* config/mn10300/tm-mn10300.h (mn10300_find_callers_reg): Delete
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "obstack.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34
35 extern void _initialize_mn10300_tdep (void);
36 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
37 CORE_ADDR pc);
38
39 /* mn10300 private data */
40 struct gdbarch_tdep
41 {
42 int am33_mode;
43 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
44 };
45
46 /* Additional info used by the frame */
47
48 struct frame_extra_info
49 {
50 int status;
51 int stack_size;
52 };
53
54
55 static char *
56 register_name (int reg, char **regs, long sizeof_regs)
57 {
58 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
59 return NULL;
60 else
61 return regs[reg];
62 }
63
64 static char *
65 mn10300_generic_register_name (int reg)
66 {
67 static char *regs[] =
68 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
69 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
70 "", "", "", "", "", "", "", "",
71 "", "", "", "", "", "", "", "fp"
72 };
73 return register_name (reg, regs, sizeof regs);
74 }
75
76
77 static char *
78 am33_register_name (int reg)
79 {
80 static char *regs[] =
81 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
82 "sp", "pc", "mdr", "psw", "lir", "lar", "",
83 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
84 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
85 };
86 return register_name (reg, regs, sizeof regs);
87 }
88
89 CORE_ADDR
90 mn10300_saved_pc_after_call (struct frame_info *fi)
91 {
92 return read_memory_integer (read_register (SP_REGNUM), 4);
93 }
94
95 void
96 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
97 {
98 if (TYPE_CODE (type) == TYPE_CODE_PTR)
99 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
100 else
101 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
102 }
103
104 CORE_ADDR
105 mn10300_extract_struct_value_address (char *regbuf)
106 {
107 return extract_address (regbuf + REGISTER_BYTE (4),
108 REGISTER_RAW_SIZE (4));
109 }
110
111 void
112 mn10300_store_return_value (struct type *type, char *valbuf)
113 {
114 if (TYPE_CODE (type) == TYPE_CODE_PTR)
115 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
116 else
117 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
118 }
119
120 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
121 static struct frame_info *
122 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
123 {
124 static struct frame_info *dummy = NULL;
125 if (dummy == NULL)
126 {
127 dummy = xmalloc (sizeof (struct frame_info));
128 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
129 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
130 }
131 dummy->next = NULL;
132 dummy->prev = NULL;
133 dummy->pc = pc;
134 dummy->frame = frame;
135 dummy->extra_info->status = 0;
136 dummy->extra_info->stack_size = 0;
137 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
138 mn10300_analyze_prologue (dummy, 0);
139 return dummy;
140 }
141
142 /* Values for frame_info.status */
143
144 #define MY_FRAME_IN_SP 0x1
145 #define MY_FRAME_IN_FP 0x2
146 #define NO_MORE_FRAMES 0x4
147
148
149 /* Should call_function allocate stack space for a struct return? */
150 int
151 mn10300_use_struct_convention (int gcc_p, struct type *type)
152 {
153 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
154 }
155
156 /* The breakpoint instruction must be the same size as the smallest
157 instruction in the instruction set.
158
159 The Matsushita mn10x00 processors have single byte instructions
160 so we need a single byte breakpoint. Matsushita hasn't defined
161 one, so we defined it ourselves. */
162
163 unsigned char *
164 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
165 {
166 static char breakpoint[] =
167 {0xff};
168 *bp_size = 1;
169 return breakpoint;
170 }
171
172
173 /* Fix fi->frame if it's bogus at this point. This is a helper
174 function for mn10300_analyze_prologue. */
175
176 static void
177 fix_frame_pointer (struct frame_info *fi, int stack_size)
178 {
179 if (fi && fi->next == NULL)
180 {
181 if (fi->extra_info->status & MY_FRAME_IN_SP)
182 fi->frame = read_sp () - stack_size;
183 else if (fi->extra_info->status & MY_FRAME_IN_FP)
184 fi->frame = read_register (A3_REGNUM);
185 }
186 }
187
188
189 /* Set offsets of registers saved by movm instruction.
