Fix for PR gdb/209, PR gdb/156:
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "obstack.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34
35 #define D0_REGNUM 0
36 #define D2_REGNUM 2
37 #define D3_REGNUM 3
38 #define A0_REGNUM 4
39 #define A2_REGNUM 6
40 #define A3_REGNUM 7
41 #define MDR_REGNUM 10
42 #define PSW_REGNUM 11
43 #define LIR_REGNUM 12
44 #define LAR_REGNUM 13
45 #define MDRQ_REGNUM 14
46 #define E0_REGNUM 15
47 #define MCRH_REGNUM 26
48 #define MCRL_REGNUM 27
49 #define MCVF_REGNUM 28
50
51 enum movm_register_bits {
52 movm_exother_bit = 0x01,
53 movm_exreg1_bit = 0x02,
54 movm_exreg0_bit = 0x04,
55 movm_other_bit = 0x08,
56 movm_a3_bit = 0x10,
57 movm_a2_bit = 0x20,
58 movm_d3_bit = 0x40,
59 movm_d2_bit = 0x80
60 };
61
62 extern void _initialize_mn10300_tdep (void);
63 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
64 CORE_ADDR pc);
65
66 /* mn10300 private data */
67 struct gdbarch_tdep
68 {
69 int am33_mode;
70 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
71 };
72
73 /* Additional info used by the frame */
74
75 struct frame_extra_info
76 {
77 int status;
78 int stack_size;
79 };
80
81
82 static char *
83 register_name (int reg, char **regs, long sizeof_regs)
84 {
85 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
86 return NULL;
87 else
88 return regs[reg];
89 }
90
91 static char *
92 mn10300_generic_register_name (int reg)
93 {
94 static char *regs[] =
95 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
96 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
97 "", "", "", "", "", "", "", "",
98 "", "", "", "", "", "", "", "fp"
99 };
100 return register_name (reg, regs, sizeof regs);
101 }
102
103
104 static char *
105 am33_register_name (int reg)
106 {
107 static char *regs[] =
108 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
109 "sp", "pc", "mdr", "psw", "lir", "lar", "",
110 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
111 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
112 };
113 return register_name (reg, regs, sizeof regs);
114 }
115
116 static CORE_ADDR
117 mn10300_saved_pc_after_call (struct frame_info *fi)
118 {
119 return read_memory_integer (read_register (SP_REGNUM), 4);
120 }
121
122 static void
123 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
124 {
125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
126 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
127 else
128 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
129 }
130
131 static CORE_ADDR
132 mn10300_extract_struct_value_address (char *regbuf)
133 {
134 return extract_address (regbuf + REGISTER_BYTE (4),
135 REGISTER_RAW_SIZE (4));
136 }
137
138 static void
139 mn10300_store_return_value (struct type *type, char *valbuf)
140 {
141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
142 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
143 else
144 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
145 }
146
147 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
148 static struct frame_info *
149 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
150 {
151 static struct frame_info *dummy = NULL;
152 if (dummy == NULL)
153 {
154 dummy = xmalloc (sizeof (struct frame_info));
155 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
156 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
157 }
158 dummy->next = NULL;
159 dummy->prev = NULL;
160 dummy->pc = pc;
161 dummy->frame = frame;
162 dummy->extra_info->status = 0;
163 dummy->extra_info->stack_size = 0;
164 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
165 mn10300_analyze_prologue (dummy, 0);
166 return dummy;
167 }
168
169 /* Values for frame_info.status */
170
171 #define MY_FRAME_IN_SP 0x1
172 #define MY_FRAME_IN_FP 0x2
173 #define NO_MORE_FRAMES 0x4
174
175
176 /* Should call_function allocate stack space for a struct return? */
177 static int
178 mn10300_use_struct_convention (int gcc_p, struct type *type)
179 {
180 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
181 }
182
183 /* The breakpoint instruction must be the same size as the smallest
184 instruction in the instruction set.
185
186 The Matsushita mn10x00 processors have single byte instructions
187 so we need a single byte breakpoint. Matsushita hasn't defined
188 one, so we defined it ourselves. */
189
190 static unsigned char *
191 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
192 {
193 static char breakpoint[] =
194 {0xff};
195 *bp_size = 1;
196 return breakpoint;
197 }
198
199
200 /* Fix fi->frame if it's bogus at this point. This is a helper
201 function for mn10300_analyze_prologue. */
202
203 static void
204 fix_frame_pointer (struct frame_info *fi, int stack_size)
205 {
206 if (fi && fi->next == NULL)
207 {
208 if (fi->extra_info->status & MY_FRAME_IN_SP)
209 fi->frame = read_sp () - stack_size;
210 else if (fi->extra_info->status & MY_FRAME_IN_FP)
211 fi->frame = read_register (A3_REGNUM);
212 }
213 }
214
215
216 /* Set offsets of registers saved by movm instruction.
