doc/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "gdbtypes.h"
25 #include "regcache.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "gdbcore.h" /* for write_memory_unsigned_integer */
29 #include "value.h"
30 #include "gdbtypes.h"
31 #include "frame.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
35 #include "symtab.h"
36 #include "dwarf2-frame.h"
37 #include "osabi.h"
38 #include "infcall.h"
39 #include "target.h"
40
41 #include "mn10300-tdep.h"
42
43 /* Forward decl. */
44 extern struct trad_frame_cache *mn10300_frame_unwind_cache (struct frame_info*,
45 void **);
46
47 /* Compute the alignment required by a type. */
48
49 static int
50 mn10300_type_align (struct type *type)
51 {
52 int i, align = 1;
53
54 switch (TYPE_CODE (type))
55 {
56 case TYPE_CODE_INT:
57 case TYPE_CODE_ENUM:
58 case TYPE_CODE_SET:
59 case TYPE_CODE_RANGE:
60 case TYPE_CODE_CHAR:
61 case TYPE_CODE_BOOL:
62 case TYPE_CODE_FLT:
63 case TYPE_CODE_PTR:
64 case TYPE_CODE_REF:
65 return TYPE_LENGTH (type);
66
67 case TYPE_CODE_COMPLEX:
68 return TYPE_LENGTH (type) / 2;
69
70 case TYPE_CODE_STRUCT:
71 case TYPE_CODE_UNION:
72 for (i = 0; i < TYPE_NFIELDS (type); i++)
73 {
74 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
75 while (align < falign)
76 align <<= 1;
77 }
78 return align;
79
80 case TYPE_CODE_ARRAY:
81 /* HACK! Structures containing arrays, even small ones, are not
82 elligible for returning in registers. */
83 return 256;
84
85 case TYPE_CODE_TYPEDEF:
86 return mn10300_type_align (check_typedef (type));
87
88 default:
89 internal_error (__FILE__, __LINE__, _("bad switch"));
90 }
91 }
92
93 /* Should call_function allocate stack space for a struct return? */
94 static int
95 mn10300_use_struct_convention (struct type *type)
96 {
97 /* Structures bigger than a pair of words can't be returned in
98 registers. */
99 if (TYPE_LENGTH (type) > 8)
100 return 1;
101
102 switch (TYPE_CODE (type))
103 {
104 case TYPE_CODE_STRUCT:
105 case TYPE_CODE_UNION:
106 /* Structures with a single field are handled as the field
107 itself. */
108 if (TYPE_NFIELDS (type) == 1)
109 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
110
111 /* Structures with word or double-word size are passed in memory, as
112 long as they require at least word alignment. */
113 if (mn10300_type_align (type) >= 4)
114 return 0;
115
116 return 1;
117
118 /* Arrays are addressable, so they're never returned in
119 registers. This condition can only hold when the array is
120 the only field of a struct or union. */
121 case TYPE_CODE_ARRAY:
122 return 1;
123
124 case TYPE_CODE_TYPEDEF:
125 return mn10300_use_struct_convention (check_typedef (type));
126
127 default:
128 return 0;
129 }
130 }
131
132 static void
133 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
134 struct regcache *regcache, const void *valbuf)
135 {
136 int len = TYPE_LENGTH (type);
137 int reg, regsz;
138
139 if (TYPE_CODE (type) == TYPE_CODE_PTR)
140 reg = 4;
141 else
142 reg = 0;
143
144 regsz = register_size (gdbarch, reg);
145
146 if (len <= regsz)
147 regcache_raw_write_part (regcache, reg, 0, len, valbuf);
148 else if (len <= 2 * regsz)
149 {
150 regcache_raw_write (regcache, reg, valbuf);
151 gdb_assert (regsz == register_size (gdbarch, reg + 1));
152 regcache_raw_write_part (regcache, reg+1, 0,
153 len - regsz, (char *) valbuf + regsz);
154 }
155 else
156 internal_error (__FILE__, __LINE__,
157 _("Cannot store return value %d bytes long."), len);
158 }
159
160 static void
161 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
162 struct regcache *regcache, void *valbuf)
163 {
164 char buf[MAX_REGISTER_SIZE];
165 int len = TYPE_LENGTH (type);
166 int reg, regsz;
167
168 if (TYPE_CODE (type) == TYPE_CODE_PTR)
169 reg = 4;
170 else
171 reg = 0;
172
173 regsz = register_size (gdbarch, reg);
174 if (len <= regsz)
175 {
176 regcache_raw_read (regcache, reg, buf);
177 memcpy (valbuf, buf, len);
178 }
179 else if (len <= 2 * regsz)
180 {
181 regcache_raw_read (regcache, reg, buf);
182 memcpy (valbuf, buf, regsz);
183 gdb_assert (regsz == register_size (gdbarch, reg + 1));
184 regcache_raw_read (regcache, reg + 1, buf);
185 memcpy ((char *) valbuf + regsz, buf, len - regsz);
186 }
187 else
188 internal_error (__FILE__, __LINE__,
189 _("Cannot extract return value %d bytes long."), len);
190 }
191