190 This is a helper function for mn10300_analyze_prologue. */
191
192 static void
193 set_movm_offsets (struct frame_info *fi, int movm_args)
194 {
195 int offset = 0;
196
197 if (fi == NULL || movm_args == 0)
198 return;
199
200 if (movm_args & 0x10)
201 {
202 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
203 offset += 4;
204 }
205 if (movm_args & 0x20)
206 {
207 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
208 offset += 4;
209 }
210 if (movm_args & 0x40)
211 {
212 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
213 offset += 4;
214 }
215 if (movm_args & 0x80)
216 {
217 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
218 offset += 4;
219 }
220 if (AM33_MODE && movm_args & 0x02)
221 {
222 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset;
223 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 4;
224 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset + 8;
225 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 12;
226 }
227 }
228
229
230 /* The main purpose of this file is dealing with prologues to extract
231 information about stack frames and saved registers.
232
233 For reference here's how prologues look on the mn10300:
234
235 With frame pointer:
236 movm [d2,d3,a2,a3],sp
237 mov sp,a3
238 add <size>,sp
239
240 Without frame pointer:
241 movm [d2,d3,a2,a3],sp (if needed)
242 add <size>,sp
243
244 One day we might keep the stack pointer constant, that won't
245 change the code for prologues, but it will make the frame
246 pointerless case much more common. */
247
248 /* Analyze the prologue to determine where registers are saved,
249 the end of the prologue, etc etc. Return the end of the prologue
250 scanned.
251
252 We store into FI (if non-null) several tidbits of information:
253
254 * stack_size -- size of this stack frame. Note that if we stop in
255 certain parts of the prologue/epilogue we may claim the size of the
256 current frame is zero. This happens when the current frame has
257 not been allocated yet or has already been deallocated.
258
259 * fsr -- Addresses of registers saved in the stack by this frame.
260
261 * status -- A (relatively) generic status indicator. It's a bitmask
262 with the following bits:
263
264 MY_FRAME_IN_SP: The base of the current frame is actually in
265 the stack pointer. This can happen for frame pointerless
266 functions, or cases where we're stopped in the prologue/epilogue
267 itself. For these cases mn10300_analyze_prologue will need up
268 update fi->frame before returning or analyzing the register
269 save instructions.
270
271 MY_FRAME_IN_FP: The base of the current frame is in the
272 frame pointer register ($a2).
273
274 NO_MORE_FRAMES: Set this if the current frame is "start" or
275 if the first instruction looks like mov <imm>,sp. This tells
276 frame chain to not bother trying to unwind past this frame. */
277
278 static CORE_ADDR
279 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
280 {
281 CORE_ADDR func_addr, func_end, addr, stop;
282 CORE_ADDR stack_size;
283 int imm_size;
284 unsigned char buf[4];
285 int status, movm_args = 0;
286 char *name;
287
288 /* Use the PC in the frame if it's provided to look up the
289 start of this function. */
290 pc = (fi ? fi->pc : pc);
291
292 /* Find the start of this function. */
293 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
294
295 /* Do nothing if we couldn't find the start of this function or if we're
296 stopped at the first instruction in the prologue. */
297 if (status == 0)
298 {
299 return pc;
300 }
301
302 /* If we're in start, then give up. */
303 if (strcmp (name, "start") == 0)
304 {
305 if (fi != NULL)
306 fi->extra_info->status = NO_MORE_FRAMES;
307 return pc;
308 }
309
310 /* At the start of a function our frame is in the stack pointer. */
311 if (fi)
312 fi->extra_info->status = MY_FRAME_IN_SP;
313
314 /* Get the next two bytes into buf, we need two because rets is a two
315 byte insn and the first isn't enough to uniquely identify it. */
316 status = read_memory_nobpt (pc, buf, 2);
317 if (status != 0)
318 return pc;
319
320 /* If we're physically on an "rets" instruction, then our frame has
321 already been deallocated. Note this can also be true for retf
322 and ret if they specify a size of zero.