217 This is a helper function for mn10300_analyze_prologue. */
218
219 static void
220 set_movm_offsets (struct frame_info *fi, int movm_args)
221 {
222 int offset = 0;
223
224 if (fi == NULL || movm_args == 0)
225 return;
226
227 if (movm_args & movm_other_bit)
228 {
229 /* The `other' bit leaves a blank area of four bytes at the
230 beginning of its block of saved registers, making it 32 bytes
231 long in total. */
232 fi->saved_regs[LAR_REGNUM] = fi->frame + offset + 4;
233 fi->saved_regs[LIR_REGNUM] = fi->frame + offset + 8;
234 fi->saved_regs[MDR_REGNUM] = fi->frame + offset + 12;
235 fi->saved_regs[A0_REGNUM + 1] = fi->frame + offset + 16;
236 fi->saved_regs[A0_REGNUM] = fi->frame + offset + 20;
237 fi->saved_regs[D0_REGNUM + 1] = fi->frame + offset + 24;
238 fi->saved_regs[D0_REGNUM] = fi->frame + offset + 28;
239 offset += 32;
240 }
241 if (movm_args & movm_a3_bit)
242 {
243 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
244 offset += 4;
245 }
246 if (movm_args & movm_a2_bit)
247 {
248 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
249 offset += 4;
250 }
251 if (movm_args & movm_d3_bit)
252 {
253 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
254 offset += 4;
255 }
256 if (movm_args & movm_d2_bit)
257 {
258 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
259 offset += 4;
260 }
261 if (AM33_MODE)
262 {
263 if (movm_args & movm_exother_bit)
264 {
265 fi->saved_regs[MCVF_REGNUM] = fi->frame + offset;
266 fi->saved_regs[MCRL_REGNUM] = fi->frame + offset + 4;
267 fi->saved_regs[MCRH_REGNUM] = fi->frame + offset + 8;
268 fi->saved_regs[MDRQ_REGNUM] = fi->frame + offset + 12;
269 fi->saved_regs[E0_REGNUM + 1] = fi->frame + offset + 16;
270 fi->saved_regs[E0_REGNUM + 0] = fi->frame + offset + 20;
271 offset += 24;
272 }
273 if (movm_args & movm_exreg1_bit)
274 {
275 fi->saved_regs[E0_REGNUM + 7] = fi->frame + offset;
276 fi->saved_regs[E0_REGNUM + 6] = fi->frame + offset + 4;
277 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset + 8;
278 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 12;
279 offset += 16;
280 }
281 if (movm_args & movm_exreg0_bit)
282 {
283 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset;
284 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 4;
285 offset += 8;
286 }
287 }
288 }
289
290
291 /* The main purpose of this file is dealing with prologues to extract
292 information about stack frames and saved registers.
293
294 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
295 function is pretty readable, and has a nice explanation of how the
296 prologue is generated. The prologues generated by that code will
297 have the following form:
298
299 + If this is an old-style varargs function, then its arguments
300 need to be flushed back to the stack:
301
302 mov d0,(4,sp)
303 mov d1,(4,sp)
304
305 + If we use any of the callee-saved registers, save them now.
306
307 movm [some callee-saved registers],(sp)
308
309 + If we have any floating-point registers to save:
310
311 - Decrement the stack pointer to reserve space for the registers.
312 If the function doesn't need a frame pointer, we may combine
313 this with the adjustment that reserves space for the frame.
314
315 add -SIZE, sp
316
317 - Save the floating-point registers. We have two possible
318 strategies:
319
320 . Save them at fixed offset from the SP:
321
322 fmov fsN,(OFFSETN,sp)
323 fmov fsM,(OFFSETM,sp)
324 ...
325
326 . Or, set a0 to the start of the save area, and then use
327 post-increment addressing to save the FP registers.
328
329 mov sp, a0
330 add SIZE, a0
331 fmov fsN,(a0+)
332 fmov fsM,(a0+)
333 ...
334
335 + If the function needs a frame pointer, we set it here.