192 /* Determine, for architecture GDBARCH, how a return value of TYPE
193 should be returned. If it is supposed to be returned in registers,
194 and READBUF is non-zero, read the appropriate value from REGCACHE,
195 and copy it into READBUF. If WRITEBUF is non-zero, write the value
196 from WRITEBUF into REGCACHE. */
197
198 static enum return_value_convention
199 mn10300_return_value (struct gdbarch *gdbarch, struct type *func_type,
200 struct type *type, struct regcache *regcache,
201 gdb_byte *readbuf, const gdb_byte *writebuf)
202 {
203 if (mn10300_use_struct_convention (type))
204 return RETURN_VALUE_STRUCT_CONVENTION;
205
206 if (readbuf)
207 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
208 if (writebuf)
209 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
210
211 return RETURN_VALUE_REGISTER_CONVENTION;
212 }
213
214 static char *
215 register_name (int reg, char **regs, long sizeof_regs)
216 {
217 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
218 return NULL;
219 else
220 return regs[reg];
221 }
222
223 static const char *
224 mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
225 {
226 static char *regs[] =
227 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
228 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
229 "", "", "", "", "", "", "", "",
230 "", "", "", "", "", "", "", "fp"
231 };
232 return register_name (reg, regs, sizeof regs);
233 }
234
235
236 static const char *
237 am33_register_name (struct gdbarch *gdbarch, int reg)
238 {
239 static char *regs[] =
240 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
241 "sp", "pc", "mdr", "psw", "lir", "lar", "",
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
244 };
245 return register_name (reg, regs, sizeof regs);
246 }
247
248 static const char *
249 am33_2_register_name (struct gdbarch *gdbarch, int reg)
250 {
251 static char *regs[] =
252 {
253 "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
254 "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
255 "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
256 "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
257 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
258 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
259 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
260 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
261 };
262 return register_name (reg, regs, sizeof regs);
263 }
264
265 static struct type *
266 mn10300_register_type (struct gdbarch *gdbarch, int reg)
267 {
268 return builtin_type_int;
269 }
270
271 static CORE_ADDR
272 mn10300_read_pc (struct regcache *regcache)
273 {
274 ULONGEST val;
275 regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
276 return val;
277 }
278
279 static void
280 mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
281 {
282 regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
283 }
284
285 /* The breakpoint instruction must be the same size as the smallest
286 instruction in the instruction set.
287
288 The Matsushita mn10x00 processors have single byte instructions
289 so we need a single byte breakpoint. Matsushita hasn't defined
290 one, so we defined it ourselves. */
291
292 const static unsigned char *
293 mn10300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
294 int *bp_size)
295 {
296 static char breakpoint[] = {0xff};
297 *bp_size = 1;
298 return breakpoint;
299 }
300
301 /* Set offsets of saved registers.
302 This is a helper function for mn10300_analyze_prologue. */
303
304 static void
305 set_reg_offsets (struct frame_info *fi,
306 void **this_cache,
307 int movm_args,
308 int fpregmask,
309 int stack_extra_size,
310 int frame_in_fp)
311 {
312 struct gdbarch *gdbarch;
313 struct trad_frame_cache *cache;
314 int offset = 0;
315 CORE_ADDR base;
316
317 if (fi == NULL || this_cache == NULL)
318 return;
319
320 cache = mn10300_frame_unwind_cache (fi, this_cache);
321 if (cache == NULL)
322 return;
323 gdbarch = get_frame_arch (fi);
324
325 if (frame_in_fp)
326 {
327 base = frame_unwind_register_unsigned (fi, E_A3_REGNUM);
328 }
329 else
330 {
331 base = frame_unwind_register_unsigned (fi, E_SP_REGNUM)
332 + stack_extra_size;
333 }
334
335 trad_frame_set_this_base (cache, base);
336
337 if (AM33_MODE (gdbarch) == 2)
338 {
339 /* If bit N is set in fpregmask, fsN is saved on the stack.