323
324 In this case fi->frame is bogus, we need to fix it. */
325 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
326 {
327 if (fi->next == NULL)
328 fi->frame = read_sp ();
329 return fi->pc;
330 }
331
332 /* Similarly if we're stopped on the first insn of a prologue as our
333 frame hasn't been allocated yet. */
334 if (fi && fi->pc == func_addr)
335 {
336 if (fi->next == NULL)
337 fi->frame = read_sp ();
338 return fi->pc;
339 }
340
341 /* Figure out where to stop scanning. */
342 stop = fi ? fi->pc : func_end;
343
344 /* Don't walk off the end of the function. */
345 stop = stop > func_end ? func_end : stop;
346
347 /* Start scanning on the first instruction of this function. */
348 addr = func_addr;
349
350 /* Suck in two bytes. */
351 status = read_memory_nobpt (addr, buf, 2);
352 if (status != 0)
353 {
354 fix_frame_pointer (fi, 0);
355 return addr;
356 }
357
358 /* First see if this insn sets the stack pointer; if so, it's something
359 we won't understand, so quit now. */
360 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
361 {
362 if (fi)
363 fi->extra_info->status = NO_MORE_FRAMES;
364 return addr;
365 }
366
367 /* Now look for movm [regs],sp, which saves the callee saved registers.
368
369 At this time we don't know if fi->frame is valid, so we only note
370 that we encountered a movm instruction. Later, we'll set the entries
371 in fsr.regs as needed. */
372 if (buf[0] == 0xcf)
373 {
374 /* Extract the register list for the movm instruction. */
375 status = read_memory_nobpt (addr + 1, buf, 1);
376 movm_args = *buf;
377
378 addr += 2;
379
380 /* Quit now if we're beyond the stop point. */
381 if (addr >= stop)
382 {
383 /* Fix fi->frame since it's bogus at this point. */
384 if (fi && fi->next == NULL)
385 fi->frame = read_sp ();
386
387 /* Note if/where callee saved registers were saved. */
388 set_movm_offsets (fi, movm_args);
389 return addr;
390 }
391
392 /* Get the next two bytes so the prologue scan can continue. */
393 status = read_memory_nobpt (addr, buf, 2);
394 if (status != 0)
395 {
396 /* Fix fi->frame since it's bogus at this point. */
397 if (fi && fi->next == NULL)
398 fi->frame = read_sp ();
399
400 /* Note if/where callee saved registers were saved. */
401 set_movm_offsets (fi, movm_args);
402 return addr;
403 }
404 }
405
406 /* Now see if we set up a frame pointer via "mov sp,a3" */
407 if (buf[0] == 0x3f)
408 {
409 addr += 1;
410
411 /* The frame pointer is now valid. */
412 if (fi)
413 {
414 fi->extra_info->status |= MY_FRAME_IN_FP;
415 fi->extra_info->status &= ~MY_FRAME_IN_SP;
416 }
417
418 /* Quit now if we're beyond the stop point. */
419 if (addr >= stop)
420 {
421 /* Fix fi->frame if it's bogus at this point. */
422 fix_frame_pointer (fi, 0);
423
424 /* Note if/where callee saved registers were saved. */
425 set_movm_offsets (fi, movm_args);
426 return addr;
427 }
428
429 /* Get two more bytes so scanning can continue. */
430 status = read_memory_nobpt (addr, buf, 2);
431 if (status != 0)
432 {
433 /* Fix fi->frame if it's bogus at this point. */
434 fix_frame_pointer (fi, 0);
435
436 /* Note if/where callee saved registers were saved. */
437 set_movm_offsets (fi, movm_args);
438 return addr;
439 }
440 }
441
442 /* Next we should allocate the local frame. No more prologue insns
443 are found after allocating the local frame.
444
445 Search for add imm8,sp (0xf8feXX)
446 or add imm16,sp (0xfafeXXXX)
447 or add imm32,sp (0xfcfeXXXXXXXX).