336
337 mov sp, a3
338
339 + Now we reserve space for the stack frame proper. This could be
340 merged into the `add -SIZE, sp' instruction for FP saves up
341 above, unless we needed to set the frame pointer in the previous
342 step, or the frame is so large that allocating the whole thing at
343 once would put the FP register save slots out of reach of the
344 addressing mode (128 bytes).
345
346 add -SIZE, sp
347
348 One day we might keep the stack pointer constant, that won't
349 change the code for prologues, but it will make the frame
350 pointerless case much more common. */
351
352 /* Analyze the prologue to determine where registers are saved,
353 the end of the prologue, etc etc. Return the end of the prologue
354 scanned.
355
356 We store into FI (if non-null) several tidbits of information:
357
358 * stack_size -- size of this stack frame. Note that if we stop in
359 certain parts of the prologue/epilogue we may claim the size of the
360 current frame is zero. This happens when the current frame has
361 not been allocated yet or has already been deallocated.
362
363 * fsr -- Addresses of registers saved in the stack by this frame.
364
365 * status -- A (relatively) generic status indicator. It's a bitmask
366 with the following bits:
367
368 MY_FRAME_IN_SP: The base of the current frame is actually in
369 the stack pointer. This can happen for frame pointerless
370 functions, or cases where we're stopped in the prologue/epilogue
371 itself. For these cases mn10300_analyze_prologue will need up
372 update fi->frame before returning or analyzing the register
373 save instructions.
374
375 MY_FRAME_IN_FP: The base of the current frame is in the
376 frame pointer register ($a3).
377
378 NO_MORE_FRAMES: Set this if the current frame is "start" or
379 if the first instruction looks like mov <imm>,sp. This tells
380 frame chain to not bother trying to unwind past this frame. */
381
382 static CORE_ADDR
383 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
384 {
385 CORE_ADDR func_addr, func_end, addr, stop;
386 CORE_ADDR stack_size;
387 int imm_size;
388 unsigned char buf[4];
389 int status, movm_args = 0;
390 char *name;
391
392 /* Use the PC in the frame if it's provided to look up the
393 start of this function. */
394 pc = (fi ? fi->pc : pc);
395
396 /* Find the start of this function. */
397 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
398
399 /* Do nothing if we couldn't find the start of this function or if we're
400 stopped at the first instruction in the prologue. */
401 if (status == 0)
402 {
403 return pc;
404 }
405
406 /* If we're in start, then give up. */
407 if (strcmp (name, "start") == 0)
408 {
409 if (fi != NULL)
410 fi->extra_info->status = NO_MORE_FRAMES;
411 return pc;
412 }
413
414 /* At the start of a function our frame is in the stack pointer. */
415 if (fi)
416 fi->extra_info->status = MY_FRAME_IN_SP;
417
418 /* Get the next two bytes into buf, we need two because rets is a two
419 byte insn and the first isn't enough to uniquely identify it. */
420 status = read_memory_nobpt (pc, buf, 2);
421 if (status != 0)
422 return pc;
423
424 /* If we're physically on an "rets" instruction, then our frame has
425 already been deallocated. Note this can also be true for retf
426 and ret if they specify a size of zero.
427
428 In this case fi->frame is bogus, we need to fix it. */
429 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
430 {
431 if (fi->next == NULL)
432 fi->frame = read_sp ();
433 return fi->pc;
434 }
435
436 /* Similarly if we're stopped on the first insn of a prologue as our
437 frame hasn't been allocated yet. */
438 if (fi && fi->pc == func_addr)
439 {
440 if (fi->next == NULL)
441 fi->frame = read_sp ();
442 return fi->pc;
443 }
444
445 /* Figure out where to stop scanning. */
446 stop = fi ? fi->pc : func_end;
447
448 /* Don't walk off the end of the function. */
449 stop = stop > func_end ? func_end : stop;
450
451 /* Start scanning on the first instruction of this function. */
452 addr = func_addr;
453
454 /* Suck in two bytes. */
455 status = read_memory_nobpt (addr, buf, 2);
456 if (status != 0)
457 {
458 fix_frame_pointer (fi, 0);
459 return addr;
460 }
461
462 /* First see if this insn sets the stack pointer from a register; if
463 so, it's probably the initialization of the stack pointer in _start,
464 so mark this as the bottom-most frame. */
465 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
466 {
467 if (fi)
468 fi->extra_info->status = NO_MORE_FRAMES;
469 return addr;
470 }
471
472 /* Now look for movm [regs],sp, which saves the callee saved registers.