340 The floating point registers are saved in ascending order.
341 For example: fs16 <- Frame Pointer
342 fs17 Frame Pointer + 4 */
343 if (fpregmask != 0)
344 {
345 int i;
346 for (i = 0; i < 32; i++)
347 {
348 if (fpregmask & (1 << i))
349 {
350 trad_frame_set_reg_addr (cache, E_FS0_REGNUM + i,
351 base + offset);
352 offset += 4;
353 }
354 }
355 }
356 }
357
358
359 if (movm_args & movm_other_bit)
360 {
361 /* The `other' bit leaves a blank area of four bytes at the
362 beginning of its block of saved registers, making it 32 bytes
363 long in total. */
364 trad_frame_set_reg_addr (cache, E_LAR_REGNUM, base + offset + 4);
365 trad_frame_set_reg_addr (cache, E_LIR_REGNUM, base + offset + 8);
366 trad_frame_set_reg_addr (cache, E_MDR_REGNUM, base + offset + 12);
367 trad_frame_set_reg_addr (cache, E_A0_REGNUM + 1, base + offset + 16);
368 trad_frame_set_reg_addr (cache, E_A0_REGNUM, base + offset + 20);
369 trad_frame_set_reg_addr (cache, E_D0_REGNUM + 1, base + offset + 24);
370 trad_frame_set_reg_addr (cache, E_D0_REGNUM, base + offset + 28);
371 offset += 32;
372 }
373
374 if (movm_args & movm_a3_bit)
375 {
376 trad_frame_set_reg_addr (cache, E_A3_REGNUM, base + offset);
377 offset += 4;
378 }
379 if (movm_args & movm_a2_bit)
380 {
381 trad_frame_set_reg_addr (cache, E_A2_REGNUM, base + offset);
382 offset += 4;
383 }
384 if (movm_args & movm_d3_bit)
385 {
386 trad_frame_set_reg_addr (cache, E_D3_REGNUM, base + offset);
387 offset += 4;
388 }
389 if (movm_args & movm_d2_bit)
390 {
391 trad_frame_set_reg_addr (cache, E_D2_REGNUM, base + offset);
392 offset += 4;
393 }
394 if (AM33_MODE (gdbarch))
395 {
396 if (movm_args & movm_exother_bit)
397 {
398 trad_frame_set_reg_addr (cache, E_MCVF_REGNUM, base + offset);
399 trad_frame_set_reg_addr (cache, E_MCRL_REGNUM, base + offset + 4);
400 trad_frame_set_reg_addr (cache, E_MCRH_REGNUM, base + offset + 8);
401 trad_frame_set_reg_addr (cache, E_MDRQ_REGNUM, base + offset + 12);
402 trad_frame_set_reg_addr (cache, E_E1_REGNUM, base + offset + 16);
403 trad_frame_set_reg_addr (cache, E_E0_REGNUM, base + offset + 20);
404 offset += 24;
405 }
406 if (movm_args & movm_exreg1_bit)
407 {
408 trad_frame_set_reg_addr (cache, E_E7_REGNUM, base + offset);
409 trad_frame_set_reg_addr (cache, E_E6_REGNUM, base + offset + 4);
410 trad_frame_set_reg_addr (cache, E_E5_REGNUM, base + offset + 8);
411 trad_frame_set_reg_addr (cache, E_E4_REGNUM, base + offset + 12);
412 offset += 16;
413 }
414 if (movm_args & movm_exreg0_bit)
415 {
416 trad_frame_set_reg_addr (cache, E_E3_REGNUM, base + offset);
417 trad_frame_set_reg_addr (cache, E_E2_REGNUM, base + offset + 4);
418 offset += 8;
419 }
420 }
421 /* The last (or first) thing on the stack will be the PC. */
422 trad_frame_set_reg_addr (cache, E_PC_REGNUM, base + offset);
423 /* Save the SP in the 'traditional' way.
424 This will be the same location where the PC is saved. */
425 trad_frame_set_reg_value (cache, E_SP_REGNUM, base + offset);
426 }
427
428 /* The main purpose of this file is dealing with prologues to extract
429 information about stack frames and saved registers.
430
431 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
432 function is pretty readable, and has a nice explanation of how the
433 prologue is generated. The prologues generated by that code will
434 have the following form (NOTE: the current code doesn't handle all
435 this!):
436
437 + If this is an old-style varargs function, then its arguments
438 need to be flushed back to the stack:
439
440 mov d0,(4,sp)
441 mov d1,(4,sp)
442
443 + If we use any of the callee-saved registers, save them now.
444
445 movm [some callee-saved registers],(sp)
446
447 + If we have any floating-point registers to save:
448
449 - Decrement the stack pointer to reserve space for the registers.
450 If the function doesn't need a frame pointer, we may combine
451 this with the adjustment that reserves space for the frame.
452
453 add -SIZE, sp
454
455 - Save the floating-point registers. We have two possible
456 strategies:
457
458 . Save them at fixed offset from the SP:
459
460 fmov fsN,(OFFSETN,sp)
461 fmov fsM,(OFFSETM,sp)
462 ...
463
464 Note that, if OFFSETN happens to be zero, you'll get the
465 different opcode: fmov fsN,(sp)
466
467 . Or, set a0 to the start of the save area, and then use
468 post-increment addressing to save the FP registers.
469
470 mov sp, a0
471 add SIZE, a0
472 fmov fsN,(a0+)
473 fmov fsM,(a0+)
474 ...
475
476 + If the function needs a frame pointer, we set it here.
477
478 mov sp, a3
479
480 + Now we reserve space for the stack frame proper. This could be
481 merged into the `add -SIZE, sp' instruction for FP saves up
482 above, unless we needed to set the frame pointer in the previous
483 step, or the frame is so large that allocating the whole thing at
484 once would put the FP register save slots out of reach of the
485 addressing mode (128 bytes).
486
487 add -SIZE, sp
488
489 One day we might keep the stack pointer constant, that won't
490 change the code for prologues, but it will make the frame
491 pointerless case much more common. */
492
493 /* Analyze the prologue to determine where registers are saved,
494 the end of the prologue, etc etc. Return the end of the prologue
495 scanned.
