* README-vms: Fix comment typos.
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "gdb_assert.h"
35 #include "dis-asm.h"
36
37 #define D0_REGNUM 0
38 #define D2_REGNUM 2
39 #define D3_REGNUM 3
40 #define A0_REGNUM 4
41 #define A2_REGNUM 6
42 #define A3_REGNUM 7
43 #define MDR_REGNUM 10
44 #define PSW_REGNUM 11
45 #define LIR_REGNUM 12
46 #define LAR_REGNUM 13
47 #define MDRQ_REGNUM 14
48 #define E0_REGNUM 15
49 #define MCRH_REGNUM 26
50 #define MCRL_REGNUM 27
51 #define MCVF_REGNUM 28
52
53 enum movm_register_bits {
54 movm_exother_bit = 0x01,
55 movm_exreg1_bit = 0x02,
56 movm_exreg0_bit = 0x04,
57 movm_other_bit = 0x08,
58 movm_a3_bit = 0x10,
59 movm_a2_bit = 0x20,
60 movm_d3_bit = 0x40,
61 movm_d2_bit = 0x80
62 };
63
64 extern void _initialize_mn10300_tdep (void);
65 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
66 CORE_ADDR pc);
67
68 /* mn10300 private data */
69 struct gdbarch_tdep
70 {
71 int am33_mode;
72 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
73 };
74
75 /* Additional info used by the frame */
76
77 struct frame_extra_info
78 {
79 int status;
80 int stack_size;
81 };
82
83
84 static char *
85 register_name (int reg, char **regs, long sizeof_regs)
86 {
87 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
88 return NULL;
89 else
90 return regs[reg];
91 }
92
93 static const char *
94 mn10300_generic_register_name (int reg)
95 {
96 static char *regs[] =
97 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
98 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
99 "", "", "", "", "", "", "", "",
100 "", "", "", "", "", "", "", "fp"
101 };
102 return register_name (reg, regs, sizeof regs);
103 }
104
105
106 static const char *
107 am33_register_name (int reg)
108 {
109 static char *regs[] =
110 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
111 "sp", "pc", "mdr", "psw", "lir", "lar", "",
112 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
113 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
114 };
115 return register_name (reg, regs, sizeof regs);
116 }
117
118 static CORE_ADDR
119 mn10300_saved_pc_after_call (struct frame_info *fi)
120 {
121 return read_memory_integer (read_register (SP_REGNUM), 4);
122 }
123
124 static void
125 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
126 {
127 if (TYPE_CODE (type) == TYPE_CODE_PTR)
128 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (4), TYPE_LENGTH (type));
129 else
130 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (0), TYPE_LENGTH (type));
131 }
132
133 static CORE_ADDR
134 mn10300_extract_struct_value_address (char *regbuf)
135 {
136 return extract_unsigned_integer (regbuf + DEPRECATED_REGISTER_BYTE (4),
137 DEPRECATED_REGISTER_RAW_SIZE (4));
138 }
139
140 static void
141 mn10300_store_return_value (struct type *type, char *valbuf)
142 {
143 if (TYPE_CODE (type) == TYPE_CODE_PTR)
144 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (4), valbuf,
145 TYPE_LENGTH (type));
146 else
147 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (0), valbuf,
148 TYPE_LENGTH (type));
149 }
150
151 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
152 static struct frame_info *
153 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
154 {
155 static struct frame_info *dummy = NULL;
156 if (dummy == NULL)
157 {
158 struct frame_extra_info *extra_info;
159 CORE_ADDR *saved_regs;
160 dummy = deprecated_frame_xmalloc ();
161 saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
162 deprecated_set_frame_saved_regs_hack (dummy, saved_regs);
163 extra_info = XMALLOC (struct frame_extra_info);
164 deprecated_set_frame_extra_info_hack (dummy, extra_info);
165 }
166 deprecated_update_frame_pc_hack (dummy, pc);
167 deprecated_update_frame_base_hack (dummy, frame);
168 get_frame_extra_info (dummy)->status = 0;
169 get_frame_extra_info (dummy)->stack_size = 0;
170 memset (deprecated_get_frame_saved_regs (dummy), '\000', SIZEOF_FRAME_SAVED_REGS);
171 mn10300_analyze_prologue (dummy, pc);
172 return dummy;
173 }
174
175 /* Values for frame_info.status */
176
177 #define MY_FRAME_IN_SP 0x1
178 #define MY_FRAME_IN_FP 0x2
179 #define NO_MORE_FRAMES 0x4
180
181
182 /* Should call_function allocate stack space for a struct return? */
183 static int
184 mn10300_use_struct_convention (int gcc_p, struct type *type)
185 {
186 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
187 }
188
189 /* The breakpoint instruction must be the same size as the smallest
190 instruction in the instruction set.
