* regcache.c (register_buffer): Consitify first argument.
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "gdb_assert.h"
35
36 #define D0_REGNUM 0
37 #define D2_REGNUM 2
38 #define D3_REGNUM 3
39 #define A0_REGNUM 4
40 #define A2_REGNUM 6
41 #define A3_REGNUM 7
42 #define MDR_REGNUM 10
43 #define PSW_REGNUM 11
44 #define LIR_REGNUM 12
45 #define LAR_REGNUM 13
46 #define MDRQ_REGNUM 14
47 #define E0_REGNUM 15
48 #define MCRH_REGNUM 26
49 #define MCRL_REGNUM 27
50 #define MCVF_REGNUM 28
51
52 enum movm_register_bits {
53 movm_exother_bit = 0x01,
54 movm_exreg1_bit = 0x02,
55 movm_exreg0_bit = 0x04,
56 movm_other_bit = 0x08,
57 movm_a3_bit = 0x10,
58 movm_a2_bit = 0x20,
59 movm_d3_bit = 0x40,
60 movm_d2_bit = 0x80
61 };
62
63 extern void _initialize_mn10300_tdep (void);
64 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
65 CORE_ADDR pc);
66
67 /* mn10300 private data */
68 struct gdbarch_tdep
69 {
70 int am33_mode;
71 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
72 };
73
74 /* Additional info used by the frame */
75
76 struct frame_extra_info
77 {
78 int status;
79 int stack_size;
80 };
81
82
83 static char *
84 register_name (int reg, char **regs, long sizeof_regs)
85 {
86 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
87 return NULL;
88 else
89 return regs[reg];
90 }
91
92 static const char *
93 mn10300_generic_register_name (int reg)
94 {
95 static char *regs[] =
96 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
97 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
98 "", "", "", "", "", "", "", "",
99 "", "", "", "", "", "", "", "fp"
100 };
101 return register_name (reg, regs, sizeof regs);
102 }
103
104
105 static const char *
106 am33_register_name (int reg)
107 {
108 static char *regs[] =
109 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
110 "sp", "pc", "mdr", "psw", "lir", "lar", "",
111 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
112 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
113 };
114 return register_name (reg, regs, sizeof regs);
115 }
116
117 static CORE_ADDR
118 mn10300_saved_pc_after_call (struct frame_info *fi)
119 {
120 return read_memory_integer (read_register (SP_REGNUM), 4);
121 }
122
123 static void
124 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
125 {
126 if (TYPE_CODE (type) == TYPE_CODE_PTR)
127 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
128 else
129 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
130 }
131
132 static CORE_ADDR
133 mn10300_extract_struct_value_address (char *regbuf)
134 {
135 return extract_unsigned_integer (regbuf + REGISTER_BYTE (4),
136 REGISTER_RAW_SIZE (4));
137 }
138
139 static void
140 mn10300_store_return_value (struct type *type, char *valbuf)
141 {
142 if (TYPE_CODE (type) == TYPE_CODE_PTR)
143 deprecated_write_register_bytes (REGISTER_BYTE (4), valbuf,
144 TYPE_LENGTH (type));
145 else
146 deprecated_write_register_bytes (REGISTER_BYTE (0), valbuf,
147 TYPE_LENGTH (type));
148 }
149
150 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
151 static struct frame_info *
152 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
153 {
154 static struct frame_info *dummy = NULL;
155 if (dummy == NULL)
156 {
157 struct frame_extra_info *extra_info;
158 CORE_ADDR *saved_regs;
159 dummy = deprecated_frame_xmalloc ();
160 saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
161 deprecated_set_frame_saved_regs_hack (dummy, saved_regs);
162 extra_info = XMALLOC (struct frame_extra_info);
163 deprecated_set_frame_extra_info_hack (dummy, extra_info);
164 }
165 deprecated_set_frame_next_hack (dummy, NULL);
166 deprecated_set_frame_prev_hack (dummy, NULL);
167 deprecated_update_frame_pc_hack (dummy, pc);
168 deprecated_update_frame_base_hack (dummy, frame);
169 get_frame_extra_info (dummy)->status = 0;
170 get_frame_extra_info (dummy)->stack_size = 0;
171 memset (get_frame_saved_regs (dummy), '\000', SIZEOF_FRAME_SAVED_REGS);
172 mn10300_analyze_prologue (dummy, pc);
173 return dummy;
174 }
175
176 /* Values for frame_info.status */
177
178 #define MY_FRAME_IN_SP 0x1
179 #define MY_FRAME_IN_FP 0x2
180 #define NO_MORE_FRAMES 0x4
181
182
183 /* Should call_function allocate stack space for a struct return? */
184 static int
185 mn10300_use_struct_convention (int gcc_p, struct type *type)
186 {
187 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
188 }
189
190 /* The breakpoint instruction must be the same size as the smallest
191 instruction in the instruction set.