496
497 We store into FI (if non-null) several tidbits of information:
498
499 * stack_size -- size of this stack frame. Note that if we stop in
500 certain parts of the prologue/epilogue we may claim the size of the
501 current frame is zero. This happens when the current frame has
502 not been allocated yet or has already been deallocated.
503
504 * fsr -- Addresses of registers saved in the stack by this frame.
505
506 * status -- A (relatively) generic status indicator. It's a bitmask
507 with the following bits:
508
509 MY_FRAME_IN_SP: The base of the current frame is actually in
510 the stack pointer. This can happen for frame pointerless
511 functions, or cases where we're stopped in the prologue/epilogue
512 itself. For these cases mn10300_analyze_prologue will need up
513 update fi->frame before returning or analyzing the register
514 save instructions.
515
516 MY_FRAME_IN_FP: The base of the current frame is in the
517 frame pointer register ($a3).
518
519 NO_MORE_FRAMES: Set this if the current frame is "start" or
520 if the first instruction looks like mov <imm>,sp. This tells
521 frame chain to not bother trying to unwind past this frame. */
522
523 static CORE_ADDR
524 mn10300_analyze_prologue (struct gdbarch *gdbarch, struct frame_info *fi,
525 void **this_cache,
526 CORE_ADDR pc)
527 {
528 CORE_ADDR func_addr, func_end, addr, stop;
529 long stack_extra_size = 0;
530 int imm_size;
531 unsigned char buf[4];
532 int status;
533 int movm_args = 0;
534 int fpregmask = 0;
535 char *name;
536 int frame_in_fp = 0;
537
538 /* Use the PC in the frame if it's provided to look up the
539 start of this function.
540
541 Note: kevinb/2003-07-16: We used to do the following here:
542 pc = (fi ? get_frame_pc (fi) : pc);
543 But this is (now) badly broken when called from analyze_dummy_frame().
544 */
545 if (fi)
546 {
547 pc = (pc ? pc : get_frame_pc (fi));
548 }
549
550 /* Find the start of this function. */
551 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
552
553 /* Do nothing if we couldn't find the start of this function
554
555 MVS: comment went on to say "or if we're stopped at the first
556 instruction in the prologue" -- but code doesn't reflect that,
557 and I don't want to do that anyway. */
558 if (status == 0)
559 {
560 addr = pc;
561 goto finish_prologue;
562 }
563
564 /* If we're in start, then give up. */
565 if (strcmp (name, "start") == 0)
566 {
567 addr = pc;
568 goto finish_prologue;
569 }
570
571 /* Figure out where to stop scanning. */
572 stop = fi ? pc : func_end;
573
574 /* Don't walk off the end of the function. */
575 stop = stop > func_end ? func_end : stop;
576
577 /* Start scanning on the first instruction of this function. */
578 addr = func_addr;
579
580 /* Suck in two bytes. */
581 if (addr + 2 > stop || !safe_frame_unwind_memory (fi, addr, buf, 2))
582 goto finish_prologue;
583
584 /* First see if this insn sets the stack pointer from a register; if
585 so, it's probably the initialization of the stack pointer in _start,
586 so mark this as the bottom-most frame. */
587 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
588 {
589 goto finish_prologue;
590 }
591
592 /* Now look for movm [regs],sp, which saves the callee saved registers.
593
594 At this time we don't know if fi->frame is valid, so we only note
595 that we encountered a movm instruction. Later, we'll set the entries
596 in fsr.regs as needed. */
597 if (buf[0] == 0xcf)
598 {
599 /* Extract the register list for the movm instruction. */
600 movm_args = buf[1];
601
602 addr += 2;
603
604 /* Quit now if we're beyond the stop point. */
605 if (addr >= stop)
606 goto finish_prologue;
607
608 /* Get the next two bytes so the prologue scan can continue. */
609 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
610 goto finish_prologue;
611 }
612
613 /* Check for "mov pc, a2", an instruction found in optimized, position
614 independent code. Skip it if found. */
615 if (buf[0] == 0xf0 && buf[1] == 0x2e)
616 {
617 addr += 2;
618
619 /* Quit now if we're beyond the stop point. */
620 if (addr >= stop)
621 goto finish_prologue;
622
623 /* Get the next two bytes so the prologue scan can continue. */
624 status = target_read_memory (addr, buf, 2);
625 if (status != 0)
626 goto finish_prologue;
627 }
628
629 if (AM33_MODE (gdbarch) == 2)
630 {
631 /* Determine if any floating point registers are to be saved.
632 Look for one of the following three prologue formats:
633
634 [movm [regs],(sp)] [movm [regs],(sp)] [movm [regs],(sp)]
635
636 add -SIZE,sp add -SIZE,sp add -SIZE,sp
637 fmov fs#,(sp) mov sp,a0/a1 mov sp,a0/a1
638 fmov fs#,(#,sp) fmov fs#,(a0/a1+) add SIZE2,a0/a1
639 ... ... fmov fs#,(a0/a1+)
640 ... ... ...
