cabd857dd84487e482a99de031a13c51ad773528
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "dis-asm.h"
26 #include "gdbtypes.h"
27 #include "regcache.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "gdbcore.h" /* for write_memory_unsigned_integer */
31 #include "value.h"
32 #include "gdbtypes.h"
33 #include "frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36 #include "trad-frame.h"
37 #include "symtab.h"
38 #include "dwarf2-frame.h"
39 #include "osabi.h"
40
41 #include "mn10300-tdep.h"
42
43 /* Forward decl. */
44 extern struct trad_frame_cache *mn10300_frame_unwind_cache (struct frame_info*,
45 void **);
46
47 /* Compute the alignment required by a type. */
48
49 static int
50 mn10300_type_align (struct type *type)
51 {
52 int i, align = 1;
53
54 switch (TYPE_CODE (type))
55 {
56 case TYPE_CODE_INT:
57 case TYPE_CODE_ENUM:
58 case TYPE_CODE_SET:
59 case TYPE_CODE_RANGE:
60 case TYPE_CODE_CHAR:
61 case TYPE_CODE_BOOL:
62 case TYPE_CODE_FLT:
63 case TYPE_CODE_PTR:
64 case TYPE_CODE_REF:
65 return TYPE_LENGTH (type);
66
67 case TYPE_CODE_COMPLEX:
68 return TYPE_LENGTH (type) / 2;
69
70 case TYPE_CODE_STRUCT:
71 case TYPE_CODE_UNION:
72 for (i = 0; i < TYPE_NFIELDS (type); i++)
73 {
74 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
75 while (align < falign)
76 align <<= 1;
77 }
78 return align;
79
80 case TYPE_CODE_ARRAY:
81 /* HACK! Structures containing arrays, even small ones, are not
82 elligible for returning in registers. */
83 return 256;
84
85 case TYPE_CODE_TYPEDEF:
86 return mn10300_type_align (check_typedef (type));
87
88 default:
89 internal_error (__FILE__, __LINE__, _("bad switch"));
90 }
91 }
92
93 /* Should call_function allocate stack space for a struct return? */
94 static int
95 mn10300_use_struct_convention (struct type *type)
96 {
97 /* Structures bigger than a pair of words can't be returned in
98 registers. */
99 if (TYPE_LENGTH (type) > 8)
100 return 1;
101
102 switch (TYPE_CODE (type))
103 {
104 case TYPE_CODE_STRUCT:
105 case TYPE_CODE_UNION:
106 /* Structures with a single field are handled as the field
107 itself. */
108 if (TYPE_NFIELDS (type) == 1)
109 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
110
111 /* Structures with word or double-word size are passed in memory, as
112 long as they require at least word alignment. */
113 if (mn10300_type_align (type) >= 4)
114 return 0;
115
116 return 1;
117
118 /* Arrays are addressable, so they're never returned in
119 registers. This condition can only hold when the array is
120 the only field of a struct or union. */
121 case TYPE_CODE_ARRAY:
122 return 1;
123
124 case TYPE_CODE_TYPEDEF:
125 return mn10300_use_struct_convention (check_typedef (type));
126
127 default:
128 return 0;
129 }
130 }
131
132 static void
133 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
134 struct regcache *regcache, const void *valbuf)
135 {
136 int len = TYPE_LENGTH (type);
137 int reg, regsz;
138
139 if (TYPE_CODE (type) == TYPE_CODE_PTR)
140 reg = 4;
141 else
142 reg = 0;
143
144 regsz = register_size (gdbarch, reg);
145
146 if (len <= regsz)
147 regcache_raw_write_part (regcache, reg, 0, len, valbuf);
148 else if (len <= 2 * regsz)
149 {
150 regcache_raw_write (regcache, reg, valbuf);
151 gdb_assert (regsz == register_size (gdbarch, reg + 1));
152 regcache_raw_write_part (regcache, reg+1, 0,
153 len - regsz, (char *) valbuf + regsz);
154 }
155 else
156 internal_error (__FILE__, __LINE__,
157 _("Cannot store return value %d bytes long."), len);
158 }
159
160 static void
161 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
162 struct regcache *regcache, void *valbuf)
163 {
