* configure.in (CC_FOR_TARGET, CHILL_FOR_TARGET,
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2 Copyright 1996, 1997, 1998, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "obstack.h"
25 #include "target.h"
26 #include "value.h"
27 #include "bfd.h"
28 #include "gdb_string.h"
29 #include "gdbcore.h"
30 #include "symfile.h"
31
32 extern void _initialize_mn10300_tdep (void);
33 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
34 CORE_ADDR pc);
35
36 /* mn10300 private data */
37 struct gdbarch_tdep
38 {
39 int am33_mode;
40 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
41 };
42
43 /* Additional info used by the frame */
44
45 struct frame_extra_info
46 {
47 int status;
48 int stack_size;
49 };
50
51
52 static char *
53 register_name (int reg, char **regs, long sizeof_regs)
54 {
55 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
56 return NULL;
57 else
58 return regs[reg];
59 }
60
61 static char *
62 mn10300_generic_register_name (int reg)
63 {
64 static char *regs[] =
65 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
66 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
67 "", "", "", "", "", "", "", "",
68 "", "", "", "", "", "", "", "fp"
69 };
70 return register_name (reg, regs, sizeof regs);
71 }
72
73
74 static char *
75 am33_register_name (int reg)
76 {
77 static char *regs[] =
78 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
79 "sp", "pc", "mdr", "psw", "lir", "lar", "",
80 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
81 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
82 };
83 return register_name (reg, regs, sizeof regs);
84 }
85
86 CORE_ADDR
87 mn10300_saved_pc_after_call (struct frame_info *fi)
88 {
89 return read_memory_integer (read_register (SP_REGNUM), 4);
90 }
91
92 void
93 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
94 {
95 if (TYPE_CODE (type) == TYPE_CODE_PTR)
96 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
97 else
98 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
99 }
100
101 CORE_ADDR
102 mn10300_extract_struct_value_address (char *regbuf)
103 {
104 return extract_address (regbuf + REGISTER_BYTE (4),
105 REGISTER_RAW_SIZE (4));
106 }
107
108 void
109 mn10300_store_return_value (struct type *type, char *valbuf)
110 {
111 if (TYPE_CODE (type) == TYPE_CODE_PTR)
112 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
113 else
114 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
115 }
116
117 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
118 static struct frame_info *
119 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
120 {
121 static struct frame_info *dummy = NULL;
122 if (dummy == NULL)
123 {
124 dummy = xmalloc (sizeof (struct frame_info));
125 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
126 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
127 }
128 dummy->next = NULL;
129 dummy->prev = NULL;
130 dummy->pc = pc;
131 dummy->frame = frame;
132 dummy->extra_info->status = 0;
133 dummy->extra_info->stack_size = 0;
134 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
135 mn10300_analyze_prologue (dummy, 0);
136 return dummy;
137 }
138
139 /* Values for frame_info.status */
140
141 #define MY_FRAME_IN_SP 0x1
142 #define MY_FRAME_IN_FP 0x2
143 #define NO_MORE_FRAMES 0x4
144
145
146 /* Should call_function allocate stack space for a struct return? */
147 int
148 mn10300_use_struct_convention (int gcc_p, struct type *type)
149 {
150 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
151 }
152
153 /* The breakpoint instruction must be the same size as the smallest
154 instruction in the instruction set.
155
156 The Matsushita mn10x00 processors have single byte instructions
157 so we need a single byte breakpoint. Matsushita hasn't defined
158 one, so we defined it ourselves. */
159
160 unsigned char *
161 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
162 {
163 static char breakpoint[] =
164 {0xff};
165 *bp_size = 1;
166 return breakpoint;
167 }
168
169
170 /* Fix fi->frame if it's bogus at this point. This is a helper
171 function for mn10300_analyze_prologue. */
172
173 static void
174 fix_frame_pointer (struct frame_info *fi, int stack_size)
175 {
176 if (fi && fi->next == NULL)
177 {
178 if (fi->extra_info->status & MY_FRAME_IN_SP)
179 fi->frame = read_sp () - stack_size;
180 else if (fi->extra_info->status & MY_FRAME_IN_FP)
181 fi->frame = read_register (A3_REGNUM);
182 }
183 }
184
185
186 /* Set offsets of registers saved by movm instruction.