191
192 The Matsushita mn10x00 processors have single byte instructions
193 so we need a single byte breakpoint. Matsushita hasn't defined
194 one, so we defined it ourselves. */
195
196 const static unsigned char *
197 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
198 {
199 static char breakpoint[] =
200 {0xff};
201 *bp_size = 1;
202 return breakpoint;
203 }
204
205
206 /* Fix fi->frame if it's bogus at this point. This is a helper
207 function for mn10300_analyze_prologue. */
208
209 static void
210 fix_frame_pointer (struct frame_info *fi, int stack_size)
211 {
212 if (fi && get_next_frame (fi) == NULL)
213 {
214 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
215 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
216 else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP)
217 deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM));
218 }
219 }
220
221
222 /* Set offsets of registers saved by movm instruction.
223 This is a helper function for mn10300_analyze_prologue. */
224
225 static void
226 set_movm_offsets (struct frame_info *fi, int movm_args)
227 {
228 int offset = 0;
229
230 if (fi == NULL || movm_args == 0)
231 return;
232
233 if (movm_args & movm_other_bit)
234 {
235 /* The `other' bit leaves a blank area of four bytes at the
236 beginning of its block of saved registers, making it 32 bytes
237 long in total. */
238 deprecated_get_frame_saved_regs (fi)[LAR_REGNUM] = get_frame_base (fi) + offset + 4;
239 deprecated_get_frame_saved_regs (fi)[LIR_REGNUM] = get_frame_base (fi) + offset + 8;
240 deprecated_get_frame_saved_regs (fi)[MDR_REGNUM] = get_frame_base (fi) + offset + 12;
241 deprecated_get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
242 deprecated_get_frame_saved_regs (fi)[A0_REGNUM] = get_frame_base (fi) + offset + 20;
243 deprecated_get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24;
244 deprecated_get_frame_saved_regs (fi)[D0_REGNUM] = get_frame_base (fi) + offset + 28;
245 offset += 32;
246 }
247 if (movm_args & movm_a3_bit)
248 {
249 deprecated_get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset;
250 offset += 4;
251 }
252 if (movm_args & movm_a2_bit)
253 {
254 deprecated_get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset;
255 offset += 4;
256 }
257 if (movm_args & movm_d3_bit)
258 {
259 deprecated_get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset;
260 offset += 4;
261 }
262 if (movm_args & movm_d2_bit)
263 {
264 deprecated_get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset;
265 offset += 4;
266 }
267 if (AM33_MODE)
268 {
269 if (movm_args & movm_exother_bit)
270 {
271 deprecated_get_frame_saved_regs (fi)[MCVF_REGNUM] = get_frame_base (fi) + offset;
272 deprecated_get_frame_saved_regs (fi)[MCRL_REGNUM] = get_frame_base (fi) + offset + 4;
273 deprecated_get_frame_saved_regs (fi)[MCRH_REGNUM] = get_frame_base (fi) + offset + 8;
274 deprecated_get_frame_saved_regs (fi)[MDRQ_REGNUM] = get_frame_base (fi) + offset + 12;
275 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
276 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20;
277 offset += 24;
278 }
279 if (movm_args & movm_exreg1_bit)
280 {
281 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset;
282 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4;
283 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8;
284 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12;
285 offset += 16;
286 }
287 if (movm_args & movm_exreg0_bit)
288 {
289 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset;
290 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4;
291 offset += 8;
292 }
293 }
294 }
295
296
297 /* The main purpose of this file is dealing with prologues to extract
298 information about stack frames and saved registers.
299
300 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
301 function is pretty readable, and has a nice explanation of how the
302 prologue is generated. The prologues generated by that code will
303 have the following form (NOTE: the current code doesn't handle all
304 this!):
305
306 + If this is an old-style varargs function, then its arguments
307 need to be flushed back to the stack:
308
309 mov d0,(4,sp)
310 mov d1,(4,sp)
311
312 + If we use any of the callee-saved registers, save them now.
313
314 movm [some callee-saved registers],(sp)
315
316 + If we have any floating-point registers to save:
317
318 - Decrement the stack pointer to reserve space for the registers.
319 If the function doesn't need a frame pointer, we may combine
320 this with the adjustment that reserves space for the frame.
321
322 add -SIZE, sp
323
324 - Save the floating-point registers. We have two possible
325 strategies:
326
327 . Save them at fixed offset from the SP:
328
329 fmov fsN,(OFFSETN,sp)
330 fmov fsM,(OFFSETM,sp)
331 ...