473
474 At this time we don't know if fi->frame is valid, so we only note
475 that we encountered a movm instruction. Later, we'll set the entries
476 in fsr.regs as needed. */
477 if (buf[0] == 0xcf)
478 {
479 /* Extract the register list for the movm instruction. */
480 status = read_memory_nobpt (addr + 1, buf, 1);
481 movm_args = *buf;
482
483 addr += 2;
484
485 /* Quit now if we're beyond the stop point. */
486 if (addr >= stop)
487 {
488 /* Fix fi->frame since it's bogus at this point. */
489 if (fi && fi->next == NULL)
490 fi->frame = read_sp ();
491
492 /* Note if/where callee saved registers were saved. */
493 set_movm_offsets (fi, movm_args);
494 return addr;
495 }
496
497 /* Get the next two bytes so the prologue scan can continue. */
498 status = read_memory_nobpt (addr, buf, 2);
499 if (status != 0)
500 {
501 /* Fix fi->frame since it's bogus at this point. */
502 if (fi && fi->next == NULL)
503 fi->frame = read_sp ();
504
505 /* Note if/where callee saved registers were saved. */
506 set_movm_offsets (fi, movm_args);
507 return addr;
508 }
509 }
510
511 /* Now see if we set up a frame pointer via "mov sp,a3" */
512 if (buf[0] == 0x3f)
513 {
514 addr += 1;
515
516 /* The frame pointer is now valid. */
517 if (fi)
518 {
519 fi->extra_info->status |= MY_FRAME_IN_FP;
520 fi->extra_info->status &= ~MY_FRAME_IN_SP;
521 }
522
523 /* Quit now if we're beyond the stop point. */
524 if (addr >= stop)
525 {
526 /* Fix fi->frame if it's bogus at this point. */
527 fix_frame_pointer (fi, 0);
528
529 /* Note if/where callee saved registers were saved. */
530 set_movm_offsets (fi, movm_args);
531 return addr;
532 }
533
534 /* Get two more bytes so scanning can continue. */
535 status = read_memory_nobpt (addr, buf, 2);
536 if (status != 0)
537 {
538 /* Fix fi->frame if it's bogus at this point. */
539 fix_frame_pointer (fi, 0);
540
541 /* Note if/where callee saved registers were saved. */
542 set_movm_offsets (fi, movm_args);
543 return addr;
544 }
545 }
546
547 /* Next we should allocate the local frame. No more prologue insns
548 are found after allocating the local frame.
549
550 Search for add imm8,sp (0xf8feXX)
551 or add imm16,sp (0xfafeXXXX)
552 or add imm32,sp (0xfcfeXXXXXXXX).
553
554 If none of the above was found, then this prologue has no
555 additional stack. */
556
557 status = read_memory_nobpt (addr, buf, 2);
558 if (status != 0)
559 {
560 /* Fix fi->frame if it's bogus at this point. */
561 fix_frame_pointer (fi, 0);
562
563 /* Note if/where callee saved registers were saved. */
564 set_movm_offsets (fi, movm_args);
565 return addr;
566 }
567
568 imm_size = 0;
569 if (buf[0] == 0xf8 && buf[1] == 0xfe)
570 imm_size = 1;
571 else if (buf[0] == 0xfa && buf[1] == 0xfe)
572 imm_size = 2;
573 else if (buf[0] == 0xfc && buf[1] == 0xfe)
574 imm_size = 4;
575
576 if (imm_size != 0)
577 {
578 /* Suck in imm_size more bytes, they'll hold the size of the
579 current frame. */
580 status = read_memory_nobpt (addr + 2, buf, imm_size);
581 if (status != 0)
582 {
583 /* Fix fi->frame if it's bogus at this point. */
584 fix_frame_pointer (fi, 0);
585
586 /* Note if/where callee saved registers were saved. */
587 set_movm_offsets (fi, movm_args);
588 return addr;
589 }
590
591 /* Note the size of the stack in the frame info structure. */
592 stack_size = extract_signed_integer (buf, imm_size);
593 if (fi)
594 fi->extra_info->stack_size = stack_size;
595
596 /* We just consumed 2 + imm_size bytes. */
597 addr += 2 + imm_size;
598
599 /* No more prologue insns follow, so begin preparation to return. */
600 /* Fix fi->frame if it's bogus at this point. */
601 fix_frame_pointer (fi, stack_size);
602
603 /* Note if/where callee saved registers were saved. */
604 set_movm_offsets (fi, movm_args);
605 return addr;
606 }
607
608 /* We never found an insn which allocates local stack space, regardless
609 this is the end of the prologue. */
610 /* Fix fi->frame if it's bogus at this point. */
611 fix_frame_pointer (fi, 0);
612
613 /* Note if/where callee saved registers were saved. */
614 set_movm_offsets (fi, movm_args);
615 return addr;
616 }
617
618
619 /* Function: saved_regs_size
620 Return the size in bytes of the register save area, based on the
621 saved_regs array in FI. */
622 static int
623 saved_regs_size (struct frame_info *fi)
624 {
625 int adjust = 0;
626 int i;
627
628 /* Reserve four bytes for every register saved. */
629 for (i = 0; i < NUM_REGS; i++)
630 if (fi->saved_regs[i])
631 adjust += 4;
632
633 /* If we saved LIR, then it's most likely we used a `movm'
634 instruction with the `other' bit set, in which case the SP is
635 decremented by an extra four bytes, "to simplify calculation
636 of the transfer area", according to the processor manual. */
637 if (fi->saved_regs[LIR_REGNUM])
638 adjust += 4;
639
640 return adjust;
641 }
642
643
644 /* Function: frame_chain
645 Figure out and return the caller's frame pointer given current
646 frame_info struct.
