import gdb-1999-07-05 snapshot
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2 Copyright 1996, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "obstack.h"
24 #include "target.h"
25 #include "value.h"
26 #include "bfd.h"
27 #include "gdb_string.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30
31 static CORE_ADDR mn10300_analyze_prologue PARAMS ((struct frame_info *fi,
32 CORE_ADDR pc));
33
34 /* Additional info used by the frame */
35
36 struct frame_extra_info
37 {
38 int status;
39 int stack_size;
40 };
41
42
43 static char *mn10300_generic_register_names[] =
44 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
45 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
46 "", "", "", "", "", "", "", "",
47 "", "", "", "", "", "", "", "fp" };
48
49 static char **mn10300_register_names = mn10300_generic_register_names;
50
51 char *
52 mn10300_register_name (i)
53 int i;
54 {
55 return mn10300_register_names[i];
56 }
57
58 CORE_ADDR
59 mn10300_saved_pc_after_call (fi)
60 struct frame_info *fi;
61 {
62 return read_memory_integer (read_register (SP_REGNUM), 4);
63 }
64
65 void
66 mn10300_extract_return_value (type, regbuf, valbuf)
67 struct type *type;
68 char *regbuf;
69 char *valbuf;
70 {
71 if (TYPE_CODE (type) == TYPE_CODE_PTR)
72 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
73 else
74 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
75 }
76
77 CORE_ADDR
78 mn10300_extract_struct_value_address (regbuf)
79 char *regbuf;
80 {
81 return extract_address (regbuf + REGISTER_BYTE (4),
82 REGISTER_RAW_SIZE (4));
83 }
84
85 void
86 mn10300_store_return_value (type, valbuf)
87 struct type *type;
88 char *valbuf;
89 {
90 if (TYPE_CODE (type) == TYPE_CODE_PTR)
91 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
92 else
93 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
94 }
95
96 static struct frame_info *analyze_dummy_frame PARAMS ((CORE_ADDR, CORE_ADDR));
97 static struct frame_info *
98 analyze_dummy_frame (pc, frame)
99 CORE_ADDR pc;
100 CORE_ADDR frame;
101 {
102 static struct frame_info *dummy = NULL;
103 if (dummy == NULL)
104 {
105 dummy = xmalloc (sizeof (struct frame_info));
106 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
107 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
108 }
109 dummy->next = NULL;
110 dummy->prev = NULL;
111 dummy->pc = pc;
112 dummy->frame = frame;
113 dummy->extra_info->status = 0;
114 dummy->extra_info->stack_size = 0;
115 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
116 mn10300_analyze_prologue (dummy, 0);
117 return dummy;
118 }
119
120 /* Values for frame_info.status */
121
122 #define MY_FRAME_IN_SP 0x1
123 #define MY_FRAME_IN_FP 0x2
124 #define NO_MORE_FRAMES 0x4
125
126
127 /* Should call_function allocate stack space for a struct return? */
128 int
129 mn10300_use_struct_convention (gcc_p, type)
130 int gcc_p;
131 struct type *type;
132 {
133 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
134 }
135
136 /* The breakpoint instruction must be the same size as the smallest
137 instruction in the instruction set.
138
139 The Matsushita mn10x00 processors have single byte instructions
140 so we need a single byte breakpoint. Matsushita hasn't defined
141 one, so we defined it ourselves. */
142
143 unsigned char *
144 mn10300_breakpoint_from_pc (bp_addr, bp_size)
145 CORE_ADDR *bp_addr;
146 int *bp_size;
147 {
148 static char breakpoint[] = {0xff};
149 *bp_size = 1;
150 return breakpoint;
151 }
152
153
154 /* Fix fi->frame if it's bogus at this point. This is a helper
155 function for mn10300_analyze_prologue. */
156
157 static void
158 fix_frame_pointer (fi, stack_size)
159 struct frame_info *fi;
160 int stack_size;
161 {
162 if (fi && fi->next == NULL)
163 {
164 if (fi->extra_info->status & MY_FRAME_IN_SP)
165 fi->frame = read_sp () - stack_size;
166 else if (fi->extra_info->status & MY_FRAME_IN_FP)
167 fi->frame = read_register (A3_REGNUM);
168 }
169 }
170
171
172 /* Set offsets of registers saved by movm instruction.