164 char buf[MAX_REGISTER_SIZE];
165 int len = TYPE_LENGTH (type);
166 int reg, regsz;
167
168 if (TYPE_CODE (type) == TYPE_CODE_PTR)
169 reg = 4;
170 else
171 reg = 0;
172
173 regsz = register_size (gdbarch, reg);
174 if (len <= regsz)
175 {
176 regcache_raw_read (regcache, reg, buf);
177 memcpy (valbuf, buf, len);
178 }
179 else if (len <= 2 * regsz)
180 {
181 regcache_raw_read (regcache, reg, buf);
182 memcpy (valbuf, buf, regsz);
183 gdb_assert (regsz == register_size (gdbarch, reg + 1));
184 regcache_raw_read (regcache, reg + 1, buf);
185 memcpy ((char *) valbuf + regsz, buf, len - regsz);
186 }
187 else
188 internal_error (__FILE__, __LINE__,
189 _("Cannot extract return value %d bytes long."), len);
190 }
191
192 /* Determine, for architecture GDBARCH, how a return value of TYPE
193 should be returned. If it is supposed to be returned in registers,
194 and READBUF is non-zero, read the appropriate value from REGCACHE,
195 and copy it into READBUF. If WRITEBUF is non-zero, write the value
196 from WRITEBUF into REGCACHE. */
197
198 static enum return_value_convention
199 mn10300_return_value (struct gdbarch *gdbarch, struct type *type,
200 struct regcache *regcache, gdb_byte *readbuf,
201 const gdb_byte *writebuf)
202 {
203 if (mn10300_use_struct_convention (type))
204 return RETURN_VALUE_STRUCT_CONVENTION;
205
206 if (readbuf)
207 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
208 if (writebuf)
209 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
210
211 return RETURN_VALUE_REGISTER_CONVENTION;
212 }
213
214 static char *
215 register_name (int reg, char **regs, long sizeof_regs)
216 {
217 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
218 return NULL;
219 else
220 return regs[reg];
221 }
222
223 static const char *
224 mn10300_generic_register_name (int reg)
225 {
226 static char *regs[] =
227 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
228 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
229 "", "", "", "", "", "", "", "",
230 "", "", "", "", "", "", "", "fp"
231 };
232 return register_name (reg, regs, sizeof regs);
233 }
234
235
236 static const char *
237 am33_register_name (int reg)
238 {
239 static char *regs[] =
240 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
241 "sp", "pc", "mdr", "psw", "lir", "lar", "",
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
244 };
245 return register_name (reg, regs, sizeof regs);
246 }
247
248
249 static struct type *
250 mn10300_register_type (struct gdbarch *gdbarch, int reg)
251 {
252 return builtin_type_int;
253 }
254
255 static CORE_ADDR
256 mn10300_read_pc (ptid_t ptid)
257 {
258 return read_register_pid (E_PC_REGNUM, ptid);
259 }
260
261 static void
262 mn10300_write_pc (CORE_ADDR val, ptid_t ptid)
263 {
264 return write_register_pid (E_PC_REGNUM, val, ptid);
265 }
266
267 /* The breakpoint instruction must be the same size as the smallest
268 instruction in the instruction set.
269
270 The Matsushita mn10x00 processors have single byte instructions
271 so we need a single byte breakpoint. Matsushita hasn't defined
272 one, so we defined it ourselves. */
273
274 const static unsigned char *
275 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
276 {
277 static char breakpoint[] = {0xff};
278 *bp_size = 1;
279 return breakpoint;
280 }
281
282 /*
283 * Frame Extra Info:
284 *
285 * status -- actually frame type (SP, FP, or last frame)
286 * stack size -- offset to the next frame
287 *
288 * The former might ultimately be stored in the frame_base.
289 * Seems like there'd be a way to store the later too.
290 *
291 * Temporarily supply empty stub functions as place holders.