332
333 Note that, if OFFSETN happens to be zero, you'll get the
334 different opcode: fmov fsN,(sp)
335
336 . Or, set a0 to the start of the save area, and then use
337 post-increment addressing to save the FP registers.
338
339 mov sp, a0
340 add SIZE, a0
341 fmov fsN,(a0+)
342 fmov fsM,(a0+)
343 ...
344
345 + If the function needs a frame pointer, we set it here.
346
347 mov sp, a3
348
349 + Now we reserve space for the stack frame proper. This could be
350 merged into the `add -SIZE, sp' instruction for FP saves up
351 above, unless we needed to set the frame pointer in the previous
352 step, or the frame is so large that allocating the whole thing at
353 once would put the FP register save slots out of reach of the
354 addressing mode (128 bytes).
355
356 add -SIZE, sp
357
358 One day we might keep the stack pointer constant, that won't
359 change the code for prologues, but it will make the frame
360 pointerless case much more common. */
361
362 /* Analyze the prologue to determine where registers are saved,
363 the end of the prologue, etc etc. Return the end of the prologue
364 scanned.
365
366 We store into FI (if non-null) several tidbits of information:
367
368 * stack_size -- size of this stack frame. Note that if we stop in
369 certain parts of the prologue/epilogue we may claim the size of the
370 current frame is zero. This happens when the current frame has
371 not been allocated yet or has already been deallocated.
372
373 * fsr -- Addresses of registers saved in the stack by this frame.
374
375 * status -- A (relatively) generic status indicator. It's a bitmask
376 with the following bits:
377
378 MY_FRAME_IN_SP: The base of the current frame is actually in
379 the stack pointer. This can happen for frame pointerless
380 functions, or cases where we're stopped in the prologue/epilogue
381 itself. For these cases mn10300_analyze_prologue will need up
382 update fi->frame before returning or analyzing the register
383 save instructions.
384
385 MY_FRAME_IN_FP: The base of the current frame is in the
386 frame pointer register ($a3).
387
388 NO_MORE_FRAMES: Set this if the current frame is "start" or
389 if the first instruction looks like mov <imm>,sp. This tells
390 frame chain to not bother trying to unwind past this frame. */
391
392 static CORE_ADDR
393 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
394 {
395 CORE_ADDR func_addr, func_end, addr, stop;
396 CORE_ADDR stack_size;
397 int imm_size;
398 unsigned char buf[4];
399 int status, movm_args = 0;
400 char *name;
401
402 /* Use the PC in the frame if it's provided to look up the
403 start of this function.
404
405 Note: kevinb/2003-07-16: We used to do the following here:
406 pc = (fi ? get_frame_pc (fi) : pc);
407 But this is (now) badly broken when called from analyze_dummy_frame().
408 */
409 pc = (pc ? pc : get_frame_pc (fi));
410
411 /* Find the start of this function. */
412 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
413
414 /* Do nothing if we couldn't find the start of this function or if we're
415 stopped at the first instruction in the prologue. */
416 if (status == 0)
417 {
418 return pc;
419 }
420
421 /* If we're in start, then give up. */
422 if (strcmp (name, "start") == 0)
423 {
424 if (fi != NULL)
425 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
426 return pc;
427 }
428
429 /* At the start of a function our frame is in the stack pointer. */
430 if (fi)
431 get_frame_extra_info (fi)->status = MY_FRAME_IN_SP;
432
433 /* Get the next two bytes into buf, we need two because rets is a two
434 byte insn and the first isn't enough to uniquely identify it. */
435 status = read_memory_nobpt (pc, buf, 2);
436 if (status != 0)
437 return pc;
438
439 #if 0
440 /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of
441 changes to the frame in prologue examination code. */
442 /* If we're physically on an "rets" instruction, then our frame has
443 already been deallocated. Note this can also be true for retf
444 and ret if they specify a size of zero.
445
446 In this case fi->frame is bogus, we need to fix it. */
447 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
448 {
449 if (get_next_frame (fi) == NULL)
450 deprecated_update_frame_base_hack (fi, read_sp ());
451 return get_frame_pc (fi);
452 }
453
454 /* Similarly if we're stopped on the first insn of a prologue as our
455 frame hasn't been allocated yet. */
456 if (fi && get_frame_pc (fi) == func_addr)
457 {
458 if (get_next_frame (fi) == NULL)
459 deprecated_update_frame_base_hack (fi, read_sp ());
460 return get_frame_pc (fi);
461 }
462 #endif
463
464 /* Figure out where to stop scanning. */
465 stop = fi ? pc : func_end;
466
467 /* Don't walk off the end of the function. */
468 stop = stop > func_end ? func_end : stop;
469
470 /* Start scanning on the first instruction of this function. */
471 addr = func_addr;
472
473 /* Suck in two bytes. */
474 status = read_memory_nobpt (addr, buf, 2);
475 if (status != 0)
476 {
477 fix_frame_pointer (fi, 0);
478 return addr;
479 }
480
481 /* First see if this insn sets the stack pointer from a register; if
482 so, it's probably the initialization of the stack pointer in _start,
483 so mark this as the bottom-most frame. */
484 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
485 {
486 if (fi)
487 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
488 return addr;
489 }
490
491 /* Now look for movm [regs],sp, which saves the callee saved registers.