647
648 We don't handle dummy frames yet but we would probably just return the
649 stack pointer that was in use at the time the function call was made? */
650
651 static CORE_ADDR
652 mn10300_frame_chain (struct frame_info *fi)
653 {
654 struct frame_info *dummy;
655 /* Walk through the prologue to determine the stack size,
656 location of saved registers, end of the prologue, etc. */
657 if (fi->extra_info->status == 0)
658 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
659
660 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
661 if (fi->extra_info->status & NO_MORE_FRAMES)
662 return 0;
663
664 /* Now that we've analyzed our prologue, determine the frame
665 pointer for our caller.
666
667 If our caller has a frame pointer, then we need to
668 find the entry value of $a3 to our function.
669
670 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
671 location pointed to by fsr.regs[A3_REGNUM].
672
673 Else it's still in $a3.
674
675 If our caller does not have a frame pointer, then his
676 frame base is fi->frame + -caller's stack size. */
677
678 /* The easiest way to get that info is to analyze our caller's frame.
679 So we set up a dummy frame and call mn10300_analyze_prologue to
680 find stuff for us. */
681 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
682
683 if (dummy->extra_info->status & MY_FRAME_IN_FP)
684 {
685 /* Our caller has a frame pointer. So find the frame in $a3 or
686 in the stack. */
687 if (fi->saved_regs[A3_REGNUM])
688 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
689 else
690 return read_register (A3_REGNUM);
691 }
692 else
693 {
694 int adjust = saved_regs_size (fi);
695
696 /* Our caller does not have a frame pointer. So his frame starts
697 at the base of our frame (fi->frame) + register save space
698 + <his size>. */
699 return fi->frame + adjust + -dummy->extra_info->stack_size;
700 }
701 }
702
703 /* Function: skip_prologue
704 Return the address of the first inst past the prologue of the function. */
705
706 static CORE_ADDR
707 mn10300_skip_prologue (CORE_ADDR pc)
708 {
709 /* We used to check the debug symbols, but that can lose if
710 we have a null prologue. */
711 return mn10300_analyze_prologue (NULL, pc);
712 }
713
714 /* generic_pop_current_frame calls this function if the current
715 frame isn't a dummy frame. */
716 static void
717 mn10300_pop_frame_regular (struct frame_info *frame)
718 {
719 int regnum;
720
721 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
722
723 /* Restore any saved registers. */
724 for (regnum = 0; regnum < NUM_REGS; regnum++)
725 if (frame->saved_regs[regnum] != 0)
726 {
727 ULONGEST value;
728
729 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
730 REGISTER_RAW_SIZE (regnum));
731 write_register (regnum, value);
732 }
733
734 /* Actually cut back the stack. */
735 write_register (SP_REGNUM, FRAME_FP (frame));
736
737 /* Don't we need to set the PC?!? XXX FIXME. */
738 }
739
740 /* Function: pop_frame
741 This routine gets called when either the user uses the `return'
742 command, or the call dummy breakpoint gets hit. */
743 static void
744 mn10300_pop_frame (void)
745 {
746 /* This function checks for and handles generic dummy frames, and
747 calls back to our function for ordinary frames. */
748 generic_pop_current_frame (mn10300_pop_frame_regular);
749
750 /* Throw away any cached frame information. */
751 flush_cached_frames ();
752 }
753
754 /* Function: push_arguments
755 Setup arguments for a call to the target. Arguments go in
756 order on the stack. */
757
758 static CORE_ADDR
759 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
760 int struct_return, CORE_ADDR struct_addr)
761 {
762 int argnum = 0;
763 int len = 0;
764 int stack_offset = 0;
765 int regsused = struct_return ? 1 : 0;
766
767 /* This should be a nop, but align the stack just in case something
768 went wrong. Stacks are four byte aligned on the mn10300. */
769 sp &= ~3;
770
771 /* Now make space on the stack for the args.