292 */
293
294 static void
295 my_frame_is_in_sp (struct frame_info *fi, void **this_cache)
296 {
297 struct trad_frame_cache *cache = mn10300_frame_unwind_cache (fi, this_cache);
298 trad_frame_set_this_base (cache,
299 frame_unwind_register_unsigned (fi,
300 E_SP_REGNUM));
301 }
302
303 static void
304 my_frame_is_in_fp (struct frame_info *fi, void **this_cache)
305 {
306 struct trad_frame_cache *cache = mn10300_frame_unwind_cache (fi, this_cache);
307 trad_frame_set_this_base (cache,
308 frame_unwind_register_unsigned (fi,
309 E_A3_REGNUM));
310 }
311
312 static void
313 my_frame_is_last (struct frame_info *fi)
314 {
315 }
316
317 static void
318 set_my_stack_size (struct frame_info *fi, CORE_ADDR size)
319 {
320 }
321
322
323 /* Set offsets of registers saved by movm instruction.
324 This is a helper function for mn10300_analyze_prologue. */
325
326 static void
327 set_movm_offsets (struct frame_info *fi,
328 void **this_cache,
329 int movm_args)
330 {
331 struct trad_frame_cache *cache;
332 int offset = 0;
333 CORE_ADDR base;
334
335 if (fi == NULL || this_cache == NULL)
336 return;
337
338 cache = mn10300_frame_unwind_cache (fi, this_cache);
339 if (cache == NULL)
340 return;
341
342 base = trad_frame_get_this_base (cache);
343 if (movm_args & movm_other_bit)
344 {
345 /* The `other' bit leaves a blank area of four bytes at the
346 beginning of its block of saved registers, making it 32 bytes
347 long in total. */
348 trad_frame_set_reg_addr (cache, E_LAR_REGNUM, base + offset + 4);
349 trad_frame_set_reg_addr (cache, E_LIR_REGNUM, base + offset + 8);
350 trad_frame_set_reg_addr (cache, E_MDR_REGNUM, base + offset + 12);
351 trad_frame_set_reg_addr (cache, E_A0_REGNUM + 1, base + offset + 16);
352 trad_frame_set_reg_addr (cache, E_A0_REGNUM, base + offset + 20);
353 trad_frame_set_reg_addr (cache, E_D0_REGNUM + 1, base + offset + 24);
354 trad_frame_set_reg_addr (cache, E_D0_REGNUM, base + offset + 28);
355 offset += 32;
356 }
357
358 if (movm_args & movm_a3_bit)
359 {
360 trad_frame_set_reg_addr (cache, E_A3_REGNUM, base + offset);
361 offset += 4;
362 }
363 if (movm_args & movm_a2_bit)
364 {
365 trad_frame_set_reg_addr (cache, E_A2_REGNUM, base + offset);
366 offset += 4;
367 }
368 if (movm_args & movm_d3_bit)
369 {
370 trad_frame_set_reg_addr (cache, E_D3_REGNUM, base + offset);
371 offset += 4;
372 }
373 if (movm_args & movm_d2_bit)
374 {
375 trad_frame_set_reg_addr (cache, E_D2_REGNUM, base + offset);
376 offset += 4;
377 }
378 if (AM33_MODE)
379 {
380 if (movm_args & movm_exother_bit)
381 {
382 trad_frame_set_reg_addr (cache, E_MCVF_REGNUM, base + offset);
383 trad_frame_set_reg_addr (cache, E_MCRL_REGNUM, base + offset + 4);
384 trad_frame_set_reg_addr (cache, E_MCRH_REGNUM, base + offset + 8);
385 trad_frame_set_reg_addr (cache, E_MDRQ_REGNUM, base + offset + 12);
386 trad_frame_set_reg_addr (cache, E_E1_REGNUM, base + offset + 16);
387 trad_frame_set_reg_addr (cache, E_E0_REGNUM, base + offset + 20);
388 offset += 24;
389 }
390 if (movm_args & movm_exreg1_bit)
391 {
392 trad_frame_set_reg_addr (cache, E_E7_REGNUM, base + offset);
393 trad_frame_set_reg_addr (cache, E_E6_REGNUM, base + offset + 4);
394 trad_frame_set_reg_addr (cache, E_E5_REGNUM, base + offset + 8);
395 trad_frame_set_reg_addr (cache, E_E4_REGNUM, base + offset + 12);
396 offset += 16;
397 }
398 if (movm_args & movm_exreg0_bit)
399 {
400 trad_frame_set_reg_addr (cache, E_E3_REGNUM, base + offset);
401 trad_frame_set_reg_addr (cache, E_E2_REGNUM, base + offset + 4);
402 offset += 8;
403 }
404 }
405 /* The last (or first) thing on the stack will be the PC. */
406 trad_frame_set_reg_addr (cache, E_PC_REGNUM, base + offset);
407 /* Save the SP in the 'traditional' way.
