153 if (gdbarch_cannot_fetch_register (current_gdbarch, i))
154 regcache_raw_supply (regcache, i, NULL);
155 else
156 regcache_raw_supply (regcache, i,
157 regs + (i * mips_isa_regsize (current_gdbarch)));
158 }
159 }
160 }
161
162 void
163 mipsnbsd_fill_reg (const struct regcache *regcache, char *regs, int regno)
164 {
165 int i;
166
167 for (i = 0; i <= PC_REGNUM; i++)
168 if ((regno == i || regno == -1)
169 && ! gdbarch_cannot_store_register (current_gdbarch, i))
170 regcache_raw_collect (regcache, i,
171 regs + (i * mips_isa_regsize (current_gdbarch)));
172 }
173
174 void
175 mipsnbsd_supply_fpreg (struct regcache *regcache, const char *fpregs, int regno)
176 {
177 int i;
178
179 for (i = FP0_REGNUM;
180 i <= mips_regnum (current_gdbarch)->fp_implementation_revision;
181 i++)
182 {
183 if (regno == i || regno == -1)
184 {
185 if (gdbarch_cannot_fetch_register (current_gdbarch, i))
186 regcache_raw_supply (regcache, i, NULL);
187 else
188 regcache_raw_supply (regcache, i,
189 fpregs + ((i - FP0_REGNUM) * mips_isa_regsize (current_gdbarch)));
190 }
191 }
192 }
193
194 void
195 mipsnbsd_fill_fpreg (const struct regcache *regcache, char *fpregs, int regno)
196 {
197 int i;
198
199 for (i = FP0_REGNUM; i <= mips_regnum (current_gdbarch)->fp_control_status;
200 i++)
201 if ((regno == i || regno == -1)
202 && ! gdbarch_cannot_store_register (current_gdbarch, i))
203 regcache_raw_collect (regcache, i,
204 fpregs + ((i - FP0_REGNUM) * mips_isa_regsize (current_gdbarch)));
205 }
206
207 /* Under NetBSD/mips, signal handler invocations can be identified by the
208 designated code sequence that is used to return from a signal handler.
209 In particular, the return address of a signal handler points to the
210 following code sequence:
211
212 addu a0, sp, 16
213 li v0, 295 # __sigreturn14
214 syscall
215
216 Each instruction has a unique encoding, so we simply attempt to match
217 the instruction the PC is pointing to with any of the above instructions.
218 If there is a hit, we know the offset to the start of the designated
219 sequence and can then check whether we really are executing in the
220 signal trampoline. If not, -1 is returned, otherwise the offset from the
221 start of the return sequence is returned. */
222
223 #define RETCODE_NWORDS 3
224 #define RETCODE_SIZE (RETCODE_NWORDS * 4)
225
226 static const unsigned char sigtramp_retcode_mipsel[RETCODE_SIZE] =
227 {
228 0x10, 0x00, 0xa4, 0x27, /* addu a0, sp, 16 */
229 0x27, 0x01, 0x02, 0x24, /* li v0, 295 */
230 0x0c, 0x00, 0x00, 0x00, /* syscall */
231 };
232
233 static const unsigned char sigtramp_retcode_mipseb[RETCODE_SIZE] =
234 {
235 0x27, 0xa4, 0x00, 0x10, /* addu a0, sp, 16 */
236 0x24, 0x02, 0x01, 0x27, /* li v0, 295 */
237 0x00, 0x00, 0x00, 0x0c, /* syscall */
238 };
239
240 static LONGEST
241 mipsnbsd_sigtramp_offset (struct frame_info *next_frame)
242 {
243 CORE_ADDR pc = frame_pc_unwind (next_frame);
244 const char *retcode = gdbarch_byte_order (current_gdbarch)
245 == BFD_ENDIAN_BIG ? sigtramp_retcode_mipseb :
246 sigtramp_retcode_mipsel;
247 unsigned char ret[RETCODE_SIZE], w[4];
248 LONGEST off;
249 int i;
250
251 if (!safe_frame_unwind_memory (next_frame, pc, w, sizeof (w)))
252 return -1;
253
254 for (i = 0; i < RETCODE_NWORDS; i++)
255 {
256 if (memcmp (w, retcode + (i * 4), 4) == 0)
257 break;
258 }
259 if (i == RETCODE_NWORDS)
260 return -1;
261
262 off = i * 4;
263 pc -= off;
264
265 if (!safe_frame_unwind_memory (next_frame, pc, ret, sizeof (ret)))
266 return -1;
267
268 if (memcmp (ret, retcode, RETCODE_SIZE) == 0)
269 return off;
270
271 return -1;
272 }
273
274 /* Figure out where the longjmp will land. We expect that we have
275 just entered longjmp and haven't yet setup the stack frame, so the