187 This is a helper function for mn10300_analyze_prologue. */
188
189 static void
190 set_movm_offsets (struct frame_info *fi, int movm_args)
191 {
192 int offset = 0;
193
194 if (fi == NULL || movm_args == 0)
195 return;
196
197 if (movm_args & 0x10)
198 {
199 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
200 offset += 4;
201 }
202 if (movm_args & 0x20)
203 {
204 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
205 offset += 4;
206 }
207 if (movm_args & 0x40)
208 {
209 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
210 offset += 4;
211 }
212 if (movm_args & 0x80)
213 {
214 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
215 offset += 4;
216 }
217 if (AM33_MODE && movm_args & 0x02)
218 {
219 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset;
220 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 4;
221 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset + 8;
222 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 12;
223 }
224 }
225
226
227 /* The main purpose of this file is dealing with prologues to extract
228 information about stack frames and saved registers.
229
230 For reference here's how prologues look on the mn10300:
231
232 With frame pointer:
233 movm [d2,d3,a2,a3],sp
234 mov sp,a3
235 add <size>,sp
236
237 Without frame pointer:
238 movm [d2,d3,a2,a3],sp (if needed)
239 add <size>,sp
240
241 One day we might keep the stack pointer constant, that won't
242 change the code for prologues, but it will make the frame
243 pointerless case much more common. */
244
245 /* Analyze the prologue to determine where registers are saved,
246 the end of the prologue, etc etc. Return the end of the prologue
247 scanned.
248
249 We store into FI (if non-null) several tidbits of information:
250
251 * stack_size -- size of this stack frame. Note that if we stop in
252 certain parts of the prologue/epilogue we may claim the size of the
253 current frame is zero. This happens when the current frame has
254 not been allocated yet or has already been deallocated.
255
256 * fsr -- Addresses of registers saved in the stack by this frame.
257
258 * status -- A (relatively) generic status indicator. It's a bitmask
259 with the following bits:
260
261 MY_FRAME_IN_SP: The base of the current frame is actually in
262 the stack pointer. This can happen for frame pointerless
263 functions, or cases where we're stopped in the prologue/epilogue
264 itself. For these cases mn10300_analyze_prologue will need up
265 update fi->frame before returning or analyzing the register
266 save instructions.
267
268 MY_FRAME_IN_FP: The base of the current frame is in the
269 frame pointer register ($a2).
270
271 NO_MORE_FRAMES: Set this if the current frame is "start" or
272 if the first instruction looks like mov <imm>,sp. This tells
273 frame chain to not bother trying to unwind past this frame. */
274
275 static CORE_ADDR
276 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
277 {
278 CORE_ADDR func_addr, func_end, addr, stop;
279 CORE_ADDR stack_size;
280 int imm_size;
281 unsigned char buf[4];
282 int status, movm_args = 0;
283 char *name;
284
285 /* Use the PC in the frame if it's provided to look up the
286 start of this function. */
287 pc = (fi ? fi->pc : pc);
288
289 /* Find the start of this function. */
290 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
291
292 /* Do nothing if we couldn't find the start of this function or if we're
293 stopped at the first instruction in the prologue. */
294 if (status == 0)
295 {
296 return pc;
297 }
298
299 /* If we're in start, then give up. */
300 if (strcmp (name, "start") == 0)
301 {
302 if (fi != NULL)
303 fi->extra_info->status = NO_MORE_FRAMES;
304 return pc;
305 }
306
307 /* At the start of a function our frame is in the stack pointer. */
308 if (fi)
309 fi->extra_info->status = MY_FRAME_IN_SP;
310
311 /* Get the next two bytes into buf, we need two because rets is a two
312 byte insn and the first isn't enough to uniquely identify it. */
313 status = read_memory_nobpt (pc, buf, 2);
314 if (status != 0)
315 return pc;
316
317 /* If we're physically on an "rets" instruction, then our frame has
318 already been deallocated. Note this can also be true for retf
319 and ret if they specify a size of zero.