408 This will be the same location where the PC is saved. */
409 trad_frame_set_reg_value (cache, E_SP_REGNUM, base + offset);
410 }
411
412 /* The main purpose of this file is dealing with prologues to extract
413 information about stack frames and saved registers.
414
415 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
416 function is pretty readable, and has a nice explanation of how the
417 prologue is generated. The prologues generated by that code will
418 have the following form (NOTE: the current code doesn't handle all
419 this!):
420
421 + If this is an old-style varargs function, then its arguments
422 need to be flushed back to the stack:
423
424 mov d0,(4,sp)
425 mov d1,(4,sp)
426
427 + If we use any of the callee-saved registers, save them now.
428
429 movm [some callee-saved registers],(sp)
430
431 + If we have any floating-point registers to save:
432
433 - Decrement the stack pointer to reserve space for the registers.
434 If the function doesn't need a frame pointer, we may combine
435 this with the adjustment that reserves space for the frame.
436
437 add -SIZE, sp
438
439 - Save the floating-point registers. We have two possible
440 strategies:
441
442 . Save them at fixed offset from the SP:
443
444 fmov fsN,(OFFSETN,sp)
445 fmov fsM,(OFFSETM,sp)
446 ...
447
448 Note that, if OFFSETN happens to be zero, you'll get the
449 different opcode: fmov fsN,(sp)
450
451 . Or, set a0 to the start of the save area, and then use
452 post-increment addressing to save the FP registers.
453
454 mov sp, a0
455 add SIZE, a0
456 fmov fsN,(a0+)
457 fmov fsM,(a0+)
458 ...
459
460 + If the function needs a frame pointer, we set it here.
461
462 mov sp, a3
463
464 + Now we reserve space for the stack frame proper. This could be
465 merged into the `add -SIZE, sp' instruction for FP saves up
466 above, unless we needed to set the frame pointer in the previous
467 step, or the frame is so large that allocating the whole thing at
468 once would put the FP register save slots out of reach of the
469 addressing mode (128 bytes).
470
471 add -SIZE, sp
472
473 One day we might keep the stack pointer constant, that won't
474 change the code for prologues, but it will make the frame
475 pointerless case much more common. */
476
477 /* Analyze the prologue to determine where registers are saved,
478 the end of the prologue, etc etc. Return the end of the prologue
479 scanned.
480
481 We store into FI (if non-null) several tidbits of information:
482
483 * stack_size -- size of this stack frame. Note that if we stop in
484 certain parts of the prologue/epilogue we may claim the size of the
485 current frame is zero. This happens when the current frame has
486 not been allocated yet or has already been deallocated.
487
488 * fsr -- Addresses of registers saved in the stack by this frame.
489
490 * status -- A (relatively) generic status indicator. It's a bitmask
491 with the following bits:
492
493 MY_FRAME_IN_SP: The base of the current frame is actually in
494 the stack pointer. This can happen for frame pointerless
495 functions, or cases where we're stopped in the prologue/epilogue
496 itself. For these cases mn10300_analyze_prologue will need up
497 update fi->frame before returning or analyzing the register
498 save instructions.
499
500 MY_FRAME_IN_FP: The base of the current frame is in the
501 frame pointer register ($a3).
502
503 NO_MORE_FRAMES: Set this if the current frame is "start" or
504 if the first instruction looks like mov <imm>,sp. This tells
505 frame chain to not bother trying to unwind past this frame. */
506
507 static CORE_ADDR
508 mn10300_analyze_prologue (struct frame_info *fi,
509 void **this_cache,
510 CORE_ADDR pc)
511 {
512 CORE_ADDR func_addr, func_end, addr, stop;
513 long stack_size;
514 int imm_size;
515 unsigned char buf[4];
516 int status, movm_args = 0;
517 char *name;
518
519 /* Use the PC in the frame if it's provided to look up the
520 start of this function.