772
773 XXX This doesn't appear to handle pass-by-invisible reference
774 arguments. */
775 for (argnum = 0; argnum < nargs; argnum++)
776 {
777 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
778
779 while (regsused < 2 && arg_length > 0)
780 {
781 regsused++;
782 arg_length -= 4;
783 }
784 len += arg_length;
785 }
786
787 /* Allocate stack space. */
788 sp -= len;
789
790 regsused = struct_return ? 1 : 0;
791 /* Push all arguments onto the stack. */
792 for (argnum = 0; argnum < nargs; argnum++)
793 {
794 int len;
795 char *val;
796
797 /* XXX Check this. What about UNIONS? */
798 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
799 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
800 {
801 /* XXX Wrong, we want a pointer to this argument. */
802 len = TYPE_LENGTH (VALUE_TYPE (*args));
803 val = (char *) VALUE_CONTENTS (*args);
804 }
805 else
806 {
807 len = TYPE_LENGTH (VALUE_TYPE (*args));
808 val = (char *) VALUE_CONTENTS (*args);
809 }
810
811 while (regsused < 2 && len > 0)
812 {
813 write_register (regsused, extract_unsigned_integer (val, 4));
814 val += 4;
815 len -= 4;
816 regsused++;
817 }
818
819 while (len > 0)
820 {
821 write_memory (sp + stack_offset, val, 4);
822 len -= 4;
823 val += 4;
824 stack_offset += 4;
825 }
826
827 args++;
828 }
829
830 /* Make space for the flushback area. */
831 sp -= 8;
832 return sp;
833 }
834
835 /* Function: push_return_address (pc)
836 Set up the return address for the inferior function call.
837 Needed for targets where we don't actually execute a JSR/BSR instruction */
838
839 static CORE_ADDR
840 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
841 {
842 unsigned char buf[4];
843
844 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
845 write_memory (sp - 4, buf, 4);
846 return sp - 4;
847 }
848
849 /* Function: store_struct_return (addr,sp)
850 Store the structure value return address for an inferior function
851 call. */
852
853 static void
854 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
855 {
856 /* The structure return address is passed as the first argument. */
857 write_register (0, addr);
858 }
859
860 /* Function: frame_saved_pc
861 Find the caller of this frame. We do this by seeing if RP_REGNUM
862 is saved in the stack anywhere, otherwise we get it from the
863 registers. If the inner frame is a dummy frame, return its PC
864 instead of RP, because that's where "caller" of the dummy-frame
865 will be found. */
866
867 static CORE_ADDR
868 mn10300_frame_saved_pc (struct frame_info *fi)
869 {
870 int adjust = saved_regs_size (fi);
871
872 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
873 }
874
875 /* Function: mn10300_init_extra_frame_info
876 Setup the frame's frame pointer, pc, and frame addresses for saved
877 registers. Most of the work is done in mn10300_analyze_prologue().
878
879 Note that when we are called for the last frame (currently active frame),
880 that fi->pc and fi->frame will already be setup. However, fi->frame will
881 be valid only if this routine uses FP. For previous frames, fi-frame will
882 always be correct. mn10300_analyze_prologue will fix fi->frame if
883 it's not valid.