448
449 If none of the above was found, then this prologue has no
450 additional stack. */
451
452 status = read_memory_nobpt (addr, buf, 2);
453 if (status != 0)
454 {
455 /* Fix fi->frame if it's bogus at this point. */
456 fix_frame_pointer (fi, 0);
457
458 /* Note if/where callee saved registers were saved. */
459 set_movm_offsets (fi, movm_args);
460 return addr;
461 }
462
463 imm_size = 0;
464 if (buf[0] == 0xf8 && buf[1] == 0xfe)
465 imm_size = 1;
466 else if (buf[0] == 0xfa && buf[1] == 0xfe)
467 imm_size = 2;
468 else if (buf[0] == 0xfc && buf[1] == 0xfe)
469 imm_size = 4;
470
471 if (imm_size != 0)
472 {
473 /* Suck in imm_size more bytes, they'll hold the size of the
474 current frame. */
475 status = read_memory_nobpt (addr + 2, buf, imm_size);
476 if (status != 0)
477 {
478 /* Fix fi->frame if it's bogus at this point. */
479 fix_frame_pointer (fi, 0);
480
481 /* Note if/where callee saved registers were saved. */
482 set_movm_offsets (fi, movm_args);
483 return addr;
484 }
485
486 /* Note the size of the stack in the frame info structure. */
487 stack_size = extract_signed_integer (buf, imm_size);
488 if (fi)
489 fi->extra_info->stack_size = stack_size;
490
491 /* We just consumed 2 + imm_size bytes. */
492 addr += 2 + imm_size;
493
494 /* No more prologue insns follow, so begin preparation to return. */
495 /* Fix fi->frame if it's bogus at this point. */
496 fix_frame_pointer (fi, stack_size);
497
498 /* Note if/where callee saved registers were saved. */
499 set_movm_offsets (fi, movm_args);
500 return addr;
501 }
502
503 /* We never found an insn which allocates local stack space, regardless
504 this is the end of the prologue. */
505 /* Fix fi->frame if it's bogus at this point. */
506 fix_frame_pointer (fi, 0);
507
508 /* Note if/where callee saved registers were saved. */
509 set_movm_offsets (fi, movm_args);
510 return addr;
511 }
512
513 /* Function: frame_chain
514 Figure out and return the caller's frame pointer given current
515 frame_info struct.
516
517 We don't handle dummy frames yet but we would probably just return the
518 stack pointer that was in use at the time the function call was made? */
519
520 CORE_ADDR
521 mn10300_frame_chain (struct frame_info *fi)
522 {
523 struct frame_info *dummy;
524 /* Walk through the prologue to determine the stack size,
525 location of saved registers, end of the prologue, etc. */
526 if (fi->extra_info->status == 0)
527 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
528
529 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
530 if (fi->extra_info->status & NO_MORE_FRAMES)
531 return 0;
532
533 /* Now that we've analyzed our prologue, determine the frame
534 pointer for our caller.
535
536 If our caller has a frame pointer, then we need to
537 find the entry value of $a3 to our function.
538
539 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
540 location pointed to by fsr.regs[A3_REGNUM].
541
542 Else it's still in $a3.
543
544 If our caller does not have a frame pointer, then his
545 frame base is fi->frame + -caller's stack size. */
546
547 /* The easiest way to get that info is to analyze our caller's frame.
548 So we set up a dummy frame and call mn10300_analyze_prologue to
549 find stuff for us. */
550 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
551
552 if (dummy->extra_info->status & MY_FRAME_IN_FP)
553 {
554 /* Our caller has a frame pointer. So find the frame in $a3 or
555 in the stack. */
556 if (fi->saved_regs[A3_REGNUM])
557 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
558 else
559 return read_register (A3_REGNUM);
560 }
561 else
562 {
563 int adjust = 0;
564
565 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
566 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
567 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
568 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
569 if (AM33_MODE)
570 {
571 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
572 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
573 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
574 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
575 }
576
577 /* Our caller does not have a frame pointer. So his frame starts
578 at the base of our frame (fi->frame) + register save space
579 + <his size>. */
580 return fi->frame + adjust + -dummy->extra_info->stack_size;
581 }
582 }
583
584 /* Function: skip_prologue
585 Return the address of the first inst past the prologue of the function. */
586
587 CORE_ADDR
588 mn10300_skip_prologue (CORE_ADDR pc)
589 {
590 /* We used to check the debug symbols, but that can lose if
591 we have a null prologue. */
592 return mn10300_analyze_prologue (NULL, pc);
593 }
594
595
596 /* Function: pop_frame