320
321 In this case fi->frame is bogus, we need to fix it. */
322 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
323 {
324 if (fi->next == NULL)
325 fi->frame = read_sp ();
326 return fi->pc;
327 }
328
329 /* Similarly if we're stopped on the first insn of a prologue as our
330 frame hasn't been allocated yet. */
331 if (fi && fi->pc == func_addr)
332 {
333 if (fi->next == NULL)
334 fi->frame = read_sp ();
335 return fi->pc;
336 }
337
338 /* Figure out where to stop scanning. */
339 stop = fi ? fi->pc : func_end;
340
341 /* Don't walk off the end of the function. */
342 stop = stop > func_end ? func_end : stop;
343
344 /* Start scanning on the first instruction of this function. */
345 addr = func_addr;
346
347 /* Suck in two bytes. */
348 status = read_memory_nobpt (addr, buf, 2);
349 if (status != 0)
350 {
351 fix_frame_pointer (fi, 0);
352 return addr;
353 }
354
355 /* First see if this insn sets the stack pointer; if so, it's something
356 we won't understand, so quit now. */
357 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
358 {
359 if (fi)
360 fi->extra_info->status = NO_MORE_FRAMES;
361 return addr;
362 }
363
364 /* Now look for movm [regs],sp, which saves the callee saved registers.
365
366 At this time we don't know if fi->frame is valid, so we only note
367 that we encountered a movm instruction. Later, we'll set the entries
368 in fsr.regs as needed. */
369 if (buf[0] == 0xcf)
370 {
371 /* Extract the register list for the movm instruction. */
372 status = read_memory_nobpt (addr + 1, buf, 1);
373 movm_args = *buf;
374
375 addr += 2;
376
377 /* Quit now if we're beyond the stop point. */
378 if (addr >= stop)
379 {
380 /* Fix fi->frame since it's bogus at this point. */
381 if (fi && fi->next == NULL)
382 fi->frame = read_sp ();
383
384 /* Note if/where callee saved registers were saved. */
385 set_movm_offsets (fi, movm_args);
386 return addr;
387 }
388
389 /* Get the next two bytes so the prologue scan can continue. */
390 status = read_memory_nobpt (addr, buf, 2);
391 if (status != 0)
392 {
393 /* Fix fi->frame since it's bogus at this point. */
394 if (fi && fi->next == NULL)
395 fi->frame = read_sp ();
396
397 /* Note if/where callee saved registers were saved. */
398 set_movm_offsets (fi, movm_args);
399 return addr;
400 }
401 }
402
403 /* Now see if we set up a frame pointer via "mov sp,a3" */
404 if (buf[0] == 0x3f)
405 {
406 addr += 1;
407
408 /* The frame pointer is now valid. */
409 if (fi)
410 {
411 fi->extra_info->status |= MY_FRAME_IN_FP;
412 fi->extra_info->status &= ~MY_FRAME_IN_SP;
413 }
414
415 /* Quit now if we're beyond the stop point. */
416 if (addr >= stop)
417 {
418 /* Fix fi->frame if it's bogus at this point. */
419 fix_frame_pointer (fi, 0);
420
421 /* Note if/where callee saved registers were saved. */
422 set_movm_offsets (fi, movm_args);
423 return addr;
424 }
425
426 /* Get two more bytes so scanning can continue. */
427 status = read_memory_nobpt (addr, buf, 2);
428 if (status != 0)
429 {
430 /* Fix fi->frame if it's bogus at this point. */
431 fix_frame_pointer (fi, 0);
432
433 /* Note if/where callee saved registers were saved. */
434 set_movm_offsets (fi, movm_args);
435 return addr;
436 }
437 }
438
439 /* Next we should allocate the local frame. No more prologue insns
440 are found after allocating the local frame.
441
442 Search for add imm8,sp (0xf8feXX)
443 or add imm16,sp (0xfafeXXXX)
444 or add imm32,sp (0xfcfeXXXXXXXX).