173 This is a helper function for mn10300_analyze_prologue. */
174
175 static void
176 set_movm_offsets (fi, movm_args)
177 struct frame_info *fi;
178 int movm_args;
179 {
180 int offset = 0;
181
182 if (fi == NULL || movm_args == 0)
183 return;
184
185 if (movm_args & 0x10)
186 {
187 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
188 offset += 4;
189 }
190 if (movm_args & 0x20)
191 {
192 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
193 offset += 4;
194 }
195 if (movm_args & 0x40)
196 {
197 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
198 offset += 4;
199 }
200 if (movm_args & 0x80)
201 {
202 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
203 offset += 4;
204 }
205 }
206
207
208 /* The main purpose of this file is dealing with prologues to extract
209 information about stack frames and saved registers.
210
211 For reference here's how prologues look on the mn10300:
212
213 With frame pointer:
214 movm [d2,d3,a2,a3],sp
215 mov sp,a3
216 add <size>,sp
217
218 Without frame pointer:
219 movm [d2,d3,a2,a3],sp (if needed)
220 add <size>,sp
221
222 One day we might keep the stack pointer constant, that won't
223 change the code for prologues, but it will make the frame
224 pointerless case much more common. */
225
226 /* Analyze the prologue to determine where registers are saved,
227 the end of the prologue, etc etc. Return the end of the prologue
228 scanned.
229
230 We store into FI (if non-null) several tidbits of information:
231
232 * stack_size -- size of this stack frame. Note that if we stop in
233 certain parts of the prologue/epilogue we may claim the size of the
234 current frame is zero. This happens when the current frame has
235 not been allocated yet or has already been deallocated.
236
237 * fsr -- Addresses of registers saved in the stack by this frame.
238
239 * status -- A (relatively) generic status indicator. It's a bitmask
240 with the following bits:
241
242 MY_FRAME_IN_SP: The base of the current frame is actually in
243 the stack pointer. This can happen for frame pointerless
244 functions, or cases where we're stopped in the prologue/epilogue
245 itself. For these cases mn10300_analyze_prologue will need up
246 update fi->frame before returning or analyzing the register
247 save instructions.
248
249 MY_FRAME_IN_FP: The base of the current frame is in the
250 frame pointer register ($a2).
251
252 NO_MORE_FRAMES: Set this if the current frame is "start" or
253 if the first instruction looks like mov <imm>,sp. This tells
254 frame chain to not bother trying to unwind past this frame. */
255
256 static CORE_ADDR
257 mn10300_analyze_prologue (fi, pc)
258 struct frame_info *fi;
259 CORE_ADDR pc;
260 {
261 CORE_ADDR func_addr, func_end, addr, stop;
262 CORE_ADDR stack_size;
263 int imm_size;
264 unsigned char buf[4];
265 int status, movm_args = 0;
266 char *name;
267
268 /* Use the PC in the frame if it's provided to look up the
269 start of this function. */
270 pc = (fi ? fi->pc : pc);
271
272 /* Find the start of this function. */
273 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
274
275 /* Do nothing if we couldn't find the start of this function or if we're
276 stopped at the first instruction in the prologue. */
277 if (status == 0)
278 {
279 return pc;
280 }
281
282 /* If we're in start, then give up. */
283 if (strcmp (name, "start") == 0)
284 {
285 if (fi != NULL)
286 fi->extra_info->status = NO_MORE_FRAMES;
287 return pc;
288 }
289
290 /* At the start of a function our frame is in the stack pointer. */
291 if (fi)
292 fi->extra_info->status = MY_FRAME_IN_SP;
293
294 /* Get the next two bytes into buf, we need two because rets is a two
295 byte insn and the first isn't enough to uniquely identify it. */
296 status = read_memory_nobpt (pc, buf, 2);
297 if (status != 0)
298 return pc;
299
300 /* If we're physically on an "rets" instruction, then our frame has
301 already been deallocated. Note this can also be true for retf
302 and ret if they specify a size of zero.