597 This routine gets called when either the user uses the `return'
598 command, or the call dummy breakpoint gets hit. */
599
600 void
601 mn10300_pop_frame (struct frame_info *frame)
602 {
603 int regnum;
604
605 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
606 generic_pop_dummy_frame ();
607 else
608 {
609 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
610
611 /* Restore any saved registers. */
612 for (regnum = 0; regnum < NUM_REGS; regnum++)
613 if (frame->saved_regs[regnum] != 0)
614 {
615 ULONGEST value;
616
617 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
618 REGISTER_RAW_SIZE (regnum));
619 write_register (regnum, value);
620 }
621
622 /* Actually cut back the stack. */
623 write_register (SP_REGNUM, FRAME_FP (frame));
624
625 /* Don't we need to set the PC?!? XXX FIXME. */
626 }
627
628 /* Throw away any cached frame information. */
629 flush_cached_frames ();
630 }
631
632 /* Function: push_arguments
633 Setup arguments for a call to the target. Arguments go in
634 order on the stack. */
635
636 CORE_ADDR
637 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
638 int struct_return, CORE_ADDR struct_addr)
639 {
640 int argnum = 0;
641 int len = 0;
642 int stack_offset = 0;
643 int regsused = struct_return ? 1 : 0;
644
645 /* This should be a nop, but align the stack just in case something
646 went wrong. Stacks are four byte aligned on the mn10300. */
647 sp &= ~3;
648
649 /* Now make space on the stack for the args.
650
651 XXX This doesn't appear to handle pass-by-invisible reference
652 arguments. */
653 for (argnum = 0; argnum < nargs; argnum++)
654 {
655 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
656
657 while (regsused < 2 && arg_length > 0)
658 {
659 regsused++;
660 arg_length -= 4;
661 }
662 len += arg_length;
663 }
664
665 /* Allocate stack space. */
666 sp -= len;
667
668 regsused = struct_return ? 1 : 0;
669 /* Push all arguments onto the stack. */
670 for (argnum = 0; argnum < nargs; argnum++)
671 {
672 int len;
673 char *val;
674
675 /* XXX Check this. What about UNIONS? */
676 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
677 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
678 {
679 /* XXX Wrong, we want a pointer to this argument. */
680 len = TYPE_LENGTH (VALUE_TYPE (*args));
681 val = (char *) VALUE_CONTENTS (*args);
682 }
683 else
684 {
685 len = TYPE_LENGTH (VALUE_TYPE (*args));
686 val = (char *) VALUE_CONTENTS (*args);
687 }
688
689 while (regsused < 2 && len > 0)
690 {
691 write_register (regsused, extract_unsigned_integer (val, 4));
692 val += 4;
693 len -= 4;
694 regsused++;
695 }
696
697 while (len > 0)
698 {
699 write_memory (sp + stack_offset, val, 4);
700 len -= 4;
701 val += 4;
702 stack_offset += 4;
703 }
704
705 args++;
706 }
707
708 /* Make space for the flushback area. */
709 sp -= 8;
710 return sp;
711 }
712
713 /* Function: push_return_address (pc)
714 Set up the return address for the inferior function call.
715 Needed for targets where we don't actually execute a JSR/BSR instruction */
716
717 CORE_ADDR
718 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
719 {
720 unsigned char buf[4];
721
722 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
723 write_memory (sp - 4, buf, 4);
724 return sp - 4;
725 }
726
727 /* Function: store_struct_return (addr,sp)
728 Store the structure value return address for an inferior function
729 call. */
730
731 void
732 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
733 {
734 /* The structure return address is passed as the first argument. */
735 write_register (0, addr);
736 }
737
738 /* Function: frame_saved_pc
739 Find the caller of this frame. We do this by seeing if RP_REGNUM
740 is saved in the stack anywhere, otherwise we get it from the
741 registers. If the inner frame is a dummy frame, return its PC
742 instead of RP, because that's where "caller" of the dummy-frame
743 will be found. */
744
745 CORE_ADDR
746 mn10300_frame_saved_pc (struct frame_info *fi)
747 {
748 int adjust = 0;
749
750 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
751 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
752 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
753 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
754 if (AM33_MODE)
755 {
756 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
757 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
758 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
759 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
760 }
761
762 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
763 }
764
765 /* Function: mn10300_init_extra_frame_info
766 Setup the frame's frame pointer, pc, and frame addresses for saved
767 registers. Most of the work is done in mn10300_analyze_prologue().