492
493 At this time we don't know if fi->frame is valid, so we only note
494 that we encountered a movm instruction. Later, we'll set the entries
495 in fsr.regs as needed. */
496 if (buf[0] == 0xcf)
497 {
498 /* Extract the register list for the movm instruction. */
499 status = read_memory_nobpt (addr + 1, buf, 1);
500 movm_args = *buf;
501
502 addr += 2;
503
504 /* Quit now if we're beyond the stop point. */
505 if (addr >= stop)
506 {
507 /* Fix fi->frame since it's bogus at this point. */
508 if (fi && get_next_frame (fi) == NULL)
509 deprecated_update_frame_base_hack (fi, read_sp ());
510
511 /* Note if/where callee saved registers were saved. */
512 set_movm_offsets (fi, movm_args);
513 return addr;
514 }
515
516 /* Get the next two bytes so the prologue scan can continue. */
517 status = read_memory_nobpt (addr, buf, 2);
518 if (status != 0)
519 {
520 /* Fix fi->frame since it's bogus at this point. */
521 if (fi && get_next_frame (fi) == NULL)
522 deprecated_update_frame_base_hack (fi, read_sp ());
523
524 /* Note if/where callee saved registers were saved. */
525 set_movm_offsets (fi, movm_args);
526 return addr;
527 }
528 }
529
530 /* Now see if we set up a frame pointer via "mov sp,a3" */
531 if (buf[0] == 0x3f)
532 {
533 addr += 1;
534
535 /* The frame pointer is now valid. */
536 if (fi)
537 {
538 get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP;
539 get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP;
540 }
541
542 /* Quit now if we're beyond the stop point. */
543 if (addr >= stop)
544 {
545 /* Fix fi->frame if it's bogus at this point. */
546 fix_frame_pointer (fi, 0);
547
548 /* Note if/where callee saved registers were saved. */
549 set_movm_offsets (fi, movm_args);
550 return addr;
551 }
552
553 /* Get two more bytes so scanning can continue. */
554 status = read_memory_nobpt (addr, buf, 2);
555 if (status != 0)
556 {
557 /* Fix fi->frame if it's bogus at this point. */
558 fix_frame_pointer (fi, 0);
559
560 /* Note if/where callee saved registers were saved. */
561 set_movm_offsets (fi, movm_args);
562 return addr;
563 }
564 }
565
566 /* Next we should allocate the local frame. No more prologue insns
567 are found after allocating the local frame.
568
569 Search for add imm8,sp (0xf8feXX)
570 or add imm16,sp (0xfafeXXXX)
571 or add imm32,sp (0xfcfeXXXXXXXX).
572
573 If none of the above was found, then this prologue has no
574 additional stack. */
575
576 status = read_memory_nobpt (addr, buf, 2);
577 if (status != 0)
578 {
579 /* Fix fi->frame if it's bogus at this point. */
580 fix_frame_pointer (fi, 0);
581
582 /* Note if/where callee saved registers were saved. */
583 set_movm_offsets (fi, movm_args);
584 return addr;
585 }
586
587 imm_size = 0;
588 if (buf[0] == 0xf8 && buf[1] == 0xfe)
589 imm_size = 1;
590 else if (buf[0] == 0xfa && buf[1] == 0xfe)
591 imm_size = 2;
592 else if (buf[0] == 0xfc && buf[1] == 0xfe)
593 imm_size = 4;
594
595 if (imm_size != 0)
596 {
597 /* Suck in imm_size more bytes, they'll hold the size of the
598 current frame. */
599 status = read_memory_nobpt (addr + 2, buf, imm_size);
600 if (status != 0)
601 {
602 /* Fix fi->frame if it's bogus at this point. */
603 fix_frame_pointer (fi, 0);
604
605 /* Note if/where callee saved registers were saved. */
606 set_movm_offsets (fi, movm_args);
607 return addr;
608 }
609
610 /* Note the size of the stack in the frame info structure. */
611 stack_size = extract_signed_integer (buf, imm_size);
612 if (fi)
613 get_frame_extra_info (fi)->stack_size = stack_size;
614
615 /* We just consumed 2 + imm_size bytes. */
616 addr += 2 + imm_size;
617
618 /* No more prologue insns follow, so begin preparation to return. */
619 /* Fix fi->frame if it's bogus at this point. */
620 fix_frame_pointer (fi, stack_size);
621
622 /* Note if/where callee saved registers were saved. */
623 set_movm_offsets (fi, movm_args);
624 return addr;
625 }
626
627 /* We never found an insn which allocates local stack space, regardless
628 this is the end of the prologue. */
629 /* Fix fi->frame if it's bogus at this point. */
630 fix_frame_pointer (fi, 0);
631
632 /* Note if/where callee saved registers were saved. */
633 set_movm_offsets (fi, movm_args);
634 return addr;
635 }
636
637
638 /* Function: saved_regs_size
639 Return the size in bytes of the register save area, based on the
640 saved_regs array in FI. */
641 static int
642 saved_regs_size (struct frame_info *fi)
643 {
644 int adjust = 0;
645 int i;
646
647 /* Reserve four bytes for every register saved. */
648 for (i = 0; i < NUM_REGS; i++)
649 if (deprecated_get_frame_saved_regs (fi)[i])
650 adjust += 4;