521
522 Note: kevinb/2003-07-16: We used to do the following here:
523 pc = (fi ? get_frame_pc (fi) : pc);
524 But this is (now) badly broken when called from analyze_dummy_frame().
525 */
526 if (fi)
527 {
528 pc = (pc ? pc : get_frame_pc (fi));
529 /* At the start of a function our frame is in the stack pointer. */
530 my_frame_is_in_sp (fi, this_cache);
531 }
532
533 /* Find the start of this function. */
534 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
535
536 /* Do nothing if we couldn't find the start of this function
537
538 MVS: comment went on to say "or if we're stopped at the first
539 instruction in the prologue" -- but code doesn't reflect that,
540 and I don't want to do that anyway. */
541 if (status == 0)
542 {
543 return pc;
544 }
545
546 /* If we're in start, then give up. */
547 if (strcmp (name, "start") == 0)
548 {
549 if (fi != NULL)
550 my_frame_is_last (fi);
551 return pc;
552 }
553
554 #if 0
555 /* Get the next two bytes into buf, we need two because rets is a two
556 byte insn and the first isn't enough to uniquely identify it. */
557 if (!safe_frame_unwind_memory (fi, pc, buf, 2))
558 return pc;
559
560 /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of
561 changes to the frame in prologue examination code. */
562 /* If we're physically on an "rets" instruction, then our frame has
563 already been deallocated. Note this can also be true for retf
564 and ret if they specify a size of zero.
565
566 In this case fi->frame is bogus, we need to fix it. */
567 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
568 {
569 if (get_next_frame (fi) == NULL)
570 deprecated_update_frame_base_hack (fi, read_sp ());
571 return get_frame_pc (fi);
572 }
573
574 /* Similarly if we're stopped on the first insn of a prologue as our
575 frame hasn't been allocated yet. */
576 if (fi && get_frame_pc (fi) == func_addr)
577 {
578 if (get_next_frame (fi) == NULL)
579 deprecated_update_frame_base_hack (fi, read_sp ());
580 return get_frame_pc (fi);
581 }
582 #endif
583
584 /* NOTE: from here on, we don't want to return without jumping to
585 finish_prologue. */
586
587
588 /* Figure out where to stop scanning. */
589 stop = fi ? pc : func_end;
590
591 /* Don't walk off the end of the function. */
592 stop = stop > func_end ? func_end : stop;
593
594 /* Start scanning on the first instruction of this function. */
595 addr = func_addr;
596
597 /* Suck in two bytes. */
598 if (addr + 2 >= stop || !safe_frame_unwind_memory (fi, addr, buf, 2))
599 goto finish_prologue;
600
601 /* First see if this insn sets the stack pointer from a register; if
602 so, it's probably the initialization of the stack pointer in _start,
603 so mark this as the bottom-most frame. */
604 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
605 {
606 if (fi)
607 my_frame_is_last (fi);
608 goto finish_prologue;
609 }
610
611 /* Now look for movm [regs],sp, which saves the callee saved registers.
612
613 At this time we don't know if fi->frame is valid, so we only note
614 that we encountered a movm instruction. Later, we'll set the entries
615 in fsr.regs as needed. */
616 if (buf[0] == 0xcf)
617 {
618 /* Extract the register list for the movm instruction. */
619 movm_args = buf[1];
620
621 addr += 2;
622
623 /* Quit now if we're beyond the stop point. */
624 if (addr >= stop)
625 goto finish_prologue;
626
627 /* Get the next two bytes so the prologue scan can continue. */
628 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
629 goto finish_prologue;
630 }
631
632 /* Now see if we set up a frame pointer via "mov sp,a3" */
633 if (buf[0] == 0x3f)
634 {
635 addr += 1;
636
637 /* The frame pointer is now valid. */
638 if (fi)
639 {
640 my_frame_is_in_fp (fi, this_cache);
641 }
642
643 /* Quit now if we're beyond the stop point. */
644 if (addr >= stop)
645 goto finish_prologue;
646
647 /* Get two more bytes so scanning can continue. */
648 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
649 goto finish_prologue;
650 }
651
652 /* Next we should allocate the local frame. No more prologue insns
653 are found after allocating the local frame.