192
193 The Matsushita mn10x00 processors have single byte instructions
194 so we need a single byte breakpoint. Matsushita hasn't defined
195 one, so we defined it ourselves. */
196
197 const static unsigned char *
198 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
199 {
200 static char breakpoint[] =
201 {0xff};
202 *bp_size = 1;
203 return breakpoint;
204 }
205
206
207 /* Fix fi->frame if it's bogus at this point. This is a helper
208 function for mn10300_analyze_prologue. */
209
210 static void
211 fix_frame_pointer (struct frame_info *fi, int stack_size)
212 {
213 if (fi && get_next_frame (fi) == NULL)
214 {
215 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
216 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
217 else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP)
218 deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM));
219 }
220 }
221
222
223 /* Set offsets of registers saved by movm instruction.
224 This is a helper function for mn10300_analyze_prologue. */
225
226 static void
227 set_movm_offsets (struct frame_info *fi, int movm_args)
228 {
229 int offset = 0;
230
231 if (fi == NULL || movm_args == 0)
232 return;
233
234 if (movm_args & movm_other_bit)
235 {
236 /* The `other' bit leaves a blank area of four bytes at the
237 beginning of its block of saved registers, making it 32 bytes
238 long in total. */
239 get_frame_saved_regs (fi)[LAR_REGNUM] = get_frame_base (fi) + offset + 4;
240 get_frame_saved_regs (fi)[LIR_REGNUM] = get_frame_base (fi) + offset + 8;
241 get_frame_saved_regs (fi)[MDR_REGNUM] = get_frame_base (fi) + offset + 12;
242 get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
243 get_frame_saved_regs (fi)[A0_REGNUM] = get_frame_base (fi) + offset + 20;
244 get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24;
245 get_frame_saved_regs (fi)[D0_REGNUM] = get_frame_base (fi) + offset + 28;
246 offset += 32;
247 }
248 if (movm_args & movm_a3_bit)
249 {
250 get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset;
251 offset += 4;
252 }
253 if (movm_args & movm_a2_bit)
254 {
255 get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset;
256 offset += 4;
257 }
258 if (movm_args & movm_d3_bit)
259 {
260 get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset;
261 offset += 4;
262 }
263 if (movm_args & movm_d2_bit)
264 {
265 get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset;
266 offset += 4;
267 }
268 if (AM33_MODE)
269 {
270 if (movm_args & movm_exother_bit)
271 {
272 get_frame_saved_regs (fi)[MCVF_REGNUM] = get_frame_base (fi) + offset;
273 get_frame_saved_regs (fi)[MCRL_REGNUM] = get_frame_base (fi) + offset + 4;
274 get_frame_saved_regs (fi)[MCRH_REGNUM] = get_frame_base (fi) + offset + 8;
275 get_frame_saved_regs (fi)[MDRQ_REGNUM] = get_frame_base (fi) + offset + 12;
276 get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
277 get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20;
278 offset += 24;
279 }
280 if (movm_args & movm_exreg1_bit)
281 {
282 get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset;
283 get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4;
284 get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8;
285 get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12;
286 offset += 16;
287 }
288 if (movm_args & movm_exreg0_bit)
289 {
290 get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset;
291 get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4;
292 offset += 8;
293 }
294 }
295 }
296
297
298 /* The main purpose of this file is dealing with prologues to extract
299 information about stack frames and saved registers.
300
301 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
302 function is pretty readable, and has a nice explanation of how the
303 prologue is generated. The prologues generated by that code will
304 have the following form (NOTE: the current code doesn't handle all
305 this!):
306
307 + If this is an old-style varargs function, then its arguments
308 need to be flushed back to the stack:
309
310 mov d0,(4,sp)
311 mov d1,(4,sp)
312
313 + If we use any of the callee-saved registers, save them now.
314
315 movm [some callee-saved registers],(sp)
316
317 + If we have any floating-point registers to save:
318
319 - Decrement the stack pointer to reserve space for the registers.
320 If the function doesn't need a frame pointer, we may combine
321 this with the adjustment that reserves space for the frame.
322
323 add -SIZE, sp
324
325 - Save the floating-point registers. We have two possible
326 strategies:
327
328 . Save them at fixed offset from the SP:
329
330 fmov fsN,(OFFSETN,sp)
331 fmov fsM,(OFFSETM,sp)
332 ...