884
885 We can be called with the PC in the call dummy under two circumstances.
886 First, during normal backtracing, second, while figuring out the frame
887 pointer just prior to calling the target function (see run_stack_dummy). */
888
889 static void
890 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
891 {
892 if (fi->next)
893 fi->pc = FRAME_SAVED_PC (fi->next);
894
895 frame_saved_regs_zalloc (fi);
896 fi->extra_info = (struct frame_extra_info *)
897 frame_obstack_alloc (sizeof (struct frame_extra_info));
898
899 fi->extra_info->status = 0;
900 fi->extra_info->stack_size = 0;
901
902 mn10300_analyze_prologue (fi, 0);
903 }
904
905
906 /* This function's job is handled by init_extra_frame_info. */
907 static void
908 mn10300_frame_init_saved_regs (struct frame_info *frame)
909 {
910 }
911
912
913 /* Function: mn10300_virtual_frame_pointer
914 Return the register that the function uses for a frame pointer,
915 plus any necessary offset to be applied to the register before
916 any frame pointer offsets. */
917
918 static void
919 mn10300_virtual_frame_pointer (CORE_ADDR pc,
920 int *reg,
921 LONGEST *offset)
922 {
923 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
924 /* Set up a dummy frame_info, Analyze the prolog and fill in the
925 extra info. */
926 /* Results will tell us which type of frame it uses. */
927 if (dummy->extra_info->status & MY_FRAME_IN_SP)
928 {
929 *reg = SP_REGNUM;
930 *offset = -(dummy->extra_info->stack_size);
931 }
932 else
933 {
934 *reg = A3_REGNUM;
935 *offset = 0;
936 }
937 }
938
939 static int
940 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
941 {
942 return (TYPE_LENGTH (type) > 8);
943 }
944
945 static struct type *
946 mn10300_register_virtual_type (int reg)
947 {
948 return builtin_type_int;
949 }
950
951 static int
952 mn10300_register_byte (int reg)
953 {
954 return (reg * 4);
955 }
956
957 static int
958 mn10300_register_virtual_size (int reg)
959 {
960 return 4;
961 }
962
963 static int
964 mn10300_register_raw_size (int reg)
965 {
966 return 4;
967 }
968
969 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
970 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
971 register number. Why don't Dwarf2 and GDB use the same numbering?
972 Who knows? But since people have object files lying around with
973 the existing Dwarf2 numbering, and other people have written stubs
974 to work with the existing GDB, neither of them can change. So we
975 just have to cope. */
976 static int
977 mn10300_dwarf2_reg_to_regnum (int dwarf2)
978 {
979 /* This table is supposed to be shaped like the REGISTER_NAMES
980 initializer in gcc/config/mn10300/mn10300.h. Registers which
981 appear in GCC's numbering, but have no counterpart in GDB's
982 world, are marked with a -1. */
983 static int dwarf2_to_gdb[] = {
984 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
985 15, 16, 17, 18, 19, 20, 21, 22
986 };
987 int gdb;
988
989 if (dwarf2 < 0
990 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
991 || dwarf2_to_gdb[dwarf2] == -1)
992 internal_error (__FILE__, __LINE__,
993 "bogus register number in debug info: %d", dwarf2);
994
995 return dwarf2_to_gdb[dwarf2];
996 }
997
998 static void
999 mn10300_print_register (const char *name, int regnum, int reg_width)
1000 {
1001 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1002
1003 if (reg_width)
1004 printf_filtered ("%*s: ", reg_width, name);
1005 else
1006 printf_filtered ("%s: ", name);
1007
1008 /* Get the data */
1009 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1010 {
1011 printf_filtered ("[invalid]");
1012 return;
1013 }
1014 else
1015 {
1016 int byte;
1017 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1018 {
1019 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
1020 byte < REGISTER_RAW_SIZE (regnum);
1021 byte++)
1022 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1023 }
1024 else
1025 {
1026 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
1027 byte >= 0;
1028 byte--)
1029 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1030 }
1031 }
1032 }
1033
1034 static void
1035 mn10300_do_registers_info (int regnum, int fpregs)
1036 {
1037 if (regnum >= 0)
1038 {
1039 const char *name = REGISTER_NAME (regnum);
1040 if (name == NULL || name[0] == '\0')
1041 error ("Not a valid register for the current processor type");
1042 mn10300_print_register (name, regnum, 0);
1043 printf_filtered ("\n");
1044 }
1045 else
1046 {
1047 /* print registers in an array 4x8 */
1048 int r;
1049 int reg;
1050 const int nr_in_row = 4;
1051 const int reg_width = 4;
1052 for (r = 0; r < NUM_REGS; r += nr_in_row)
1053 {
1054 int c;
1055 int printing = 0;
1056 int padding = 0;
1057 for (c = r; c < r + nr_in_row; c++)
1058 {
1059 const char *name = REGISTER_NAME (c);
1060 if (name != NULL && *name != '\0')
1061 {
1062 printing = 1;
1063 while (padding > 0)
1064 {
1065 printf_filtered (" ");
1066 padding--;
1067 }
1068 mn10300_print_register (name, c, reg_width);
1069 printf_filtered (" ");
1070 }
1071 else
1072 {
1073 padding += (reg_width + 2 + 8 + 1);
1074 }
1075 }
1076 if (printing)
1077 printf_filtered ("\n");
1078 }
1079 }
1080 }
1081
1082 /* Dump out the mn10300 speciic architecture information. */
1083
1084 static void
1085 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1086 {