654
655 Search for add imm8,sp (0xf8feXX)
656 or add imm16,sp (0xfafeXXXX)
657 or add imm32,sp (0xfcfeXXXXXXXX).
658
659 If none of the above was found, then this prologue has no
660 additional stack. */
661
662 imm_size = 0;
663 if (buf[0] == 0xf8 && buf[1] == 0xfe)
664 imm_size = 1;
665 else if (buf[0] == 0xfa && buf[1] == 0xfe)
666 imm_size = 2;
667 else if (buf[0] == 0xfc && buf[1] == 0xfe)
668 imm_size = 4;
669
670 if (imm_size != 0)
671 {
672 /* Suck in imm_size more bytes, they'll hold the size of the
673 current frame. */
674 if (!safe_frame_unwind_memory (fi, addr + 2, buf, imm_size))
675 goto finish_prologue;
676
677 /* Note the size of the stack in the frame info structure. */
678 stack_size = extract_signed_integer (buf, imm_size);
679 if (fi)
680 set_my_stack_size (fi, stack_size);
681
682 /* We just consumed 2 + imm_size bytes. */
683 addr += 2 + imm_size;
684
685 /* No more prologue insns follow, so begin preparation to return. */
686 goto finish_prologue;
687 }
688 /* Do the essentials and get out of here. */
689 finish_prologue:
690 /* Note if/where callee saved registers were saved. */
691 if (fi)
692 set_movm_offsets (fi, this_cache, movm_args);
693 return addr;
694 }
695
696 /* Function: skip_prologue
697 Return the address of the first inst past the prologue of the function. */
698
699 static CORE_ADDR
700 mn10300_skip_prologue (CORE_ADDR pc)
701 {
702 return mn10300_analyze_prologue (NULL, NULL, pc);
703 }
704
705 /* Simple frame_unwind_cache.
706 This finds the "extra info" for the frame. */
707 struct trad_frame_cache *
708 mn10300_frame_unwind_cache (struct frame_info *next_frame,
709 void **this_prologue_cache)
710 {
711 struct trad_frame_cache *cache;
712 CORE_ADDR pc, start, end;
713
714 if (*this_prologue_cache)
715 return (*this_prologue_cache);
716
717 cache = trad_frame_cache_zalloc (next_frame);
718 pc = gdbarch_unwind_pc (current_gdbarch, next_frame);
719 mn10300_analyze_prologue (next_frame, (void **) &cache, pc);
720 if (find_pc_partial_function (pc, NULL, &start, &end))
721 trad_frame_set_id (cache,
722 frame_id_build (trad_frame_get_this_base (cache),
723 start));
724 else
725 trad_frame_set_id (cache,
726 frame_id_build (trad_frame_get_this_base (cache),
727 frame_func_unwind (next_frame)));
728
729 (*this_prologue_cache) = cache;
730 return cache;
731 }
732
733 /* Here is a dummy implementation. */
734 static struct frame_id
735 mn10300_unwind_dummy_id (struct gdbarch *gdbarch,
736 struct frame_info *next_frame)
737 {
738 return frame_id_build (frame_sp_unwind (next_frame),
739 frame_pc_unwind (next_frame));
740 }
741
742 /* Trad frame implementation. */
743 static void
744 mn10300_frame_this_id (struct frame_info *next_frame,
745 void **this_prologue_cache,
746 struct frame_id *this_id)
747 {
748 struct trad_frame_cache *cache =
749 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
750
751 trad_frame_get_id (cache, this_id);
752 }
753
754 static void
755 mn10300_frame_prev_register (struct frame_info *next_frame,
756 void **this_prologue_cache,
757 int regnum, int *optimizedp,
758 enum lval_type *lvalp, CORE_ADDR *addrp,
759 int *realnump, gdb_byte *bufferp)
760 {
761 struct trad_frame_cache *cache =
762 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
763
764 trad_frame_get_register (cache, next_frame, regnum, optimizedp,
765 lvalp, addrp, realnump, bufferp);
766 /* Or...