276 args are still in the argument regs. MIPS_A0_REGNUM points at the
277 jmp_buf structure from which we extract the PC that we will land
278 at. The PC is copied into *pc. This routine returns true on
279 success. */
280
281 #define NBSD_MIPS_JB_PC (2 * 4)
282 #define NBSD_MIPS_JB_ELEMENT_SIZE mips_isa_regsize (current_gdbarch)
283 #define NBSD_MIPS_JB_OFFSET (NBSD_MIPS_JB_PC * \
284 NBSD_MIPS_JB_ELEMENT_SIZE)
285
286 static int
287 mipsnbsd_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
288 {
289 CORE_ADDR jb_addr;
290 char *buf;
291
292 buf = alloca (NBSD_MIPS_JB_ELEMENT_SIZE);
293
294 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
295
296 if (target_read_memory (jb_addr + NBSD_MIPS_JB_OFFSET, buf,
297 NBSD_MIPS_JB_ELEMENT_SIZE))
298 return 0;
299
300 *pc = extract_unsigned_integer (buf, NBSD_MIPS_JB_ELEMENT_SIZE);
301
302 return 1;
303 }
304
305 static int
306 mipsnbsd_cannot_fetch_register (int regno)
307 {
308 return (regno == MIPS_ZERO_REGNUM
309 || regno == mips_regnum (current_gdbarch)->fp_implementation_revision);
310 }
311
312 static int
313 mipsnbsd_cannot_store_register (int regno)
314 {
315 return (regno == MIPS_ZERO_REGNUM
316 || regno == mips_regnum (current_gdbarch)->fp_implementation_revision);
317 }
318
319 /* Shared library support. */
320
321 /* NetBSD/mips uses a slightly different `struct link_map' than the
322 other NetBSD platforms. */
323
324 static struct link_map_offsets *
325 mipsnbsd_ilp32_fetch_link_map_offsets (void)
326 {
327 static struct link_map_offsets lmo;
328 static struct link_map_offsets *lmp = NULL;
329
330 if (lmp == NULL)
331 {
332 lmp = &lmo;
333
334 lmo.r_version_offset = 0;
335 lmo.r_version_size = 4;
336 lmo.r_map_offset = 4;
337 lmo.r_ldsomap_offset = -1;
338
339 /* Everything we need is in the first 24 bytes. */
340 lmo.link_map_size = 24;
341 lmo.l_addr_offset = 4;
342 lmo.l_name_offset = 8;
343 lmo.l_ld_offset = 12;
344 lmo.l_next_offset = 16;
345 lmo.l_prev_offset = 20;
346 }
347
348 return lmp;
349 }
350
351 static struct link_map_offsets *
352 mipsnbsd_lp64_fetch_link_map_offsets (void)
353 {
354 static struct link_map_offsets lmo;
355 static struct link_map_offsets *lmp = NULL;
356
357 if (lmp == NULL)
358 {
359 lmp = &lmo;
360
361 lmo.r_version_offset = 0;
362 lmo.r_version_size = 4;
363 lmo.r_map_offset = 8;
364 lmo.r_ldsomap_offset = -1;
365
366 /* Everything we need is in the first 40 bytes. */
367 lmo.link_map_size = 48;
368 lmo.l_addr_offset = 0;
369 lmo.l_name_offset = 16;
370 lmo.l_ld_offset = 24;
371 lmo.l_next_offset = 32;
372 lmo.l_prev_offset = 40;
373 }
374
375 return lmp;
376 }
377 \f
378
379 static void
380 mipsnbsd_init_abi (struct gdbarch_info info,
381 struct gdbarch *gdbarch)
382 {
383 set_gdbarch_regset_from_core_section
384 (gdbarch, mipsnbsd_regset_from_core_section);
385
386 set_gdbarch_get_longjmp_target (gdbarch, mipsnbsd_get_longjmp_target);
387
388 set_gdbarch_cannot_fetch_register (gdbarch, mipsnbsd_cannot_fetch_register);
389 set_gdbarch_cannot_store_register (gdbarch, mipsnbsd_cannot_store_register);
390
391 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
392
393 /* NetBSD/mips has SVR4-style shared libraries. */
394 set_solib_svr4_fetch_link_map_offsets
395 (gdbarch, (gdbarch_ptr_bit (gdbarch) == 32 ?
396 mipsnbsd_ilp32_fetch_link_map_offsets :
397 mipsnbsd_lp64_fetch_link_map_offsets));
398 }
399 \f
400
401 static enum gdb_osabi
402 mipsnbsd_core_osabi_sniffer (bfd *abfd)
403 {
404 if (strcmp (bfd_get_target (abfd), "netbsd-core") == 0)
405 return GDB_OSABI_NETBSD_ELF;
406
407 return GDB_OSABI_UNKNOWN;
408 }
409
410 void
411 _initialize_mipsnbsd_tdep (void)
412 {
413 gdbarch_register_osabi (bfd_arch_mips, 0, GDB_OSABI_NETBSD_ELF,
414 mipsnbsd_init_abi);
415 }
This page took 0.038599 seconds and 4 git commands to generate.