651
652 /* If we saved LIR, then it's most likely we used a `movm'
653 instruction with the `other' bit set, in which case the SP is
654 decremented by an extra four bytes, "to simplify calculation
655 of the transfer area", according to the processor manual. */
656 if (deprecated_get_frame_saved_regs (fi)[LIR_REGNUM])
657 adjust += 4;
658
659 return adjust;
660 }
661
662
663 /* Function: frame_chain
664 Figure out and return the caller's frame pointer given current
665 frame_info struct.
666
667 We don't handle dummy frames yet but we would probably just return the
668 stack pointer that was in use at the time the function call was made? */
669
670 static CORE_ADDR
671 mn10300_frame_chain (struct frame_info *fi)
672 {
673 struct frame_info *dummy;
674 /* Walk through the prologue to determine the stack size,
675 location of saved registers, end of the prologue, etc. */
676 if (get_frame_extra_info (fi)->status == 0)
677 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
678
679 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
680 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
681 return 0;
682
683 /* Now that we've analyzed our prologue, determine the frame
684 pointer for our caller.
685
686 If our caller has a frame pointer, then we need to
687 find the entry value of $a3 to our function.
688
689 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
690 location pointed to by fsr.regs[A3_REGNUM].
691
692 Else it's still in $a3.
693
694 If our caller does not have a frame pointer, then his
695 frame base is fi->frame + -caller's stack size. */
696
697 /* The easiest way to get that info is to analyze our caller's frame.
698 So we set up a dummy frame and call mn10300_analyze_prologue to
699 find stuff for us. */
700 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
701
702 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
703 {
704 /* Our caller has a frame pointer. So find the frame in $a3 or
705 in the stack. */
706 if (deprecated_get_frame_saved_regs (fi)[A3_REGNUM])
707 return (read_memory_integer (deprecated_get_frame_saved_regs (fi)[A3_REGNUM],
708 DEPRECATED_REGISTER_SIZE));
709 else
710 return read_register (A3_REGNUM);
711 }
712 else
713 {
714 int adjust = saved_regs_size (fi);
715
716 /* Our caller does not have a frame pointer. So his frame starts
717 at the base of our frame (fi->frame) + register save space
718 + <his size>. */
719 return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size;
720 }
721 }
722
723 /* Function: skip_prologue
724 Return the address of the first inst past the prologue of the function. */
725
726 static CORE_ADDR
727 mn10300_skip_prologue (CORE_ADDR pc)
728 {
729 /* We used to check the debug symbols, but that can lose if
730 we have a null prologue. */
731 return mn10300_analyze_prologue (NULL, pc);
732 }
733
734 /* generic_pop_current_frame calls this function if the current
735 frame isn't a dummy frame. */
736 static void
737 mn10300_pop_frame_regular (struct frame_info *frame)
738 {
739 int regnum;
740
741 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
742
743 /* Restore any saved registers. */
744 for (regnum = 0; regnum < NUM_REGS; regnum++)
745 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
746 {
747 ULONGEST value;
748
749 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
750 DEPRECATED_REGISTER_RAW_SIZE (regnum));
751 write_register (regnum, value);
752 }
753
754 /* Actually cut back the stack. */
755 write_register (SP_REGNUM, get_frame_base (frame));
756
757 /* Don't we need to set the PC?!? XXX FIXME. */
758 }
759
760 /* Function: pop_frame
761 This routine gets called when either the user uses the `return'
762 command, or the call dummy breakpoint gets hit. */
763 static void
764 mn10300_pop_frame (void)
765 {
766 /* This function checks for and handles generic dummy frames, and
767 calls back to our function for ordinary frames. */
768 generic_pop_current_frame (mn10300_pop_frame_regular);
769
770 /* Throw away any cached frame information. */
771 flush_cached_frames ();
772 }
773
774 /* Function: push_arguments
775 Setup arguments for a call to the target. Arguments go in
776 order on the stack. */
777
778 static CORE_ADDR
779 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
780 int struct_return, CORE_ADDR struct_addr)
781 {
782 int argnum = 0;
783 int len = 0;
784 int stack_offset = 0;
785 int regsused = struct_return ? 1 : 0;
786
787 /* This should be a nop, but align the stack just in case something
788 went wrong. Stacks are four byte aligned on the mn10300. */
789 sp &= ~3;
790
791 /* Now make space on the stack for the args.