445
446 If none of the above was found, then this prologue has no
447 additional stack. */
448
449 status = read_memory_nobpt (addr, buf, 2);
450 if (status != 0)
451 {
452 /* Fix fi->frame if it's bogus at this point. */
453 fix_frame_pointer (fi, 0);
454
455 /* Note if/where callee saved registers were saved. */
456 set_movm_offsets (fi, movm_args);
457 return addr;
458 }
459
460 imm_size = 0;
461 if (buf[0] == 0xf8 && buf[1] == 0xfe)
462 imm_size = 1;
463 else if (buf[0] == 0xfa && buf[1] == 0xfe)
464 imm_size = 2;
465 else if (buf[0] == 0xfc && buf[1] == 0xfe)
466 imm_size = 4;
467
468 if (imm_size != 0)
469 {
470 /* Suck in imm_size more bytes, they'll hold the size of the
471 current frame. */
472 status = read_memory_nobpt (addr + 2, buf, imm_size);
473 if (status != 0)
474 {
475 /* Fix fi->frame if it's bogus at this point. */
476 fix_frame_pointer (fi, 0);
477
478 /* Note if/where callee saved registers were saved. */
479 set_movm_offsets (fi, movm_args);
480 return addr;
481 }
482
483 /* Note the size of the stack in the frame info structure. */
484 stack_size = extract_signed_integer (buf, imm_size);
485 if (fi)
486 fi->extra_info->stack_size = stack_size;
487
488 /* We just consumed 2 + imm_size bytes. */
489 addr += 2 + imm_size;
490
491 /* No more prologue insns follow, so begin preparation to return. */
492 /* Fix fi->frame if it's bogus at this point. */
493 fix_frame_pointer (fi, stack_size);
494
495 /* Note if/where callee saved registers were saved. */
496 set_movm_offsets (fi, movm_args);
497 return addr;
498 }
499
500 /* We never found an insn which allocates local stack space, regardless
501 this is the end of the prologue. */
502 /* Fix fi->frame if it's bogus at this point. */
503 fix_frame_pointer (fi, 0);
504
505 /* Note if/where callee saved registers were saved. */
506 set_movm_offsets (fi, movm_args);
507 return addr;
508 }
509
510 /* Function: frame_chain
511 Figure out and return the caller's frame pointer given current
512 frame_info struct.
513
514 We don't handle dummy frames yet but we would probably just return the
515 stack pointer that was in use at the time the function call was made? */
516
517 CORE_ADDR
518 mn10300_frame_chain (struct frame_info *fi)
519 {
520 struct frame_info *dummy;
521 /* Walk through the prologue to determine the stack size,
522 location of saved registers, end of the prologue, etc. */
523 if (fi->extra_info->status == 0)
524 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
525
526 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
527 if (fi->extra_info->status & NO_MORE_FRAMES)
528 return 0;
529
530 /* Now that we've analyzed our prologue, determine the frame
531 pointer for our caller.
532
533 If our caller has a frame pointer, then we need to
534 find the entry value of $a3 to our function.
535
536 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
537 location pointed to by fsr.regs[A3_REGNUM].
538
539 Else it's still in $a3.
540
541 If our caller does not have a frame pointer, then his
542 frame base is fi->frame + -caller's stack size. */
543
544 /* The easiest way to get that info is to analyze our caller's frame.
545 So we set up a dummy frame and call mn10300_analyze_prologue to
546 find stuff for us. */
547 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
548
549 if (dummy->extra_info->status & MY_FRAME_IN_FP)
550 {
551 /* Our caller has a frame pointer. So find the frame in $a3 or
552 in the stack. */
553 if (fi->saved_regs[A3_REGNUM])
554 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
555 else
556 return read_register (A3_REGNUM);
557 }
558 else
559 {
560 int adjust = 0;
561
562 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
563 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
564 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
565 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
566 if (AM33_MODE)
567 {
568 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
569 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
570 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
571 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
572 }
573
574 /* Our caller does not have a frame pointer. So his frame starts
575 at the base of our frame (fi->frame) + register save space
576 + <his size>. */
577 return fi->frame + adjust + -dummy->extra_info->stack_size;
578 }
579 }
580
581 /* Function: skip_prologue
582 Return the address of the first inst past the prologue of the function. */
583
584 CORE_ADDR
585 mn10300_skip_prologue (CORE_ADDR pc)
586 {
587 /* We used to check the debug symbols, but that can lose if
588 we have a null prologue. */
589 return mn10300_analyze_prologue (NULL, pc);
590 }
591
592
593 /* Function: pop_frame