333
334 Note that, if OFFSETN happens to be zero, you'll get the
335 different opcode: fmov fsN,(sp)
336
337 . Or, set a0 to the start of the save area, and then use
338 post-increment addressing to save the FP registers.
339
340 mov sp, a0
341 add SIZE, a0
342 fmov fsN,(a0+)
343 fmov fsM,(a0+)
344 ...
345
346 + If the function needs a frame pointer, we set it here.
347
348 mov sp, a3
349
350 + Now we reserve space for the stack frame proper. This could be
351 merged into the `add -SIZE, sp' instruction for FP saves up
352 above, unless we needed to set the frame pointer in the previous
353 step, or the frame is so large that allocating the whole thing at
354 once would put the FP register save slots out of reach of the
355 addressing mode (128 bytes).
356
357 add -SIZE, sp
358
359 One day we might keep the stack pointer constant, that won't
360 change the code for prologues, but it will make the frame
361 pointerless case much more common. */
362
363 /* Analyze the prologue to determine where registers are saved,
364 the end of the prologue, etc etc. Return the end of the prologue
365 scanned.
366
367 We store into FI (if non-null) several tidbits of information:
368
369 * stack_size -- size of this stack frame. Note that if we stop in
370 certain parts of the prologue/epilogue we may claim the size of the
371 current frame is zero. This happens when the current frame has
372 not been allocated yet or has already been deallocated.
373
374 * fsr -- Addresses of registers saved in the stack by this frame.
375
376 * status -- A (relatively) generic status indicator. It's a bitmask
377 with the following bits:
378
379 MY_FRAME_IN_SP: The base of the current frame is actually in
380 the stack pointer. This can happen for frame pointerless
381 functions, or cases where we're stopped in the prologue/epilogue
382 itself. For these cases mn10300_analyze_prologue will need up
383 update fi->frame before returning or analyzing the register
384 save instructions.
385
386 MY_FRAME_IN_FP: The base of the current frame is in the
387 frame pointer register ($a3).
388
389 NO_MORE_FRAMES: Set this if the current frame is "start" or
390 if the first instruction looks like mov <imm>,sp. This tells
391 frame chain to not bother trying to unwind past this frame. */
392
393 static CORE_ADDR
394 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
395 {
396 CORE_ADDR func_addr, func_end, addr, stop;
397 CORE_ADDR stack_size;
398 int imm_size;
399 unsigned char buf[4];
400 int status, movm_args = 0;
401 char *name;
402
403 /* Use the PC in the frame if it's provided to look up the
404 start of this function.
405
406 Note: kevinb/2003-07-16: We used to do the following here:
407 pc = (fi ? get_frame_pc (fi) : pc);
408 But this is (now) badly broken when called from analyze_dummy_frame().
409 */
410 pc = (pc ? pc : get_frame_pc (fi));
411
412 /* Find the start of this function. */
413 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
414
415 /* Do nothing if we couldn't find the start of this function or if we're
416 stopped at the first instruction in the prologue. */
417 if (status == 0)
418 {
419 return pc;
420 }
421
422 /* If we're in start, then give up. */
423 if (strcmp (name, "start") == 0)
424 {
425 if (fi != NULL)
426 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
427 return pc;
428 }
429
430 /* At the start of a function our frame is in the stack pointer. */
431 if (fi)
432 get_frame_extra_info (fi)->status = MY_FRAME_IN_SP;
433
434 /* Get the next two bytes into buf, we need two because rets is a two
435 byte insn and the first isn't enough to uniquely identify it. */
436 status = read_memory_nobpt (pc, buf, 2);
437 if (status != 0)
438 return pc;
439
440 #if 0
441 /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of
442 changes to the frame in prologue examination code. */
443 /* If we're physically on an "rets" instruction, then our frame has
444 already been deallocated. Note this can also be true for retf
445 and ret if they specify a size of zero.
446
447 In this case fi->frame is bogus, we need to fix it. */
448 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
449 {
450 if (get_next_frame (fi) == NULL)
451 deprecated_update_frame_base_hack (fi, read_sp ());
452 return get_frame_pc (fi);
453 }
454
455 /* Similarly if we're stopped on the first insn of a prologue as our
456 frame hasn't been allocated yet. */
457 if (fi && get_frame_pc (fi) == func_addr)
458 {
459 if (get_next_frame (fi) == NULL)
460 deprecated_update_frame_base_hack (fi, read_sp ());
461 return get_frame_pc (fi);
462 }
463 #endif
464
465 /* Figure out where to stop scanning. */
466 stop = fi ? pc : func_end;
467
468 /* Don't walk off the end of the function. */
469 stop = stop > func_end ? func_end : stop;
470
471 /* Start scanning on the first instruction of this function. */
472 addr = func_addr;
473
474 /* Suck in two bytes. */
475 status = read_memory_nobpt (addr, buf, 2);
476 if (status != 0)
477 {
478 fix_frame_pointer (fi, 0);
479 return addr;
480 }
481
482 /* First see if this insn sets the stack pointer from a register; if
483 so, it's probably the initialization of the stack pointer in _start,
484 so mark this as the bottom-most frame. */
485 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
486 {
487 if (fi)
488 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
489 return addr;
490 }
491
492 /* Now look for movm [regs],sp, which saves the callee saved registers.