792
793 XXX This doesn't appear to handle pass-by-invisible reference
794 arguments. */
795 for (argnum = 0; argnum < nargs; argnum++)
796 {
797 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
798
799 while (regsused < 2 && arg_length > 0)
800 {
801 regsused++;
802 arg_length -= 4;
803 }
804 len += arg_length;
805 }
806
807 /* Allocate stack space. */
808 sp -= len;
809
810 regsused = struct_return ? 1 : 0;
811 /* Push all arguments onto the stack. */
812 for (argnum = 0; argnum < nargs; argnum++)
813 {
814 int len;
815 char *val;
816
817 /* XXX Check this. What about UNIONS? */
818 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
819 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
820 {
821 /* XXX Wrong, we want a pointer to this argument. */
822 len = TYPE_LENGTH (VALUE_TYPE (*args));
823 val = (char *) VALUE_CONTENTS (*args);
824 }
825 else
826 {
827 len = TYPE_LENGTH (VALUE_TYPE (*args));
828 val = (char *) VALUE_CONTENTS (*args);
829 }
830
831 while (regsused < 2 && len > 0)
832 {
833 write_register (regsused, extract_unsigned_integer (val, 4));
834 val += 4;
835 len -= 4;
836 regsused++;
837 }
838
839 while (len > 0)
840 {
841 write_memory (sp + stack_offset, val, 4);
842 len -= 4;
843 val += 4;
844 stack_offset += 4;
845 }
846
847 args++;
848 }
849
850 /* Make space for the flushback area. */
851 sp -= 8;
852 return sp;
853 }
854
855 /* Function: push_return_address (pc)
856 Set up the return address for the inferior function call.
857 Needed for targets where we don't actually execute a JSR/BSR instruction */
858
859 static CORE_ADDR
860 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
861 {
862 unsigned char buf[4];
863
864 store_unsigned_integer (buf, 4, entry_point_address ());
865 write_memory (sp - 4, buf, 4);
866 return sp - 4;
867 }
868
869 /* Function: store_struct_return (addr,sp)
870 Store the structure value return address for an inferior function
871 call. */
872
873 static void
874 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
875 {
876 /* The structure return address is passed as the first argument. */
877 write_register (0, addr);
878 }
879
880 /* Function: frame_saved_pc
881 Find the caller of this frame. We do this by seeing if RP_REGNUM
882 is saved in the stack anywhere, otherwise we get it from the
883 registers. If the inner frame is a dummy frame, return its PC
884 instead of RP, because that's where "caller" of the dummy-frame
885 will be found. */
886
887 static CORE_ADDR
888 mn10300_frame_saved_pc (struct frame_info *fi)
889 {
890 int adjust = saved_regs_size (fi);
891
892 return (read_memory_integer (get_frame_base (fi) + adjust,
893 DEPRECATED_REGISTER_SIZE));
894 }
895
896 /* Function: mn10300_init_extra_frame_info
897 Setup the frame's frame pointer, pc, and frame addresses for saved
898 registers. Most of the work is done in mn10300_analyze_prologue().
899
900 Note that when we are called for the last frame (currently active frame),
901 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will
902 be valid only if this routine uses FP. For previous frames, fi-frame will
903 always be correct. mn10300_analyze_prologue will fix fi->frame if
904 it's not valid.