768
769 Note that when we are called for the last frame (currently active frame),
770 that fi->pc and fi->frame will already be setup. However, fi->frame will
771 be valid only if this routine uses FP. For previous frames, fi-frame will
772 always be correct. mn10300_analyze_prologue will fix fi->frame if
773 it's not valid.
774
775 We can be called with the PC in the call dummy under two circumstances.
776 First, during normal backtracing, second, while figuring out the frame
777 pointer just prior to calling the target function (see run_stack_dummy). */
778
779 void
780 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
781 {
782 if (fi->next)
783 fi->pc = FRAME_SAVED_PC (fi->next);
784
785 frame_saved_regs_zalloc (fi);
786 fi->extra_info = (struct frame_extra_info *)
787 frame_obstack_alloc (sizeof (struct frame_extra_info));
788
789 fi->extra_info->status = 0;
790 fi->extra_info->stack_size = 0;
791
792 mn10300_analyze_prologue (fi, 0);
793 }
794
795
796 /* This function's job is handled by init_extra_frame_info. */
797 void
798 mn10300_frame_init_saved_regs (struct frame_info *frame)
799 {
800 }
801
802
803 /* Function: mn10300_virtual_frame_pointer
804 Return the register that the function uses for a frame pointer,
805 plus any necessary offset to be applied to the register before
806 any frame pointer offsets. */
807
808 void
809 mn10300_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
810 {
811 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
812 /* Set up a dummy frame_info, Analyze the prolog and fill in the
813 extra info. */
814 /* Results will tell us which type of frame it uses. */
815 if (dummy->extra_info->status & MY_FRAME_IN_SP)
816 {
817 *reg = SP_REGNUM;
818 *offset = -(dummy->extra_info->stack_size);
819 }
820 else
821 {
822 *reg = A3_REGNUM;
823 *offset = 0;
824 }
825 }
826
827 static int
828 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
829 {
830 return (TYPE_LENGTH (type) > 8);
831 }
832
833 static struct type *
834 mn10300_register_virtual_type (int reg)
835 {
836 return builtin_type_int;
837 }
838
839 static int
840 mn10300_register_byte (int reg)
841 {
842 return (reg * 4);
843 }
844
845 static int
846 mn10300_register_virtual_size (int reg)
847 {
848 return 4;
849 }
850
851 static int
852 mn10300_register_raw_size (int reg)
853 {
854 return 4;
855 }
856
857 static void
858 mn10300_print_register (const char *name, int regnum, int reg_width)
859 {
860 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
861
862 if (reg_width)
863 printf_filtered ("%*s: ", reg_width, name);
864 else
865 printf_filtered ("%s: ", name);
866
867 /* Get the data */
868 if (read_relative_register_raw_bytes (regnum, raw_buffer))
869 {
870 printf_filtered ("[invalid]");
871 return;
872 }
873 else
874 {
875 int byte;
876 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
877 {
878 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
879 byte < REGISTER_RAW_SIZE (regnum);
880 byte++)
881 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
882 }
883 else
884 {
885 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
886 byte >= 0;
887 byte--)
888 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
889 }
890 }
891 }
892
893 static void
894 mn10300_do_registers_info (int regnum, int fpregs)
895 {
896 if (regnum >= 0)
897 {
898 const char *name = REGISTER_NAME (regnum);
899 if (name == NULL || name[0] == '\0')
900 error ("Not a valid register for the current processor type");
901 mn10300_print_register (name, regnum, 0);
902 printf_filtered ("\n");
903 }
904 else
905 {
906 /* print registers in an array 4x8 */
907 int r;
908 int reg;
909 const int nr_in_row = 4;
910 const int reg_width = 4;
911 for (r = 0; r < NUM_REGS; r += nr_in_row)
912 {
913 int c;
914 int printing = 0;
915 int padding = 0;
916 for (c = r; c < r + nr_in_row; c++)
917 {
918 const char *name = REGISTER_NAME (c);
919 if (name != NULL && *name != '\0')
920 {
921 printing = 1;
922 while (padding > 0)
923 {
924 printf_filtered (" ");
925 padding--;
926 }
927 mn10300_print_register (name, c, reg_width);
928 printf_filtered (" ");
929 }
930 else
931 {
932 padding += (reg_width + 2 + 8 + 1);
933 }
934 }
935 if (printing)
936 printf_filtered ("\n");
937 }
938 }
939 }
940
941 /* Dump out the mn10300 speciic architecture information. */
942
943 static void
944 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
945 {
946 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
947 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
948 tdep->am33_mode);
949 }
950
951 static struct gdbarch *
952 mn10300_gdbarch_init (struct gdbarch_info info,
953 struct gdbarch_list *arches)
954 {
955 static LONGEST mn10300_call_dummy_words[] = { 0 };