493
494 At this time we don't know if fi->frame is valid, so we only note
495 that we encountered a movm instruction. Later, we'll set the entries
496 in fsr.regs as needed. */
497 if (buf[0] == 0xcf)
498 {
499 /* Extract the register list for the movm instruction. */
500 status = read_memory_nobpt (addr + 1, buf, 1);
501 movm_args = *buf;
502
503 addr += 2;
504
505 /* Quit now if we're beyond the stop point. */
506 if (addr >= stop)
507 {
508 /* Fix fi->frame since it's bogus at this point. */
509 if (fi && get_next_frame (fi) == NULL)
510 deprecated_update_frame_base_hack (fi, read_sp ());
511
512 /* Note if/where callee saved registers were saved. */
513 set_movm_offsets (fi, movm_args);
514 return addr;
515 }
516
517 /* Get the next two bytes so the prologue scan can continue. */
518 status = read_memory_nobpt (addr, buf, 2);
519 if (status != 0)
520 {
521 /* Fix fi->frame since it's bogus at this point. */
522 if (fi && get_next_frame (fi) == NULL)
523 deprecated_update_frame_base_hack (fi, read_sp ());
524
525 /* Note if/where callee saved registers were saved. */
526 set_movm_offsets (fi, movm_args);
527 return addr;
528 }
529 }
530
531 /* Now see if we set up a frame pointer via "mov sp,a3" */
532 if (buf[0] == 0x3f)
533 {
534 addr += 1;
535
536 /* The frame pointer is now valid. */
537 if (fi)
538 {
539 get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP;
540 get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP;
541 }
542
543 /* Quit now if we're beyond the stop point. */
544 if (addr >= stop)
545 {
546 /* Fix fi->frame if it's bogus at this point. */
547 fix_frame_pointer (fi, 0);
548
549 /* Note if/where callee saved registers were saved. */
550 set_movm_offsets (fi, movm_args);
551 return addr;
552 }
553
554 /* Get two more bytes so scanning can continue. */
555 status = read_memory_nobpt (addr, buf, 2);
556 if (status != 0)
557 {
558 /* Fix fi->frame if it's bogus at this point. */
559 fix_frame_pointer (fi, 0);
560
561 /* Note if/where callee saved registers were saved. */
562 set_movm_offsets (fi, movm_args);
563 return addr;
564 }
565 }
566
567 /* Next we should allocate the local frame. No more prologue insns
568 are found after allocating the local frame.
569
570 Search for add imm8,sp (0xf8feXX)
571 or add imm16,sp (0xfafeXXXX)
572 or add imm32,sp (0xfcfeXXXXXXXX).
573
574 If none of the above was found, then this prologue has no
575 additional stack. */
576
577 status = read_memory_nobpt (addr, buf, 2);
578 if (status != 0)
579 {
580 /* Fix fi->frame if it's bogus at this point. */
581 fix_frame_pointer (fi, 0);
582
583 /* Note if/where callee saved registers were saved. */
584 set_movm_offsets (fi, movm_args);
585 return addr;
586 }
587
588 imm_size = 0;
589 if (buf[0] == 0xf8 && buf[1] == 0xfe)
590 imm_size = 1;
591 else if (buf[0] == 0xfa && buf[1] == 0xfe)
592 imm_size = 2;
593 else if (buf[0] == 0xfc && buf[1] == 0xfe)
594 imm_size = 4;
595
596 if (imm_size != 0)
597 {
598 /* Suck in imm_size more bytes, they'll hold the size of the
599 current frame. */
600 status = read_memory_nobpt (addr + 2, buf, imm_size);
601 if (status != 0)
602 {
603 /* Fix fi->frame if it's bogus at this point. */
604 fix_frame_pointer (fi, 0);
605
606 /* Note if/where callee saved registers were saved. */
607 set_movm_offsets (fi, movm_args);
608 return addr;
609 }
610
611 /* Note the size of the stack in the frame info structure. */
612 stack_size = extract_signed_integer (buf, imm_size);
613 if (fi)
614 get_frame_extra_info (fi)->stack_size = stack_size;
615
616 /* We just consumed 2 + imm_size bytes. */
617 addr += 2 + imm_size;
618
619 /* No more prologue insns follow, so begin preparation to return. */
620 /* Fix fi->frame if it's bogus at this point. */
621 fix_frame_pointer (fi, stack_size);
622
623 /* Note if/where callee saved registers were saved. */
624 set_movm_offsets (fi, movm_args);
625 return addr;
626 }
627
628 /* We never found an insn which allocates local stack space, regardless
629 this is the end of the prologue. */
630 /* Fix fi->frame if it's bogus at this point. */
631 fix_frame_pointer (fi, 0);
632
633 /* Note if/where callee saved registers were saved. */
634 set_movm_offsets (fi, movm_args);
635 return addr;
636 }
637
638
639 /* Function: saved_regs_size
640 Return the size in bytes of the register save area, based on the
641 saved_regs array in FI. */
642 static int
643 saved_regs_size (struct frame_info *fi)
644 {
645 int adjust = 0;
646 int i;
647
648 /* Reserve four bytes for every register saved. */
649 for (i = 0; i < NUM_REGS; i++)
650 if (get_frame_saved_regs (fi)[i])