641 fmov fs#,(#,sp) fmov fs#,(a0/a1+) fmov fs#,(a0/a1+)
642
643 [mov sp,a3] [mov sp,a3]
644 [add -SIZE2,sp] [add -SIZE2,sp] */
645
646 /* Remember the address at which we started in the event that we
647 don't ultimately find an fmov instruction. Once we're certain
648 that we matched one of the above patterns, we'll set
649 ``restore_addr'' to the appropriate value. Note: At one time
650 in the past, this code attempted to not adjust ``addr'' until
651 there was a fair degree of certainty that the pattern would be
652 matched. However, that code did not wait until an fmov instruction
653 was actually encountered. As a consequence, ``addr'' would
654 sometimes be advanced even when no fmov instructions were found. */
655 CORE_ADDR restore_addr = addr;
656 int fmov_found = 0;
657
658 /* First, look for add -SIZE,sp (i.e. add imm8,sp (0xf8feXX)
659 or add imm16,sp (0xfafeXXXX)
660 or add imm32,sp (0xfcfeXXXXXXXX)) */
661 imm_size = 0;
662 if (buf[0] == 0xf8 && buf[1] == 0xfe)
663 imm_size = 1;
664 else if (buf[0] == 0xfa && buf[1] == 0xfe)
665 imm_size = 2;
666 else if (buf[0] == 0xfc && buf[1] == 0xfe)
667 imm_size = 4;
668 if (imm_size != 0)
669 {
670 /* An "add -#,sp" instruction has been found. "addr + 2 + imm_size"
671 is the address of the next instruction. Don't modify "addr" until
672 the next "floating point prologue" instruction is found. If this
673 is not a prologue that saves floating point registers we need to
674 be able to back out of this bit of code and continue with the
675 prologue analysis. */
676 if (addr + 2 + imm_size < stop)
677 {
678 if (!safe_frame_unwind_memory (fi, addr + 2 + imm_size, buf, 3))
679 goto finish_prologue;
680 if ((buf[0] & 0xfc) == 0x3c)
681 {
682 /* Occasionally, especially with C++ code, the "fmov"
683 instructions will be preceded by "mov sp,aN"
684 (aN => a0, a1, a2, or a3).
685
686 This is a one byte instruction: mov sp,aN = 0011 11XX
687 where XX is the register number.
688
689 Skip this instruction by incrementing addr. The "fmov"
690 instructions will have the form "fmov fs#,(aN+)" in this
691 case, but that will not necessitate a change in the
692 "fmov" parsing logic below. */
693
694 addr++;
695
696 if ((buf[1] & 0xfc) == 0x20)
697 {
698 /* Occasionally, especially with C++ code compiled with
699 the -fomit-frame-pointer or -O3 options, the
700 "mov sp,aN" instruction will be followed by an
701 "add #,aN" instruction. This indicates the
702 "stack_size", the size of the portion of the stack
703 containing the arguments. This instruction format is:
704 add #,aN = 0010 00XX YYYY YYYY
705 where XX is the register number
706 YYYY YYYY is the constant.
707 Note the size of the stack (as a negative number) in
708 the frame info structure. */
709 if (fi)
710 stack_extra_size += -buf[2];
711
712 addr += 2;
713 }
714 }
715
716 if ((buf[0] & 0xfc) == 0x3c ||
717 buf[0] == 0xf9 || buf[0] == 0xfb)
718 {
719 /* An "fmov" instruction has been found indicating that this
720 prologue saves floating point registers (or, as described
721 above, a "mov sp,aN" and possible "add #,aN" have been
722 found and we will assume an "fmov" follows). Process the
723 consecutive "fmov" instructions. */
724 for (addr += 2 + imm_size;;addr += imm_size)
725 {
726 int regnum;
727
728 /* Read the "fmov" instruction. */
729 if (addr >= stop ||
730 !safe_frame_unwind_memory (fi, addr, buf, 4))
731 goto finish_prologue;
732
733 if (buf[0] != 0xf9 && buf[0] != 0xfb)
734 break;
735
736 /* An fmov instruction has just been seen. We can
737 now really commit to the pattern match. */
738
739 fmov_found = 1;
740
741 /* Get the floating point register number from the
742 2nd and 3rd bytes of the "fmov" instruction:
743 Machine Code: 0000 00X0 YYYY 0000 =>
744 Regnum: 000X YYYY */
745 regnum = (buf[1] & 0x02) << 3;
746 regnum |= ((buf[2] & 0xf0) >> 4) & 0x0f;
747
748 /* Add this register number to the bit mask of floating
749 point registers that have been saved. */
750 fpregmask |= 1 << regnum;
751
752 /* Determine the length of this "fmov" instruction.