594 This routine gets called when either the user uses the `return'
595 command, or the call dummy breakpoint gets hit. */
596
597 void
598 mn10300_pop_frame (struct frame_info *frame)
599 {
600 int regnum;
601
602 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
603 generic_pop_dummy_frame ();
604 else
605 {
606 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
607
608 /* Restore any saved registers. */
609 for (regnum = 0; regnum < NUM_REGS; regnum++)
610 if (frame->saved_regs[regnum] != 0)
611 {
612 ULONGEST value;
613
614 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
615 REGISTER_RAW_SIZE (regnum));
616 write_register (regnum, value);
617 }
618
619 /* Actually cut back the stack. */
620 write_register (SP_REGNUM, FRAME_FP (frame));
621
622 /* Don't we need to set the PC?!? XXX FIXME. */
623 }
624
625 /* Throw away any cached frame information. */
626 flush_cached_frames ();
627 }
628
629 /* Function: push_arguments
630 Setup arguments for a call to the target. Arguments go in
631 order on the stack. */
632
633 CORE_ADDR
634 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
635 int struct_return, CORE_ADDR struct_addr)
636 {
637 int argnum = 0;
638 int len = 0;
639 int stack_offset = 0;
640 int regsused = struct_return ? 1 : 0;
641
642 /* This should be a nop, but align the stack just in case something
643 went wrong. Stacks are four byte aligned on the mn10300. */
644 sp &= ~3;
645
646 /* Now make space on the stack for the args.
647
648 XXX This doesn't appear to handle pass-by-invisible reference
649 arguments. */
650 for (argnum = 0; argnum < nargs; argnum++)
651 {
652 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
653
654 while (regsused < 2 && arg_length > 0)
655 {
656 regsused++;
657 arg_length -= 4;
658 }
659 len += arg_length;
660 }
661
662 /* Allocate stack space. */
663 sp -= len;
664
665 regsused = struct_return ? 1 : 0;
666 /* Push all arguments onto the stack. */
667 for (argnum = 0; argnum < nargs; argnum++)
668 {
669 int len;
670 char *val;
671
672 /* XXX Check this. What about UNIONS? */
673 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
674 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
675 {
676 /* XXX Wrong, we want a pointer to this argument. */
677 len = TYPE_LENGTH (VALUE_TYPE (*args));
678 val = (char *) VALUE_CONTENTS (*args);
679 }
680 else
681 {
682 len = TYPE_LENGTH (VALUE_TYPE (*args));
683 val = (char *) VALUE_CONTENTS (*args);
684 }
685
686 while (regsused < 2 && len > 0)
687 {
688 write_register (regsused, extract_unsigned_integer (val, 4));
689 val += 4;
690 len -= 4;
691 regsused++;
692 }
693
694 while (len > 0)
695 {
696 write_memory (sp + stack_offset, val, 4);
697 len -= 4;
698 val += 4;
699 stack_offset += 4;
700 }
701
702 args++;
703 }
704
705 /* Make space for the flushback area. */
706 sp -= 8;
707 return sp;
708 }
709
710 /* Function: push_return_address (pc)
711 Set up the return address for the inferior function call.
712 Needed for targets where we don't actually execute a JSR/BSR instruction */
713
714 CORE_ADDR
715 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
716 {
717 unsigned char buf[4];
718
719 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
720 write_memory (sp - 4, buf, 4);
721 return sp - 4;
722 }
723
724 /* Function: store_struct_return (addr,sp)
725 Store the structure value return address for an inferior function
726 call. */
727
728 CORE_ADDR
729 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
730 {
731 /* The structure return address is passed as the first argument. */
732 write_register (0, addr);
733 return sp;
734 }
735
736 /* Function: frame_saved_pc
737 Find the caller of this frame. We do this by seeing if RP_REGNUM
738 is saved in the stack anywhere, otherwise we get it from the
739 registers. If the inner frame is a dummy frame, return its PC
740 instead of RP, because that's where "caller" of the dummy-frame
741 will be found. */
742
743 CORE_ADDR
744 mn10300_frame_saved_pc (struct frame_info *fi)
745 {
746 int adjust = 0;
747
748 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
749 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
750 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
751 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
752 if (AM33_MODE)
753 {
754 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
755 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
756 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
757 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
758 }
759
760 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
761 }
762
763 /* Function: mn10300_init_extra_frame_info
764 Setup the frame's frame pointer, pc, and frame addresses for saved
765 registers. Most of the work is done in mn10300_analyze_prologue().