651 adjust += 4;
652
653 /* If we saved LIR, then it's most likely we used a `movm'
654 instruction with the `other' bit set, in which case the SP is
655 decremented by an extra four bytes, "to simplify calculation
656 of the transfer area", according to the processor manual. */
657 if (get_frame_saved_regs (fi)[LIR_REGNUM])
658 adjust += 4;
659
660 return adjust;
661 }
662
663
664 /* Function: frame_chain
665 Figure out and return the caller's frame pointer given current
666 frame_info struct.
667
668 We don't handle dummy frames yet but we would probably just return the
669 stack pointer that was in use at the time the function call was made? */
670
671 static CORE_ADDR
672 mn10300_frame_chain (struct frame_info *fi)
673 {
674 struct frame_info *dummy;
675 /* Walk through the prologue to determine the stack size,
676 location of saved registers, end of the prologue, etc. */
677 if (get_frame_extra_info (fi)->status == 0)
678 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
679
680 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
681 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
682 return 0;
683
684 /* Now that we've analyzed our prologue, determine the frame
685 pointer for our caller.
686
687 If our caller has a frame pointer, then we need to
688 find the entry value of $a3 to our function.
689
690 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
691 location pointed to by fsr.regs[A3_REGNUM].
692
693 Else it's still in $a3.
694
695 If our caller does not have a frame pointer, then his
696 frame base is fi->frame + -caller's stack size. */
697
698 /* The easiest way to get that info is to analyze our caller's frame.
699 So we set up a dummy frame and call mn10300_analyze_prologue to
700 find stuff for us. */
701 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
702
703 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
704 {
705 /* Our caller has a frame pointer. So find the frame in $a3 or
706 in the stack. */
707 if (get_frame_saved_regs (fi)[A3_REGNUM])
708 return (read_memory_integer (get_frame_saved_regs (fi)[A3_REGNUM],
709 DEPRECATED_REGISTER_SIZE));
710 else
711 return read_register (A3_REGNUM);
712 }
713 else
714 {
715 int adjust = saved_regs_size (fi);
716
717 /* Our caller does not have a frame pointer. So his frame starts
718 at the base of our frame (fi->frame) + register save space
719 + <his size>. */
720 return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size;
721 }
722 }
723
724 /* Function: skip_prologue
725 Return the address of the first inst past the prologue of the function. */
726
727 static CORE_ADDR
728 mn10300_skip_prologue (CORE_ADDR pc)
729 {
730 /* We used to check the debug symbols, but that can lose if
731 we have a null prologue. */
732 return mn10300_analyze_prologue (NULL, pc);
733 }
734
735 /* generic_pop_current_frame calls this function if the current
736 frame isn't a dummy frame. */
737 static void
738 mn10300_pop_frame_regular (struct frame_info *frame)
739 {
740 int regnum;
741
742 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
743
744 /* Restore any saved registers. */
745 for (regnum = 0; regnum < NUM_REGS; regnum++)
746 if (get_frame_saved_regs (frame)[regnum] != 0)
747 {
748 ULONGEST value;
749
750 value = read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
751 REGISTER_RAW_SIZE (regnum));
752 write_register (regnum, value);
753 }
754
755 /* Actually cut back the stack. */
756 write_register (SP_REGNUM, get_frame_base (frame));
757
758 /* Don't we need to set the PC?!? XXX FIXME. */
759 }
760
761 /* Function: pop_frame
762 This routine gets called when either the user uses the `return'
763 command, or the call dummy breakpoint gets hit. */
764 static void
765 mn10300_pop_frame (void)
766 {
767 /* This function checks for and handles generic dummy frames, and
768 calls back to our function for ordinary frames. */
769 generic_pop_current_frame (mn10300_pop_frame_regular);
770
771 /* Throw away any cached frame information. */
772 flush_cached_frames ();
773 }
774
775 /* Function: push_arguments
776 Setup arguments for a call to the target. Arguments go in
777 order on the stack. */
778
779 static CORE_ADDR
780 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
781 int struct_return, CORE_ADDR struct_addr)
782 {
783 int argnum = 0;
784 int len = 0;
785 int stack_offset = 0;
786 int regsused = struct_return ? 1 : 0;
787
788 /* This should be a nop, but align the stack just in case something
789 went wrong. Stacks are four byte aligned on the mn10300. */
790 sp &= ~3;
791
792 /* Now make space on the stack for the args.