956 struct gdbarch *gdbarch;
957 struct gdbarch_tdep *tdep = NULL;
958 int am33_mode;
959 gdbarch_register_name_ftype *register_name;
960 int mach;
961 int num_regs;
962
963 arches = gdbarch_list_lookup_by_info (arches, &info);
964 if (arches != NULL)
965 return arches->gdbarch;
966 tdep = xmalloc (sizeof (struct gdbarch_tdep));
967 gdbarch = gdbarch_alloc (&info, tdep);
968
969 if (info.bfd_arch_info != NULL
970 && info.bfd_arch_info->arch == bfd_arch_mn10300)
971 mach = info.bfd_arch_info->mach;
972 else
973 mach = 0;
974 switch (mach)
975 {
976 case 0:
977 case bfd_mach_mn10300:
978 am33_mode = 0;
979 register_name = mn10300_generic_register_name;
980 num_regs = 32;
981 break;
982 case bfd_mach_am33:
983 am33_mode = 1;
984 register_name = am33_register_name;
985 num_regs = 32;
986 break;
987 default:
988 internal_error (__FILE__, __LINE__,
989 "mn10300_gdbarch_init: Unknown mn10300 variant");
990 return NULL; /* keep GCC happy. */
991 }
992
993 /* Registers. */
994 set_gdbarch_num_regs (gdbarch, num_regs);
995 set_gdbarch_register_name (gdbarch, register_name);
996 set_gdbarch_register_size (gdbarch, 4);
997 set_gdbarch_register_bytes (gdbarch,
998 num_regs * gdbarch_register_size (gdbarch));
999 set_gdbarch_max_register_raw_size (gdbarch, 4);
1000 set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
1001 set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
1002 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1003 set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1004 set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1005 set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
1006 set_gdbarch_fp_regnum (gdbarch, 31);
1007
1008 /* Breakpoints. */
1009 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1010 set_gdbarch_function_start_offset (gdbarch, 0);
1011 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1012
1013 /* Stack unwinding. */
1014 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1015 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1016 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1017 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1018 set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1019 set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1020 set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1021 set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
1022 set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1023 set_gdbarch_extract_return_value (gdbarch, mn10300_extract_return_value);
1024 set_gdbarch_extract_struct_value_address
1025 (gdbarch, mn10300_extract_struct_value_address);
1026 set_gdbarch_store_return_value (gdbarch, mn10300_store_return_value);
1027 set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
1028 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1029 set_gdbarch_frame_args_skip (gdbarch, 0);
1030 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1031 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1032 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1033 /* That's right, we're using the stack pointer as our frame pointer. */
1034 set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
1035
1036 /* Calling functions in the inferior from GDB. */
1037 set_gdbarch_call_dummy_p (gdbarch, 1);
1038 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 0);
1039 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1040 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1041 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1042 set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1043 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1044 sizeof (mn10300_call_dummy_words));
1045 set_gdbarch_call_dummy_length (gdbarch, 0);
1046 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1047 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1048 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1049 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1050 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1051 set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
1052 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1053 set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
1054 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1055 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1056
1057 tdep->am33_mode = am33_mode;
1058
1059 return gdbarch;
1060 }
1061
1062 void
1063 _initialize_mn10300_tdep (void)
1064 {
1065 /* printf("_initialize_mn10300_tdep\n"); */
1066
1067 tm_print_insn = print_insn_mn10300;
1068
1069 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1070 }
This page took 0.0510659999999999 seconds and 5 git commands to generate.