766
767 Note that when we are called for the last frame (currently active frame),
768 that fi->pc and fi->frame will already be setup. However, fi->frame will
769 be valid only if this routine uses FP. For previous frames, fi-frame will
770 always be correct. mn10300_analyze_prologue will fix fi->frame if
771 it's not valid.
772
773 We can be called with the PC in the call dummy under two circumstances.
774 First, during normal backtracing, second, while figuring out the frame
775 pointer just prior to calling the target function (see run_stack_dummy). */
776
777 void
778 mn10300_init_extra_frame_info (struct frame_info *fi)
779 {
780 if (fi->next)
781 fi->pc = FRAME_SAVED_PC (fi->next);
782
783 frame_saved_regs_zalloc (fi);
784 fi->extra_info = (struct frame_extra_info *)
785 frame_obstack_alloc (sizeof (struct frame_extra_info));
786
787 fi->extra_info->status = 0;
788 fi->extra_info->stack_size = 0;
789
790 mn10300_analyze_prologue (fi, 0);
791 }
792
793 /* Function: mn10300_virtual_frame_pointer
794 Return the register that the function uses for a frame pointer,
795 plus any necessary offset to be applied to the register before
796 any frame pointer offsets. */
797
798 void
799 mn10300_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
800 {
801 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
802 /* Set up a dummy frame_info, Analyze the prolog and fill in the
803 extra info. */
804 /* Results will tell us which type of frame it uses. */
805 if (dummy->extra_info->status & MY_FRAME_IN_SP)
806 {
807 *reg = SP_REGNUM;
808 *offset = -(dummy->extra_info->stack_size);
809 }
810 else
811 {
812 *reg = A3_REGNUM;
813 *offset = 0;
814 }
815 }
816
817 static int
818 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
819 {
820 return (TYPE_LENGTH (type) > 8);
821 }
822
823 /* Dump out the mn10300 speciic architecture information. */
824
825 static void
826 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
827 {
828 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
829 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
830 tdep->am33_mode);
831 }
832
833 static struct gdbarch *
834 mn10300_gdbarch_init (struct gdbarch_info info,
835 struct gdbarch_list *arches)
836 {
837 struct gdbarch *gdbarch;
838 struct gdbarch_tdep *tdep = NULL;
839 int am33_mode;
840 gdbarch_register_name_ftype *register_name;
841 int mach;
842 int num_regs;
843
844 arches = gdbarch_list_lookup_by_info (arches, &info);
845 if (arches != NULL)
846 return arches->gdbarch;
847 tdep = xmalloc (sizeof (struct gdbarch_tdep));
848 gdbarch = gdbarch_alloc (&info, tdep);
849
850 if (info.bfd_arch_info != NULL
851 && info.bfd_arch_info->arch == bfd_arch_mips)
852 mach = info.bfd_arch_info->mach;
853 else
854 mach = 0;
855 switch (mach)
856 {
857 case 0:
858 am33_mode = 0;
859 register_name = mn10300_generic_register_name;
860 num_regs = 32;
861 break;
862 case bfd_mach_am33:
863 am33_mode = 1;
864 register_name = am33_register_name;
865 num_regs = 32;
866 break;
867 default:
868 internal_error ("mn10300_gdbarch_init: Unknown mn10300 variant");
869 return NULL; /* keep GCC happy. */
870 }
871
872 set_gdbarch_call_dummy_p (gdbarch, 1);
873 set_gdbarch_register_name (gdbarch, register_name);
874 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
875 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 0);
876 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
877 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
878 set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
879 set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
880 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
881 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
882 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
883 set_gdbarch_num_regs (gdbarch, num_regs);
884 tdep->am33_mode = am33_mode;
885
886 return gdbarch;
887 }
888
889 void
890 _initialize_mn10300_tdep (void)
891 {
892 /* printf("_initialize_mn10300_tdep\n"); */
893
894 tm_print_insn = print_insn_mn10300;
895
896 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
897 }
This page took 0.068258 seconds and 4 git commands to generate.