793
794 XXX This doesn't appear to handle pass-by-invisible reference
795 arguments. */
796 for (argnum = 0; argnum < nargs; argnum++)
797 {
798 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
799
800 while (regsused < 2 && arg_length > 0)
801 {
802 regsused++;
803 arg_length -= 4;
804 }
805 len += arg_length;
806 }
807
808 /* Allocate stack space. */
809 sp -= len;
810
811 regsused = struct_return ? 1 : 0;
812 /* Push all arguments onto the stack. */
813 for (argnum = 0; argnum < nargs; argnum++)
814 {
815 int len;
816 char *val;
817
818 /* XXX Check this. What about UNIONS? */
819 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
820 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
821 {
822 /* XXX Wrong, we want a pointer to this argument. */
823 len = TYPE_LENGTH (VALUE_TYPE (*args));
824 val = (char *) VALUE_CONTENTS (*args);
825 }
826 else
827 {
828 len = TYPE_LENGTH (VALUE_TYPE (*args));
829 val = (char *) VALUE_CONTENTS (*args);
830 }
831
832 while (regsused < 2 && len > 0)
833 {
834 write_register (regsused, extract_unsigned_integer (val, 4));
835 val += 4;
836 len -= 4;
837 regsused++;
838 }
839
840 while (len > 0)
841 {
842 write_memory (sp + stack_offset, val, 4);
843 len -= 4;
844 val += 4;
845 stack_offset += 4;
846 }
847
848 args++;
849 }
850
851 /* Make space for the flushback area. */
852 sp -= 8;
853 return sp;
854 }
855
856 /* Function: push_return_address (pc)
857 Set up the return address for the inferior function call.
858 Needed for targets where we don't actually execute a JSR/BSR instruction */
859
860 static CORE_ADDR
861 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
862 {
863 unsigned char buf[4];
864
865 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
866 write_memory (sp - 4, buf, 4);
867 return sp - 4;
868 }
869
870 /* Function: store_struct_return (addr,sp)
871 Store the structure value return address for an inferior function
872 call. */
873
874 static void
875 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
876 {
877 /* The structure return address is passed as the first argument. */
878 write_register (0, addr);
879 }
880
881 /* Function: frame_saved_pc
882 Find the caller of this frame. We do this by seeing if RP_REGNUM
883 is saved in the stack anywhere, otherwise we get it from the
884 registers. If the inner frame is a dummy frame, return its PC
885 instead of RP, because that's where "caller" of the dummy-frame
886 will be found. */
887
888 static CORE_ADDR
889 mn10300_frame_saved_pc (struct frame_info *fi)
890 {
891 int adjust = saved_regs_size (fi);
892
893 return (read_memory_integer (get_frame_base (fi) + adjust,
894 DEPRECATED_REGISTER_SIZE));
895 }
896
897 /* Function: mn10300_init_extra_frame_info
898 Setup the frame's frame pointer, pc, and frame addresses for saved
899 registers. Most of the work is done in mn10300_analyze_prologue().
900
901 Note that when we are called for the last frame (currently active frame),
902 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will
903 be valid only if this routine uses FP. For previous frames, fi-frame will
904 always be correct. mn10300_analyze_prologue will fix fi->frame if
905 it's not valid.