303
304 In this case fi->frame is bogus, we need to fix it. */
305 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
306 {
307 if (fi->next == NULL)
308 fi->frame = read_sp ();
309 return fi->pc;
310 }
311
312 /* Similarly if we're stopped on the first insn of a prologue as our
313 frame hasn't been allocated yet. */
314 if (fi && fi->pc == func_addr)
315 {
316 if (fi->next == NULL)
317 fi->frame = read_sp ();
318 return fi->pc;
319 }
320
321 /* Figure out where to stop scanning. */
322 stop = fi ? fi->pc : func_end;
323
324 /* Don't walk off the end of the function. */
325 stop = stop > func_end ? func_end : stop;
326
327 /* Start scanning on the first instruction of this function. */
328 addr = func_addr;
329
330 /* Suck in two bytes. */
331 status = read_memory_nobpt (addr, buf, 2);
332 if (status != 0)
333 {
334 fix_frame_pointer (fi, 0);
335 return addr;
336 }
337
338 /* First see if this insn sets the stack pointer; if so, it's something
339 we won't understand, so quit now. */
340 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
341 {
342 if (fi)
343 fi->extra_info->status = NO_MORE_FRAMES;
344 return addr;
345 }
346
347 /* Now look for movm [regs],sp, which saves the callee saved registers.
348
349 At this time we don't know if fi->frame is valid, so we only note
350 that we encountered a movm instruction. Later, we'll set the entries
351 in fsr.regs as needed. */
352 if (buf[0] == 0xcf)
353 {
354 /* Extract the register list for the movm instruction. */
355 status = read_memory_nobpt (addr + 1, buf, 1);
356 movm_args = *buf;
357
358 addr += 2;
359
360 /* Quit now if we're beyond the stop point. */
361 if (addr >= stop)
362 {
363 /* Fix fi->frame since it's bogus at this point. */
364 if (fi && fi->next == NULL)
365 fi->frame = read_sp ();
366
367 /* Note if/where callee saved registers were saved. */
368 set_movm_offsets (fi, movm_args);
369 return addr;
370 }
371
372 /* Get the next two bytes so the prologue scan can continue. */
373 status = read_memory_nobpt (addr, buf, 2);
374 if (status != 0)
375 {
376 /* Fix fi->frame since it's bogus at this point. */
377 if (fi && fi->next == NULL)
378 fi->frame = read_sp ();
379
380 /* Note if/where callee saved registers were saved. */
381 set_movm_offsets (fi, movm_args);
382 return addr;
383 }
384 }
385
386 /* Now see if we set up a frame pointer via "mov sp,a3" */
387 if (buf[0] == 0x3f)
388 {
389 addr += 1;
390
391 /* The frame pointer is now valid. */
392 if (fi)
393 {
394 fi->extra_info->status |= MY_FRAME_IN_FP;
395 fi->extra_info->status &= ~MY_FRAME_IN_SP;
396 }
397
398 /* Quit now if we're beyond the stop point. */
399 if (addr >= stop)
400 {
401 /* Fix fi->frame if it's bogus at this point. */
402 fix_frame_pointer (fi, 0);
403
404 /* Note if/where callee saved registers were saved. */
405 set_movm_offsets (fi, movm_args);
406 return addr;
407 }
408
409 /* Get two more bytes so scanning can continue. */
410 status = read_memory_nobpt (addr, buf, 2);
411 if (status != 0)
412 {
413 /* Fix fi->frame if it's bogus at this point. */
414 fix_frame_pointer (fi, 0);
415
416 /* Note if/where callee saved registers were saved. */
417 set_movm_offsets (fi, movm_args);
418 return addr;
419 }
420 }
421
422 /* Next we should allocate the local frame. No more prologue insns
423 are found after allocating the local frame.