753 fmov fs#,(sp) => 3 byte instruction
754 fmov fs#,(#,sp) => 4 byte instruction */
755 imm_size = (buf[0] == 0xf9) ? 3 : 4;
756 }
757 }
758 }
759 }
760 /* If no fmov instructions were found by the above sequence, reset
761 the state and pretend that the above bit of code never happened. */
762 if (!fmov_found)
763 {
764 addr = restore_addr;
765 status = target_read_memory (addr, buf, 2);
766 if (status != 0)
767 goto finish_prologue;
768 stack_extra_size = 0;
769 }
770 }
771
772 /* Now see if we set up a frame pointer via "mov sp,a3" */
773 if (buf[0] == 0x3f)
774 {
775 addr += 1;
776
777 /* The frame pointer is now valid. */
778 if (fi)
779 {
780 frame_in_fp = 1;
781 }
782
783 /* Quit now if we're beyond the stop point. */
784 if (addr >= stop)
785 goto finish_prologue;
786
787 /* Get two more bytes so scanning can continue. */
788 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
789 goto finish_prologue;
790 }
791
792 /* Next we should allocate the local frame. No more prologue insns
793 are found after allocating the local frame.
794
795 Search for add imm8,sp (0xf8feXX)
796 or add imm16,sp (0xfafeXXXX)
797 or add imm32,sp (0xfcfeXXXXXXXX).
798
799 If none of the above was found, then this prologue has no
800 additional stack. */
801
802 imm_size = 0;
803 if (buf[0] == 0xf8 && buf[1] == 0xfe)
804 imm_size = 1;
805 else if (buf[0] == 0xfa && buf[1] == 0xfe)
806 imm_size = 2;
807 else if (buf[0] == 0xfc && buf[1] == 0xfe)
808 imm_size = 4;
809
810 if (imm_size != 0)
811 {
812 /* Suck in imm_size more bytes, they'll hold the size of the
813 current frame. */
814 if (!safe_frame_unwind_memory (fi, addr + 2, buf, imm_size))
815 goto finish_prologue;
816
817 /* Note the size of the stack. */
818 stack_extra_size -= extract_signed_integer (buf, imm_size);
819
820 /* We just consumed 2 + imm_size bytes. */
821 addr += 2 + imm_size;
822
823 /* No more prologue insns follow, so begin preparation to return. */
824 goto finish_prologue;
825 }
826 /* Do the essentials and get out of here. */
827 finish_prologue:
828 /* Note if/where callee saved registers were saved. */
829 if (fi)
830 set_reg_offsets (fi, this_cache, movm_args, fpregmask, stack_extra_size,
831 frame_in_fp);
832 return addr;
833 }
834
835 /* Function: skip_prologue
836 Return the address of the first inst past the prologue of the function. */
837
838 static CORE_ADDR
839 mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
840 {
841 return mn10300_analyze_prologue (gdbarch, NULL, NULL, pc);
842 }
843
844 /* Simple frame_unwind_cache.
845 This finds the "extra info" for the frame. */
846 struct trad_frame_cache *
847 mn10300_frame_unwind_cache (struct frame_info *next_frame,
848 void **this_prologue_cache)
849 {
850 struct gdbarch *gdbarch;
851 struct trad_frame_cache *cache;
852 CORE_ADDR pc, start, end;
853 void *cache_p;
854
855 if (*this_prologue_cache)
856 return (*this_prologue_cache);
857
858 gdbarch = get_frame_arch (next_frame);
859 cache_p = trad_frame_cache_zalloc (next_frame);
860 pc = gdbarch_unwind_pc (gdbarch, next_frame);
861 mn10300_analyze_prologue (gdbarch, next_frame, &cache_p, pc);
862 cache = cache_p;
863
864 if (find_pc_partial_function (pc, NULL, &start, &end))
865 trad_frame_set_id (cache,
866 frame_id_build (trad_frame_get_this_base (cache),
867 start));
868 else
869 {
870 start = frame_func_unwind (next_frame, NORMAL_FRAME);
871 trad_frame_set_id (cache,
872 frame_id_build (trad_frame_get_this_base (cache),
873 start));
874 }
875
876 (*this_prologue_cache) = cache;
877 return cache;
878 }
879
880 /* Here is a dummy implementation. */
881 static struct frame_id
882 mn10300_unwind_dummy_id (struct gdbarch *gdbarch,
883 struct frame_info *next_frame)
884 {
885 return frame_id_build (frame_sp_unwind (next_frame),
886 frame_pc_unwind (next_frame));
887 }
888
889 /* Trad frame implementation. */
890 static void
891 mn10300_frame_this_id (struct frame_info *next_frame,
892 void **this_prologue_cache,
893 struct frame_id *this_id)
894 {
895 struct trad_frame_cache *cache =
896 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
897
898 trad_frame_get_id (cache, this_id);
899 }
900
901 static void
902 mn10300_frame_prev_register (struct frame_info *next_frame,
903 void **this_prologue_cache,
904 int regnum, int *optimizedp,
905 enum lval_type *lvalp, CORE_ADDR *addrp,
906 int *realnump, gdb_byte *bufferp)
907 {
908 struct trad_frame_cache *cache =
909 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
910
911 trad_frame_get_register (cache, next_frame, regnum, optimizedp,
912 lvalp, addrp, realnump, bufferp);
913 /* Or...