906
907 We can be called with the PC in the call dummy under two
908 circumstances. First, during normal backtracing, second, while
909 figuring out the frame pointer just prior to calling the target
910 function (see call_function_by_hand). */
911
912 static void
913 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
914 {
915 if (get_next_frame (fi))
916 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
917
918 frame_saved_regs_zalloc (fi);
919 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
920
921 get_frame_extra_info (fi)->status = 0;
922 get_frame_extra_info (fi)->stack_size = 0;
923
924 mn10300_analyze_prologue (fi, 0);
925 }
926
927
928 /* This function's job is handled by init_extra_frame_info. */
929 static void
930 mn10300_frame_init_saved_regs (struct frame_info *frame)
931 {
932 }
933
934
935 /* Function: mn10300_virtual_frame_pointer
936 Return the register that the function uses for a frame pointer,
937 plus any necessary offset to be applied to the register before
938 any frame pointer offsets. */
939
940 static void
941 mn10300_virtual_frame_pointer (CORE_ADDR pc,
942 int *reg,
943 LONGEST *offset)
944 {
945 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
946 /* Set up a dummy frame_info, Analyze the prolog and fill in the
947 extra info. */
948 /* Results will tell us which type of frame it uses. */
949 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
950 {
951 *reg = SP_REGNUM;
952 *offset = -(get_frame_extra_info (dummy)->stack_size);
953 }
954 else
955 {
956 *reg = A3_REGNUM;
957 *offset = 0;
958 }
959 }
960
961 static int
962 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
963 {
964 return (TYPE_LENGTH (type) > 8);
965 }
966
967 static struct type *
968 mn10300_register_virtual_type (int reg)
969 {
970 return builtin_type_int;
971 }
972
973 static int
974 mn10300_register_byte (int reg)
975 {
976 return (reg * 4);
977 }
978
979 static int
980 mn10300_register_virtual_size (int reg)
981 {
982 return 4;
983 }
984
985 static int
986 mn10300_register_raw_size (int reg)
987 {
988 return 4;
989 }
990
991 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
992 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
993 register number. Why don't Dwarf2 and GDB use the same numbering?
994 Who knows? But since people have object files lying around with
995 the existing Dwarf2 numbering, and other people have written stubs
996 to work with the existing GDB, neither of them can change. So we
997 just have to cope. */
998 static int
999 mn10300_dwarf2_reg_to_regnum (int dwarf2)
1000 {
1001 /* This table is supposed to be shaped like the REGISTER_NAMES
1002 initializer in gcc/config/mn10300/mn10300.h. Registers which
1003 appear in GCC's numbering, but have no counterpart in GDB's
1004 world, are marked with a -1. */
1005 static int dwarf2_to_gdb[] = {
1006 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
1007 15, 16, 17, 18, 19, 20, 21, 22
1008 };
1009 int gdb;
1010
1011 if (dwarf2 < 0
1012 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
1013 || dwarf2_to_gdb[dwarf2] == -1)
1014 internal_error (__FILE__, __LINE__,
1015 "bogus register number in debug info: %d", dwarf2);
1016
1017 return dwarf2_to_gdb[dwarf2];
1018 }
1019
1020 static void
1021 mn10300_print_register (const char *name, int regnum, int reg_width)
1022 {
1023 char raw_buffer[MAX_REGISTER_SIZE];
1024
1025 if (reg_width)
1026 printf_filtered ("%*s: ", reg_width, name);
1027 else
1028 printf_filtered ("%s: ", name);
1029
1030 /* Get the data */
1031 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1032 {
1033 printf_filtered ("[invalid]");
1034 return;
1035 }
1036 else
1037 {
1038 int byte;
1039 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1040 {
1041 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
1042 byte < REGISTER_RAW_SIZE (regnum);
1043 byte++)
1044 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1045 }
1046 else
1047 {
1048 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
1049 byte >= 0;
1050 byte--)
1051 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1052 }
1053 }
1054 }
1055
1056 static void
1057 mn10300_do_registers_info (int regnum, int fpregs)
1058 {
1059 if (regnum >= 0)
1060 {
1061 const char *name = REGISTER_NAME (regnum);
1062 if (name == NULL || name[0] == '\0')
1063 error ("Not a valid register for the current processor type");
1064 mn10300_print_register (name, regnum, 0);
1065 printf_filtered ("\n");
1066 }
1067 else
1068 {
1069 /* print registers in an array 4x8 */
1070 int r;
1071 int reg;
1072 const int nr_in_row = 4;
1073 const int reg_width = 4;
1074 for (r = 0; r < NUM_REGS; r += nr_in_row)
1075 {
1076 int c;
1077 int printing = 0;
1078 int padding = 0;
1079 for (c = r; c < r + nr_in_row; c++)
1080 {
1081 const char *name = REGISTER_NAME (c);
1082 if (name != NULL && *name != '\0')
1083 {
1084 printing = 1;
1085 while (padding > 0)
1086 {
1087 printf_filtered (" ");
1088 padding--;
1089 }
1090 mn10300_print_register (name, c, reg_width);
1091 printf_filtered (" ");
1092 }
1093 else
1094 {
1095 padding += (reg_width + 2 + 8 + 1);
1096 }
1097 }
1098 if (printing)
1099 printf_filtered ("\n");