424
425 Search for add imm8,sp (0xf8feXX)
426 or add imm16,sp (0xfafeXXXX)
427 or add imm32,sp (0xfcfeXXXXXXXX).
428
429 If none of the above was found, then this prologue has no
430 additional stack. */
431
432 status = read_memory_nobpt (addr, buf, 2);
433 if (status != 0)
434 {
435 /* Fix fi->frame if it's bogus at this point. */
436 fix_frame_pointer (fi, 0);
437
438 /* Note if/where callee saved registers were saved. */
439 set_movm_offsets (fi, movm_args);
440 return addr;
441 }
442
443 imm_size = 0;
444 if (buf[0] == 0xf8 && buf[1] == 0xfe)
445 imm_size = 1;
446 else if (buf[0] == 0xfa && buf[1] == 0xfe)
447 imm_size = 2;
448 else if (buf[0] == 0xfc && buf[1] == 0xfe)
449 imm_size = 4;
450
451 if (imm_size != 0)
452 {
453 /* Suck in imm_size more bytes, they'll hold the size of the
454 current frame. */
455 status = read_memory_nobpt (addr + 2, buf, imm_size);
456 if (status != 0)
457 {
458 /* Fix fi->frame if it's bogus at this point. */
459 fix_frame_pointer (fi, 0);
460
461 /* Note if/where callee saved registers were saved. */
462 set_movm_offsets (fi, movm_args);
463 return addr;
464 }
465
466 /* Note the size of the stack in the frame info structure. */
467 stack_size = extract_signed_integer (buf, imm_size);
468 if (fi)
469 fi->extra_info->stack_size = stack_size;
470
471 /* We just consumed 2 + imm_size bytes. */
472 addr += 2 + imm_size;
473
474 /* No more prologue insns follow, so begin preparation to return. */
475 /* Fix fi->frame if it's bogus at this point. */
476 fix_frame_pointer (fi, stack_size);
477
478 /* Note if/where callee saved registers were saved. */
479 set_movm_offsets (fi, movm_args);
480 return addr;
481 }
482
483 /* We never found an insn which allocates local stack space, regardless
484 this is the end of the prologue. */
485 /* Fix fi->frame if it's bogus at this point. */
486 fix_frame_pointer (fi, 0);
487
488 /* Note if/where callee saved registers were saved. */
489 set_movm_offsets (fi, movm_args);
490 return addr;
491 }
492
493 /* Function: frame_chain
494 Figure out and return the caller's frame pointer given current
495 frame_info struct.
496
497 We don't handle dummy frames yet but we would probably just return the
498 stack pointer that was in use at the time the function call was made? */
499
500 CORE_ADDR
501 mn10300_frame_chain (fi)
502 struct frame_info *fi;
503 {
504 struct frame_info *dummy;
505 /* Walk through the prologue to determine the stack size,
506 location of saved registers, end of the prologue, etc. */
507 if (fi->extra_info->status == 0)
508 mn10300_analyze_prologue (fi, (CORE_ADDR)0);
509
510 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
511 if (fi->extra_info->status & NO_MORE_FRAMES)
512 return 0;
513
514 /* Now that we've analyzed our prologue, determine the frame
515 pointer for our caller.
516
517 If our caller has a frame pointer, then we need to
518 find the entry value of $a3 to our function.
519
520 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
521 location pointed to by fsr.regs[A3_REGNUM].
522
523 Else it's still in $a3.
524
525 If our caller does not have a frame pointer, then his
526 frame base is fi->frame + -caller's stack size. */
527
528 /* The easiest way to get that info is to analyze our caller's frame.