914 trad_frame_get_prev_register (next_frame, cache->prev_regs, regnum,
915 optimizedp, lvalp, addrp, realnump, bufferp);
916 */
917 }
918
919 static const struct frame_unwind mn10300_frame_unwind = {
920 NORMAL_FRAME,
921 mn10300_frame_this_id,
922 mn10300_frame_prev_register
923 };
924
925 static CORE_ADDR
926 mn10300_frame_base_address (struct frame_info *next_frame,
927 void **this_prologue_cache)
928 {
929 struct trad_frame_cache *cache =
930 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
931
932 return trad_frame_get_this_base (cache);
933 }
934
935 static const struct frame_unwind *
936 mn10300_frame_sniffer (struct frame_info *next_frame)
937 {
938 return &mn10300_frame_unwind;
939 }
940
941 static const struct frame_base mn10300_frame_base = {
942 &mn10300_frame_unwind,
943 mn10300_frame_base_address,
944 mn10300_frame_base_address,
945 mn10300_frame_base_address
946 };
947
948 static CORE_ADDR
949 mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
950 {
951 ULONGEST pc;
952
953 pc = frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
954 return pc;
955 }
956
957 static CORE_ADDR
958 mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
959 {
960 ULONGEST sp;
961
962 sp = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
963 return sp;
964 }
965
966 static void
967 mn10300_frame_unwind_init (struct gdbarch *gdbarch)
968 {
969 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
970 frame_unwind_append_sniffer (gdbarch, mn10300_frame_sniffer);
971 frame_base_set_default (gdbarch, &mn10300_frame_base);
972 set_gdbarch_unwind_dummy_id (gdbarch, mn10300_unwind_dummy_id);
973 set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
974 set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
975 }
976
977 /* Function: push_dummy_call
978 *
979 * Set up machine state for a target call, including
980 * function arguments, stack, return address, etc.
981 *
982 */
983
984 static CORE_ADDR
985 mn10300_push_dummy_call (struct gdbarch *gdbarch,
986 struct value *target_func,
987 struct regcache *regcache,
988 CORE_ADDR bp_addr,
989 int nargs, struct value **args,
990 CORE_ADDR sp,
991 int struct_return,
992 CORE_ADDR struct_addr)
993 {
994 const int push_size = register_size (gdbarch, E_PC_REGNUM);
995 int regs_used;
996 int len, arg_len;
997 int stack_offset = 0;
998 int argnum;
999 char *val, valbuf[MAX_REGISTER_SIZE];
1000
1001 /* This should be a nop, but align the stack just in case something
1002 went wrong. Stacks are four byte aligned on the mn10300. */
1003 sp &= ~3;
1004
1005 /* Now make space on the stack for the args.
1006
1007 XXX This doesn't appear to handle pass-by-invisible reference
1008 arguments. */
1009 regs_used = struct_return ? 1 : 0;
1010 for (len = 0, argnum = 0; argnum < nargs; argnum++)
1011 {
1012 arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
1013 while (regs_used < 2 && arg_len > 0)
1014 {
1015 regs_used++;
1016 arg_len -= push_size;
1017 }
1018 len += arg_len;
1019 }
1020
1021 /* Allocate stack space. */
1022 sp -= len;
1023
1024 if (struct_return)
1025 {
1026 regs_used = 1;
1027 regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
1028 }
1029 else
1030 regs_used = 0;
1031
1032 /* Push all arguments onto the stack. */
1033 for (argnum = 0; argnum < nargs; argnum++)
1034 {
1035 /* FIXME what about structs? Unions? */
1036 if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
1037 && TYPE_LENGTH (value_type (*args)) > 8)
1038 {
1039 /* Change to pointer-to-type. */
1040 arg_len = push_size;
1041 store_unsigned_integer (valbuf, push_size,
1042 VALUE_ADDRESS (*args));
1043 val = &valbuf[0];
1044 }
1045 else
1046 {
1047 arg_len = TYPE_LENGTH (value_type (*args));
1048 val = (char *) value_contents (*args);
1049 }
1050
1051 while (regs_used < 2 && arg_len > 0)
1052 {
1053 regcache_cooked_write_unsigned (regcache, regs_used,
1054 extract_unsigned_integer (val, push_size));
1055 val += push_size;
1056 arg_len -= push_size;
1057 regs_used++;
1058 }
1059
1060 while (arg_len > 0)
1061 {
1062 write_memory (sp + stack_offset, val, push_size);
1063 arg_len -= push_size;
1064 val += push_size;
1065 stack_offset += push_size;
1066 }
1067
1068 args++;
1069 }
1070
1071 /* Make space for the flushback area. */
1072 sp -= 8;
1073
1074 /* Push the return address that contains the magic breakpoint. */
1075 sp -= 4;
1076 write_memory_unsigned_integer (sp, push_size, bp_addr);
1077
1078 /* The CPU also writes the return address always into the
1079 MDR register on "call". */
1080 regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
1081
1082 /* Update $sp. */
1083 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1084
1085 /* On the mn10300, it's possible to move some of the stack adjustment
1086 and saving of the caller-save registers out of the prologue and
1087 into the call sites. (When using gcc, this optimization can
1088 occur when using the -mrelax switch.) If this occurs, the dwarf2
1089 info will reflect this fact. We can test to see if this is the
1090 case by creating a new frame using the current stack pointer and
1091 the address of the function that we're about to call. We then
1092 unwind SP and see if it's different than the SP of our newly
1093 created frame. If the SP values are the same, the caller is not
1094 expected to allocate any additional stack. On the other hand, if
1095 the SP values are different, the difference determines the
1096 additional stack that must be allocated.