905
906 We can be called with the PC in the call dummy under two
907 circumstances. First, during normal backtracing, second, while
908 figuring out the frame pointer just prior to calling the target
909 function (see call_function_by_hand). */
910
911 static void
912 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
913 {
914 if (get_next_frame (fi))
915 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
916
917 frame_saved_regs_zalloc (fi);
918 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
919
920 get_frame_extra_info (fi)->status = 0;
921 get_frame_extra_info (fi)->stack_size = 0;
922
923 mn10300_analyze_prologue (fi, 0);
924 }
925
926
927 /* This function's job is handled by init_extra_frame_info. */
928 static void
929 mn10300_frame_init_saved_regs (struct frame_info *frame)
930 {
931 }
932
933
934 /* Function: mn10300_virtual_frame_pointer
935 Return the register that the function uses for a frame pointer,
936 plus any necessary offset to be applied to the register before
937 any frame pointer offsets. */
938
939 static void
940 mn10300_virtual_frame_pointer (CORE_ADDR pc,
941 int *reg,
942 LONGEST *offset)
943 {
944 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
945 /* Set up a dummy frame_info, Analyze the prolog and fill in the
946 extra info. */
947 /* Results will tell us which type of frame it uses. */
948 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
949 {
950 *reg = SP_REGNUM;
951 *offset = -(get_frame_extra_info (dummy)->stack_size);
952 }
953 else
954 {
955 *reg = A3_REGNUM;
956 *offset = 0;
957 }
958 }
959
960 static int
961 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
962 {
963 return (TYPE_LENGTH (type) > 8);
964 }
965
966 static struct type *
967 mn10300_register_virtual_type (int reg)
968 {
969 return builtin_type_int;
970 }
971
972 static int
973 mn10300_register_byte (int reg)
974 {
975 return (reg * 4);
976 }
977
978 static int
979 mn10300_register_virtual_size (int reg)
980 {
981 return 4;
982 }
983
984 static int
985 mn10300_register_raw_size (int reg)
986 {
987 return 4;
988 }
989
990 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
991 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
992 register number. Why don't Dwarf2 and GDB use the same numbering?
993 Who knows? But since people have object files lying around with
994 the existing Dwarf2 numbering, and other people have written stubs
995 to work with the existing GDB, neither of them can change. So we
996 just have to cope. */
997 static int
998 mn10300_dwarf2_reg_to_regnum (int dwarf2)
999 {
1000 /* This table is supposed to be shaped like the REGISTER_NAMES
1001 initializer in gcc/config/mn10300/mn10300.h. Registers which
1002 appear in GCC's numbering, but have no counterpart in GDB's
1003 world, are marked with a -1. */
1004 static int dwarf2_to_gdb[] = {
1005 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
1006 15, 16, 17, 18, 19, 20, 21, 22
1007 };
1008 int gdb;
1009
1010 if (dwarf2 < 0
1011 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
1012 || dwarf2_to_gdb[dwarf2] == -1)
1013 internal_error (__FILE__, __LINE__,
1014 "bogus register number in debug info: %d", dwarf2);
1015
1016 return dwarf2_to_gdb[dwarf2];
1017 }
1018
1019 static void
1020 mn10300_print_register (const char *name, int regnum, int reg_width)
1021 {
1022 char raw_buffer[MAX_REGISTER_SIZE];
1023
1024 if (reg_width)
1025 printf_filtered ("%*s: ", reg_width, name);
1026 else
1027 printf_filtered ("%s: ", name);
1028
1029 /* Get the data */
1030 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1031 {
1032 printf_filtered ("[invalid]");
1033 return;
1034 }
1035 else
1036 {
1037 int byte;
1038 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1039 {
1040 for (byte = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
1041 byte < DEPRECATED_REGISTER_RAW_SIZE (regnum);
1042 byte++)
1043 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1044 }
1045 else
1046 {
1047 for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1;
1048 byte >= 0;
1049 byte--)
1050 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1051 }
1052 }
1053 }
1054
1055 static void
1056 mn10300_do_registers_info (int regnum, int fpregs)
1057 {
1058 if (regnum >= 0)
1059 {
1060 const char *name = REGISTER_NAME (regnum);
1061 if (name == NULL || name[0] == '\0')
1062 error ("Not a valid register for the current processor type");
1063 mn10300_print_register (name, regnum, 0);
1064 printf_filtered ("\n");
1065 }
1066 else
1067 {
1068 /* print registers in an array 4x8 */
1069 int r;
1070 int reg;
1071 const int nr_in_row = 4;
1072 const int reg_width = 4;
1073 for (r = 0; r < NUM_REGS; r += nr_in_row)
1074 {
1075 int c;
1076 int printing = 0;
1077 int padding = 0;
1078 for (c = r; c < r + nr_in_row; c++)
1079 {
1080 const char *name = REGISTER_NAME (c);
1081 if (name != NULL && *name != '\0')
1082 {
1083 printing = 1;
1084 while (padding > 0)
1085 {
1086 printf_filtered (" ");
1087 padding--;
1088 }
1089 mn10300_print_register (name, c, reg_width);
1090 printf_filtered (" ");
1091 }
1092 else
1093 {
1094 padding += (reg_width + 2 + 8 + 1);
1095 }
1096 }
1097 if (printing)