529 So we set up a dummy frame and call mn10300_analyze_prologue to
530 find stuff for us. */
531 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
532
533 if (dummy->extra_info->status & MY_FRAME_IN_FP)
534 {
535 /* Our caller has a frame pointer. So find the frame in $a3 or
536 in the stack. */
537 if (fi->saved_regs[A3_REGNUM])
538 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
539 else
540 return read_register (A3_REGNUM);
541 }
542 else
543 {
544 int adjust = 0;
545
546 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
547 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
548 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
549 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
550
551 /* Our caller does not have a frame pointer. So his frame starts
552 at the base of our frame (fi->frame) + register save space
553 + <his size>. */
554 return fi->frame + adjust + -dummy->extra_info->stack_size;
555 }
556 }
557
558 /* Function: skip_prologue
559 Return the address of the first inst past the prologue of the function. */
560
561 CORE_ADDR
562 mn10300_skip_prologue (pc)
563 CORE_ADDR pc;
564 {
565 /* We used to check the debug symbols, but that can lose if
566 we have a null prologue. */
567 return mn10300_analyze_prologue (NULL, pc);
568 }
569
570
571 /* Function: pop_frame
572 This routine gets called when either the user uses the `return'
573 command, or the call dummy breakpoint gets hit. */
574
575 void
576 mn10300_pop_frame (frame)
577 struct frame_info *frame;
578 {
579 int regnum;
580
581 if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
582 generic_pop_dummy_frame ();
583 else
584 {
585 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
586
587 /* Restore any saved registers. */
588 for (regnum = 0; regnum < NUM_REGS; regnum++)
589 if (frame->saved_regs[regnum] != 0)
590 {
591 ULONGEST value;
592
593 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
594 REGISTER_RAW_SIZE (regnum));
595 write_register (regnum, value);
596 }
597
598 /* Actually cut back the stack. */
599 write_register (SP_REGNUM, FRAME_FP (frame));
600
601 /* Don't we need to set the PC?!? XXX FIXME. */
602 }
603
604 /* Throw away any cached frame information. */
605 flush_cached_frames ();
606 }
607
608 /* Function: push_arguments
609 Setup arguments for a call to the target. Arguments go in
610 order on the stack. */
611
612 CORE_ADDR
613 mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
614 int nargs;
615 value_ptr *args;
616 CORE_ADDR sp;
617 unsigned char struct_return;
618 CORE_ADDR struct_addr;
619 {
620 int argnum = 0;
621 int len = 0;
622 int stack_offset = 0;
623 int regsused = struct_return ? 1 : 0;
624
625 /* This should be a nop, but align the stack just in case something
626 went wrong. Stacks are four byte aligned on the mn10300. */
627 sp &= ~3;
628
629 /* Now make space on the stack for the args.
630
631 XXX This doesn't appear to handle pass-by-invisible reference
632 arguments. */
633 for (argnum = 0; argnum < nargs; argnum++)
634 {
635 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
636
637 while (regsused < 2 && arg_length > 0)
638 {
639 regsused++;
640 arg_length -= 4;
641 }
642 len += arg_length;
643 }
644
645 /* Allocate stack space. */
646 sp -= len;
647
648 regsused = struct_return ? 1 : 0;
649 /* Push all arguments onto the stack. */
650 for (argnum = 0; argnum < nargs; argnum++)
651 {
652 int len;
653 char *val;
654
655 /* XXX Check this. What about UNIONS? */
656 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
657 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
658 {
659 /* XXX Wrong, we want a pointer to this argument. */
660 len = TYPE_LENGTH (VALUE_TYPE (*args));
661 val = (char *)VALUE_CONTENTS (*args);
662 }
663 else
664 {
665 len = TYPE_LENGTH (VALUE_TYPE (*args));
666 val = (char *)VALUE_CONTENTS (*args);
667 }
668
669 while (regsused < 2 && len > 0)
670 {
671 write_register (regsused, extract_unsigned_integer (val, 4));
672 val += 4;
673 len -= 4;
674 regsused++;
675 }
676
677 while (len > 0)
678 {
679 write_memory (sp + stack_offset, val, 4);
680 len -= 4;
681 val += 4;
682 stack_offset += 4;
683 }
684
685 args++;
686 }
687
688 /* Make space for the flushback area. */
689 sp -= 8;
690 return sp;
691 }
692
693 /* Function: push_return_address (pc)