1100 }
1101 }
1102 }
1103
1104 static CORE_ADDR
1105 mn10300_read_fp (void)
1106 {
1107 /* That's right, we're using the stack pointer as our frame pointer. */
1108 gdb_assert (SP_REGNUM >= 0);
1109 return read_register (SP_REGNUM);
1110 }
1111
1112 /* Dump out the mn10300 speciic architecture information. */
1113
1114 static void
1115 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1116 {
1117 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1118 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1119 tdep->am33_mode);
1120 }
1121
1122 static struct gdbarch *
1123 mn10300_gdbarch_init (struct gdbarch_info info,
1124 struct gdbarch_list *arches)
1125 {
1126 static LONGEST mn10300_call_dummy_words[] = { 0 };
1127 struct gdbarch *gdbarch;
1128 struct gdbarch_tdep *tdep = NULL;
1129 int am33_mode;
1130 gdbarch_register_name_ftype *register_name;
1131 int mach;
1132 int num_regs;
1133
1134 arches = gdbarch_list_lookup_by_info (arches, &info);
1135 if (arches != NULL)
1136 return arches->gdbarch;
1137 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1138 gdbarch = gdbarch_alloc (&info, tdep);
1139
1140 if (info.bfd_arch_info != NULL
1141 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1142 mach = info.bfd_arch_info->mach;
1143 else
1144 mach = 0;
1145 switch (mach)
1146 {
1147 case 0:
1148 case bfd_mach_mn10300:
1149 am33_mode = 0;
1150 register_name = mn10300_generic_register_name;
1151 num_regs = 32;
1152 break;
1153 case bfd_mach_am33:
1154 am33_mode = 1;
1155 register_name = am33_register_name;
1156 num_regs = 32;
1157 break;
1158 default:
1159 internal_error (__FILE__, __LINE__,
1160 "mn10300_gdbarch_init: Unknown mn10300 variant");
1161 return NULL; /* keep GCC happy. */
1162 }
1163
1164 /* Registers. */
1165 set_gdbarch_num_regs (gdbarch, num_regs);
1166 set_gdbarch_register_name (gdbarch, register_name);
1167 set_gdbarch_deprecated_register_size (gdbarch, 4);
1168 set_gdbarch_deprecated_register_bytes (gdbarch, num_regs * gdbarch_deprecated_register_size (gdbarch));
1169 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1170 set_gdbarch_deprecated_register_raw_size (gdbarch, mn10300_register_raw_size);
1171 set_gdbarch_deprecated_register_byte (gdbarch, mn10300_register_byte);
1172 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1173 set_gdbarch_deprecated_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1174 set_gdbarch_deprecated_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1175 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1176 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1177 set_gdbarch_sp_regnum (gdbarch, 8);
1178 set_gdbarch_pc_regnum (gdbarch, 9);
1179 set_gdbarch_deprecated_fp_regnum (gdbarch, 31);
1180 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1181
1182 /* Breakpoints. */
1183 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1184 set_gdbarch_function_start_offset (gdbarch, 0);
1185 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1186
1187 /* Stack unwinding. */
1188 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1189 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1190 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1191 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
1192 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1193 set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain);
1194 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1195 set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
1196 set_gdbarch_deprecated_extract_struct_value_address
1197 (gdbarch, mn10300_extract_struct_value_address);
1198 set_gdbarch_deprecated_store_return_value (gdbarch, mn10300_store_return_value);
1199 set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return);
1200 set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame);
1201 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1202 set_gdbarch_frame_args_skip (gdbarch, 0);
1203 /* That's right, we're using the stack pointer as our frame pointer. */
1204 set_gdbarch_deprecated_target_read_fp (gdbarch, mn10300_read_fp);
1205
1206 /* Calling functions in the inferior from GDB. */
1207 set_gdbarch_deprecated_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1208 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (mn10300_call_dummy_words));
1209 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1210 set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments);
1211 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1212 set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address);
1213 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1214 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1215
1216 tdep->am33_mode = am33_mode;
1217
1218 /* Should be using push_dummy_call. */
1219 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1220
1221 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1222
1223 return gdbarch;
1224 }
1225
1226 void
1227 _initialize_mn10300_tdep (void)
1228 {
1229 /* printf("_initialize_mn10300_tdep\n"); */
1230
1231 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1232 }
This page took 0.092899 seconds and 4 git commands to generate.