767 trad_frame_get_prev_register (next_frame, cache->prev_regs, regnum,
768 optimizedp, lvalp, addrp, realnump, bufferp);
769 */
770 }
771
772 static const struct frame_unwind mn10300_frame_unwind = {
773 NORMAL_FRAME,
774 mn10300_frame_this_id,
775 mn10300_frame_prev_register
776 };
777
778 static CORE_ADDR
779 mn10300_frame_base_address (struct frame_info *next_frame,
780 void **this_prologue_cache)
781 {
782 struct trad_frame_cache *cache =
783 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
784
785 return trad_frame_get_this_base (cache);
786 }
787
788 static const struct frame_unwind *
789 mn10300_frame_sniffer (struct frame_info *next_frame)
790 {
791 return &mn10300_frame_unwind;
792 }
793
794 static const struct frame_base mn10300_frame_base = {
795 &mn10300_frame_unwind,
796 mn10300_frame_base_address,
797 mn10300_frame_base_address,
798 mn10300_frame_base_address
799 };
800
801 static CORE_ADDR
802 mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
803 {
804 ULONGEST pc;
805
806 frame_unwind_unsigned_register (next_frame, E_PC_REGNUM, &pc);
807 return pc;
808 }
809
810 static CORE_ADDR
811 mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
812 {
813 ULONGEST sp;
814
815 frame_unwind_unsigned_register (next_frame, E_SP_REGNUM, &sp);
816 return sp;
817 }
818
819 static void
820 mn10300_frame_unwind_init (struct gdbarch *gdbarch)
821 {
822 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
823 frame_unwind_append_sniffer (gdbarch, mn10300_frame_sniffer);
824 frame_base_set_default (gdbarch, &mn10300_frame_base);
825 set_gdbarch_unwind_dummy_id (gdbarch, mn10300_unwind_dummy_id);
826 set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
827 set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
828 }
829
830 /* Function: push_dummy_call
831 *
832 * Set up machine state for a target call, including
833 * function arguments, stack, return address, etc.
834 *
835 */
836
837 static CORE_ADDR
838 mn10300_push_dummy_call (struct gdbarch *gdbarch,
839 struct value *target_func,
840 struct regcache *regcache,
841 CORE_ADDR bp_addr,
842 int nargs, struct value **args,
843 CORE_ADDR sp,
844 int struct_return,
845 CORE_ADDR struct_addr)
846 {
847 const int push_size = register_size (gdbarch, E_PC_REGNUM);
848 int regs_used;
849 int len, arg_len;
850 int stack_offset = 0;
851 int argnum;
852 char *val, valbuf[MAX_REGISTER_SIZE];
853
854 /* This should be a nop, but align the stack just in case something
855 went wrong. Stacks are four byte aligned on the mn10300. */
856 sp &= ~3;
857
858 /* Now make space on the stack for the args.
859
860 XXX This doesn't appear to handle pass-by-invisible reference
861 arguments. */
862 regs_used = struct_return ? 1 : 0;
863 for (len = 0, argnum = 0; argnum < nargs; argnum++)
864 {
865 arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
866 while (regs_used < 2 && arg_len > 0)
867 {
868 regs_used++;
869 arg_len -= push_size;
870 }
871 len += arg_len;
872 }
873
874 /* Allocate stack space. */
875 sp -= len;
876
877 if (struct_return)
878 {
879 regs_used = 1;
880 write_register (E_D0_REGNUM, struct_addr);
881 }
882 else
883 regs_used = 0;
884
885 /* Push all arguments onto the stack. */
886 for (argnum = 0; argnum < nargs; argnum++)
887 {
888 /* FIXME what about structs? Unions? */
889 if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
890 && TYPE_LENGTH (value_type (*args)) > 8)
891 {
892 /* Change to pointer-to-type. */
893 arg_len = push_size;
894 store_unsigned_integer (valbuf, push_size,
895 VALUE_ADDRESS (*args));
896 val = &valbuf[0];
897 }
898 else
899 {
900 arg_len = TYPE_LENGTH (value_type (*args));
901 val = (char *) value_contents (*args);
902 }
903
904 while (regs_used < 2 && arg_len > 0)
905 {
906 write_register (regs_used,
907 extract_unsigned_integer (val, push_size));
908 val += push_size;
909 arg_len -= push_size;
910 regs_used++;
911 }
912
913 while (arg_len > 0)
914 {
915 write_memory (sp + stack_offset, val, push_size);
916 arg_len -= push_size;
917 val += push_size;
918 stack_offset += push_size;
919 }
920
921 args++;
922 }
923
924 /* Make space for the flushback area. */
925 sp -= 8;
926
927 /* Push the return address that contains the magic breakpoint. */
928 sp -= 4;
929 write_memory_unsigned_integer (sp, push_size, bp_addr);
930 /* Update $sp. */
931 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
932 return sp;
933 }
934
935 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
936 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
937 register number. Why don't Dwarf2 and GDB use the same numbering?