1098 printf_filtered ("\n");
1099 }
1100 }
1101 }
1102
1103 static CORE_ADDR
1104 mn10300_read_fp (void)
1105 {
1106 /* That's right, we're using the stack pointer as our frame pointer. */
1107 gdb_assert (SP_REGNUM >= 0);
1108 return read_register (SP_REGNUM);
1109 }
1110
1111 /* Dump out the mn10300 speciic architecture information. */
1112
1113 static void
1114 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1115 {
1116 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1117 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1118 tdep->am33_mode);
1119 }
1120
1121 static struct gdbarch *
1122 mn10300_gdbarch_init (struct gdbarch_info info,
1123 struct gdbarch_list *arches)
1124 {
1125 static LONGEST mn10300_call_dummy_words[] = { 0 };
1126 struct gdbarch *gdbarch;
1127 struct gdbarch_tdep *tdep = NULL;
1128 int am33_mode;
1129 gdbarch_register_name_ftype *register_name;
1130 int mach;
1131 int num_regs;
1132
1133 arches = gdbarch_list_lookup_by_info (arches, &info);
1134 if (arches != NULL)
1135 return arches->gdbarch;
1136 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1137 gdbarch = gdbarch_alloc (&info, tdep);
1138
1139 if (info.bfd_arch_info != NULL
1140 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1141 mach = info.bfd_arch_info->mach;
1142 else
1143 mach = 0;
1144 switch (mach)
1145 {
1146 case 0:
1147 case bfd_mach_mn10300:
1148 am33_mode = 0;
1149 register_name = mn10300_generic_register_name;
1150 num_regs = 32;
1151 break;
1152 case bfd_mach_am33:
1153 am33_mode = 1;
1154 register_name = am33_register_name;
1155 num_regs = 32;
1156 break;
1157 default:
1158 internal_error (__FILE__, __LINE__,
1159 "mn10300_gdbarch_init: Unknown mn10300 variant");
1160 return NULL; /* keep GCC happy. */
1161 }
1162
1163 /* Registers. */
1164 set_gdbarch_num_regs (gdbarch, num_regs);
1165 set_gdbarch_register_name (gdbarch, register_name);
1166 set_gdbarch_deprecated_register_size (gdbarch, 4);
1167 set_gdbarch_deprecated_register_bytes (gdbarch, num_regs * gdbarch_deprecated_register_size (gdbarch));
1168 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1169 set_gdbarch_deprecated_register_raw_size (gdbarch, mn10300_register_raw_size);
1170 set_gdbarch_deprecated_register_byte (gdbarch, mn10300_register_byte);
1171 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1172 set_gdbarch_deprecated_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1173 set_gdbarch_deprecated_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1174 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1175 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1176 set_gdbarch_sp_regnum (gdbarch, 8);
1177 set_gdbarch_pc_regnum (gdbarch, 9);
1178 set_gdbarch_deprecated_fp_regnum (gdbarch, 31);
1179 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1180
1181 /* Breakpoints. */
1182 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1183 set_gdbarch_function_start_offset (gdbarch, 0);
1184 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1185
1186 /* Stack unwinding. */
1187 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1188 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1189 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1190 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1191 set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain);
1192 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1193 set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
1194 set_gdbarch_deprecated_extract_struct_value_address
1195 (gdbarch, mn10300_extract_struct_value_address);
1196 set_gdbarch_deprecated_store_return_value (gdbarch, mn10300_store_return_value);
1197 set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return);
1198 set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame);
1199 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1200 set_gdbarch_frame_args_skip (gdbarch, 0);
1201 /* That's right, we're using the stack pointer as our frame pointer. */
1202 set_gdbarch_deprecated_target_read_fp (gdbarch, mn10300_read_fp);
1203
1204 /* Calling functions in the inferior from GDB. */
1205 set_gdbarch_deprecated_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1206 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (mn10300_call_dummy_words));
1207 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1208 set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments);
1209 set_gdbarch_deprecated_reg_struct_has_addr
1210 (gdbarch, mn10300_reg_struct_has_addr);
1211 set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address);
1212 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1213 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1214
1215 tdep->am33_mode = am33_mode;
1216
1217 /* Should be using push_dummy_call. */
1218 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1219
1220 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1221
1222 return gdbarch;
1223 }
1224
1225 void
1226 _initialize_mn10300_tdep (void)
1227 {
1228 /* printf("_initialize_mn10300_tdep\n"); */
1229
1230 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1231 }
This page took 0.061222 seconds and 4 git commands to generate.