1097
1098 Note that we don't update the return value though because that's
1099 the value of the stack just after pushing the arguments, but prior
1100 to performing the call. This value is needed in order to
1101 construct the frame ID of the dummy call. */
1102 {
1103 CORE_ADDR func_addr = find_function_addr (target_func, NULL);
1104 CORE_ADDR unwound_sp
1105 = mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
1106 if (sp != unwound_sp)
1107 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
1108 sp - (unwound_sp - sp));
1109 }
1110
1111 return sp;
1112 }
1113
1114 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1115 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1116 register number. Why don't Dwarf2 and GDB use the same numbering?
1117 Who knows? But since people have object files lying around with
1118 the existing Dwarf2 numbering, and other people have written stubs
1119 to work with the existing GDB, neither of them can change. So we
1120 just have to cope. */
1121 static int
1122 mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
1123 {
1124 /* This table is supposed to be shaped like the gdbarch_register_name
1125 initializer in gcc/config/mn10300/mn10300.h. Registers which
1126 appear in GCC's numbering, but have no counterpart in GDB's
1127 world, are marked with a -1. */
1128 static int dwarf2_to_gdb[] = {
1129 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
1130 15, 16, 17, 18, 19, 20, 21, 22,
1131 32, 33, 34, 35, 36, 37, 38, 39,
1132 40, 41, 42, 43, 44, 45, 46, 47,
1133 48, 49, 50, 51, 52, 53, 54, 55,
1134 56, 57, 58, 59, 60, 61, 62, 63,
1135 9
1136 };
1137
1138 if (dwarf2 < 0
1139 || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
1140 {
1141 warning (_("Bogus register number in debug info: %d"), dwarf2);
1142 return -1;
1143 }
1144
1145 return dwarf2_to_gdb[dwarf2];
1146 }
1147
1148 static struct gdbarch *
1149 mn10300_gdbarch_init (struct gdbarch_info info,
1150 struct gdbarch_list *arches)
1151 {
1152 struct gdbarch *gdbarch;
1153 struct gdbarch_tdep *tdep;
1154 int num_regs;
1155
1156 arches = gdbarch_list_lookup_by_info (arches, &info);
1157 if (arches != NULL)
1158 return arches->gdbarch;
1159
1160 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1161 gdbarch = gdbarch_alloc (&info, tdep);
1162
1163 switch (info.bfd_arch_info->mach)
1164 {
1165 case 0:
1166 case bfd_mach_mn10300:
1167 set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
1168 tdep->am33_mode = 0;
1169 num_regs = 32;
1170 break;
1171 case bfd_mach_am33:
1172 set_gdbarch_register_name (gdbarch, am33_register_name);
1173 tdep->am33_mode = 1;
1174 num_regs = 32;
1175 break;
1176 case bfd_mach_am33_2:
1177 set_gdbarch_register_name (gdbarch, am33_2_register_name);
1178 tdep->am33_mode = 2;
1179 num_regs = 64;
1180 set_gdbarch_fp0_regnum (gdbarch, 32);
1181 break;
1182 default:
1183 internal_error (__FILE__, __LINE__,
1184 _("mn10300_gdbarch_init: Unknown mn10300 variant"));
1185 break;
1186 }
1187
1188 /* Registers. */
1189 set_gdbarch_num_regs (gdbarch, num_regs);
1190 set_gdbarch_register_type (gdbarch, mn10300_register_type);
1191 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1192 set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
1193 set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
1194 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1195 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1196 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1197
1198 /* Stack unwinding. */
1199 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1200 /* Breakpoints. */
1201 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1202 /* decr_pc_after_break? */
1203 /* Disassembly. */
1204 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1205
1206 /* Stage 2 */
1207 set_gdbarch_return_value (gdbarch, mn10300_return_value);
1208
1209 /* Stage 3 -- get target calls working. */
1210 set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
1211 /* set_gdbarch_return_value (store, extract) */
1212
1213
1214 mn10300_frame_unwind_init (gdbarch);
1215
1216 /* Hook in ABI-specific overrides, if they have been registered. */
1217 gdbarch_init_osabi (info, gdbarch);
1218
1219 return gdbarch;
1220 }
1221
1222 /* Dump out the mn10300 specific architecture information. */
1223
1224 static void
1225 mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1226 {
1227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1228 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1229 tdep->am33_mode);
1230 }
1231
1232 void
1233 _initialize_mn10300_tdep (void)
1234 {
1235 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1236 }
1237
This page took 0.055079 seconds and 4 git commands to generate.