1087 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1088 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1089 tdep->am33_mode);
1090 }
1091
1092 static struct gdbarch *
1093 mn10300_gdbarch_init (struct gdbarch_info info,
1094 struct gdbarch_list *arches)
1095 {
1096 static LONGEST mn10300_call_dummy_words[] = { 0 };
1097 struct gdbarch *gdbarch;
1098 struct gdbarch_tdep *tdep = NULL;
1099 int am33_mode;
1100 gdbarch_register_name_ftype *register_name;
1101 int mach;
1102 int num_regs;
1103
1104 arches = gdbarch_list_lookup_by_info (arches, &info);
1105 if (arches != NULL)
1106 return arches->gdbarch;
1107 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1108 gdbarch = gdbarch_alloc (&info, tdep);
1109
1110 if (info.bfd_arch_info != NULL
1111 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1112 mach = info.bfd_arch_info->mach;
1113 else
1114 mach = 0;
1115 switch (mach)
1116 {
1117 case 0:
1118 case bfd_mach_mn10300:
1119 am33_mode = 0;
1120 register_name = mn10300_generic_register_name;
1121 num_regs = 32;
1122 break;
1123 case bfd_mach_am33:
1124 am33_mode = 1;
1125 register_name = am33_register_name;
1126 num_regs = 32;
1127 break;
1128 default:
1129 internal_error (__FILE__, __LINE__,
1130 "mn10300_gdbarch_init: Unknown mn10300 variant");
1131 return NULL; /* keep GCC happy. */
1132 }
1133
1134 /* Registers. */
1135 set_gdbarch_num_regs (gdbarch, num_regs);
1136 set_gdbarch_register_name (gdbarch, register_name);
1137 set_gdbarch_register_size (gdbarch, 4);
1138 set_gdbarch_register_bytes (gdbarch,
1139 num_regs * gdbarch_register_size (gdbarch));
1140 set_gdbarch_max_register_raw_size (gdbarch, 4);
1141 set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
1142 set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
1143 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1144 set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1145 set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1146 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1147 set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
1148 set_gdbarch_sp_regnum (gdbarch, 8);
1149 set_gdbarch_pc_regnum (gdbarch, 9);
1150 set_gdbarch_fp_regnum (gdbarch, 31);
1151 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1152
1153 /* Breakpoints. */
1154 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1155 set_gdbarch_function_start_offset (gdbarch, 0);
1156 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1157
1158 /* Stack unwinding. */
1159 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1160 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1161 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1162 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1163 set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1164 set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1165 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
1166 set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1167 set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
1168 set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1169 set_gdbarch_extract_return_value (gdbarch, mn10300_extract_return_value);
1170 set_gdbarch_extract_struct_value_address
1171 (gdbarch, mn10300_extract_struct_value_address);
1172 set_gdbarch_store_return_value (gdbarch, mn10300_store_return_value);
1173 set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
1174 set_gdbarch_pop_frame (gdbarch, mn10300_pop_frame);
1175 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1176 set_gdbarch_frame_args_skip (gdbarch, 0);
1177 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1178 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1179 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1180 /* That's right, we're using the stack pointer as our frame pointer. */
1181 set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
1182
1183 /* Calling functions in the inferior from GDB. */
1184 set_gdbarch_call_dummy_p (gdbarch, 1);
1185 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1186 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1187 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1188 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1189 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1190 set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1191 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1192 sizeof (mn10300_call_dummy_words));
1193 set_gdbarch_call_dummy_length (gdbarch, 0);
1194 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1195 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1196 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1197 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1198 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1199 set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
1200 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1201 set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
1202 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1203 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1204
1205 tdep->am33_mode = am33_mode;
1206
1207 return gdbarch;
1208 }
1209
1210 void
1211 _initialize_mn10300_tdep (void)
1212 {
1213 /* printf("_initialize_mn10300_tdep\n"); */
1214
1215 tm_print_insn = print_insn_mn10300;
1216
1217 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1218 }
This page took 0.088995 seconds and 4 git commands to generate.