938 Who knows? But since people have object files lying around with
939 the existing Dwarf2 numbering, and other people have written stubs
940 to work with the existing GDB, neither of them can change. So we
941 just have to cope. */
942 static int
943 mn10300_dwarf2_reg_to_regnum (int dwarf2)
944 {
945 /* This table is supposed to be shaped like the REGISTER_NAMES
946 initializer in gcc/config/mn10300/mn10300.h. Registers which
947 appear in GCC's numbering, but have no counterpart in GDB's
948 world, are marked with a -1. */
949 static int dwarf2_to_gdb[] = {
950 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
951 15, 16, 17, 18, 19, 20, 21, 22,
952 32, 33, 34, 35, 36, 37, 38, 39,
953 40, 41, 42, 43, 44, 45, 46, 47,
954 48, 49, 50, 51, 52, 53, 54, 55,
955 56, 57, 58, 59, 60, 61, 62, 63
956 };
957
958 if (dwarf2 < 0
959 || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb)
960 || dwarf2_to_gdb[dwarf2] == -1)
961 {
962 warning (_("Bogus register number in debug info: %d"), dwarf2);
963 return 0;
964 }
965
966 return dwarf2_to_gdb[dwarf2];
967 }
968
969 static struct gdbarch *
970 mn10300_gdbarch_init (struct gdbarch_info info,
971 struct gdbarch_list *arches)
972 {
973 struct gdbarch *gdbarch;
974 struct gdbarch_tdep *tdep;
975
976 arches = gdbarch_list_lookup_by_info (arches, &info);
977 if (arches != NULL)
978 return arches->gdbarch;
979
980 tdep = xmalloc (sizeof (struct gdbarch_tdep));
981 gdbarch = gdbarch_alloc (&info, tdep);
982
983 switch (info.bfd_arch_info->mach)
984 {
985 case 0:
986 case bfd_mach_mn10300:
987 set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
988 tdep->am33_mode = 0;
989 break;
990 case bfd_mach_am33:
991 set_gdbarch_register_name (gdbarch, am33_register_name);
992 tdep->am33_mode = 1;
993 break;
994 default:
995 internal_error (__FILE__, __LINE__,
996 _("mn10300_gdbarch_init: Unknown mn10300 variant"));
997 break;
998 }
999
1000 /* Registers. */
1001 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1002 set_gdbarch_register_type (gdbarch, mn10300_register_type);
1003 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1004 set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
1005 set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
1006 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1007 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1008 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1009
1010 /* Stack unwinding. */
1011 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1012 /* Breakpoints. */
1013 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1014 /* decr_pc_after_break? */
1015 /* Disassembly. */
1016 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1017
1018 /* Stage 2 */
1019 set_gdbarch_return_value (gdbarch, mn10300_return_value);
1020
1021 /* Stage 3 -- get target calls working. */
1022 set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
1023 /* set_gdbarch_return_value (store, extract) */
1024
1025
1026 mn10300_frame_unwind_init (gdbarch);
1027
1028 /* Hook in ABI-specific overrides, if they have been registered. */
1029 gdbarch_init_osabi (info, gdbarch);
1030
1031 return gdbarch;
1032 }
1033
1034 /* Dump out the mn10300 specific architecture information. */
1035
1036 static void
1037 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1038 {
1039 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1040 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1041 tdep->am33_mode);
1042 }
1043
1044 void
1045 _initialize_mn10300_tdep (void)
1046 {
1047 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1048 }
1049
This page took 0.051517 seconds and 4 git commands to generate.