694 Set up the return address for the inferior function call.
695 Needed for targets where we don't actually execute a JSR/BSR instruction */
696
697 CORE_ADDR
698 mn10300_push_return_address (pc, sp)
699 CORE_ADDR pc;
700 CORE_ADDR sp;
701 {
702 unsigned char buf[4];
703
704 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
705 write_memory (sp - 4, buf, 4);
706 return sp - 4;
707 }
708
709 /* Function: store_struct_return (addr,sp)
710 Store the structure value return address for an inferior function
711 call. */
712
713 CORE_ADDR
714 mn10300_store_struct_return (addr, sp)
715 CORE_ADDR addr;
716 CORE_ADDR sp;
717 {
718 /* The structure return address is passed as the first argument. */
719 write_register (0, addr);
720 return sp;
721 }
722
723 /* Function: frame_saved_pc
724 Find the caller of this frame. We do this by seeing if RP_REGNUM
725 is saved in the stack anywhere, otherwise we get it from the
726 registers. If the inner frame is a dummy frame, return its PC
727 instead of RP, because that's where "caller" of the dummy-frame
728 will be found. */
729
730 CORE_ADDR
731 mn10300_frame_saved_pc (fi)
732 struct frame_info *fi;
733 {
734 int adjust = 0;
735
736 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
737 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
738 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
739 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
740
741 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
742 }
743
744 /* Function: mn10300_init_extra_frame_info
745 Setup the frame's frame pointer, pc, and frame addresses for saved
746 registers. Most of the work is done in mn10300_analyze_prologue().
747
748 Note that when we are called for the last frame (currently active frame),
749 that fi->pc and fi->frame will already be setup. However, fi->frame will
750 be valid only if this routine uses FP. For previous frames, fi-frame will
751 always be correct. mn10300_analyze_prologue will fix fi->frame if
752 it's not valid.
753
754 We can be called with the PC in the call dummy under two circumstances.
755 First, during normal backtracing, second, while figuring out the frame
756 pointer just prior to calling the target function (see run_stack_dummy). */
757
758 void
759 mn10300_init_extra_frame_info (fi)
760 struct frame_info *fi;
761 {
762 if (fi->next)
763 fi->pc = FRAME_SAVED_PC (fi->next);
764
765 frame_saved_regs_zalloc (fi);
766 fi->extra_info = (struct frame_extra_info *)
767 frame_obstack_alloc (sizeof (struct frame_extra_info));
768
769 fi->extra_info->status = 0;
770 fi->extra_info->stack_size = 0;
771
772 mn10300_analyze_prologue (fi, 0);
773 }
774
775 /* Function: mn10300_virtual_frame_pointer
776 Return the register that the function uses for a frame pointer,
777 plus any necessary offset to be applied to the register before
778 any frame pointer offsets. */
779
780 void
781 mn10300_virtual_frame_pointer (pc, reg, offset)
782 CORE_ADDR pc;
783 long *reg;
784 long *offset;
785 {
786 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
787 /* Set up a dummy frame_info, Analyze the prolog and fill in the
788 extra info. */
789 /* Results will tell us which type of frame it uses. */
790 if (dummy->extra_info->status & MY_FRAME_IN_SP)
791 {
792 *reg = SP_REGNUM;
793 *offset = -(dummy->extra_info->stack_size);
794 }
795 else
796 {
797 *reg = A3_REGNUM;
798 *offset = 0;
799 }
800 }
801
802 /* This can be made more generic later. */
803 static void
804 set_machine_hook (filename)
805 char *filename;
806 {
807 int i;
808
809 if (bfd_get_mach (exec_bfd) == bfd_mach_mn10300
810 || bfd_get_mach (exec_bfd) == 0)
811 {
812 mn10300_register_names = mn10300_generic_register_names;
813 }
814
815 }
816
817 void
818 _initialize_mn10300_tdep ()
819 {
820 /* printf("_initialize_mn10300_tdep\n"); */
821
822 tm_print_insn = print_insn_mn10300;
823
824 specify_exec_file_hook (set_machine_hook);
825 }
826
This page took 0.046134 seconds and 5 git commands to generate.