gas: avoid spurious failures in non-ELF targets in the SPARC testsuite.
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "dis-asm.h"
28 #include "arch-utils.h"
29 #include "gdbtypes.h"
30 #include "regcache.h"
31 #include "reggroups.h"
32 #include "gdbcore.h"
33 #include "trad-frame.h"
34 #include "inferior.h"
35 #include "dwarf2-frame.h"
36 #include "infcall.h"
37 #include "language.h"
38 #include "valprint.h"
39
40 enum mt_arch_constants
41 {
42 MT_MAX_STRUCT_SIZE = 16
43 };
44
45 enum mt_gdb_regnums
46 {
47 MT_R0_REGNUM, /* 32 bit regs. */
48 MT_R1_REGNUM,
49 MT_1ST_ARGREG = MT_R1_REGNUM,
50 MT_R2_REGNUM,
51 MT_R3_REGNUM,
52 MT_R4_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
54 MT_R5_REGNUM,
55 MT_R6_REGNUM,
56 MT_R7_REGNUM,
57 MT_R8_REGNUM,
58 MT_R9_REGNUM,
59 MT_R10_REGNUM,
60 MT_R11_REGNUM,
61 MT_R12_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
63 MT_R13_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
65 MT_R14_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
67 MT_R15_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
69 MT_PC_REGNUM,
70
71 /* Interrupt Enable pseudo-register, exported by SID. */
72 MT_INT_ENABLE_REGNUM,
73 /* End of CPU regs. */
74
75 MT_NUM_CPU_REGS,
76
77 /* Co-processor registers. */
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
79 MT_CPR0_REGNUM,
80 MT_CPR1_REGNUM,
81 MT_CPR2_REGNUM,
82 MT_CPR3_REGNUM,
83 MT_CPR4_REGNUM,
84 MT_CPR5_REGNUM,
85 MT_CPR6_REGNUM,
86 MT_CPR7_REGNUM,
87 MT_CPR8_REGNUM,
88 MT_CPR9_REGNUM,
89 MT_CPR10_REGNUM,
90 MT_CPR11_REGNUM,
91 MT_CPR12_REGNUM,
92 MT_CPR13_REGNUM,
93 MT_CPR14_REGNUM,
94 MT_CPR15_REGNUM,
95 MT_BYPA_REGNUM, /* 32 bit regs. */
96 MT_BYPB_REGNUM,
97 MT_BYPC_REGNUM,
98 MT_FLAG_REGNUM,
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
100 six bytes). */
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
116
117 /* Number of real registers. */
118 MT_NUM_REGS,
119
120 /* Pseudo-registers. */
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
123 MT_COPRO_PSEUDOREG_ARRAY,
124
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
133
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
138 };
139
140 /* The tdep structure. */
141 struct gdbarch_tdep
142 {
143 /* ISA-specific types. */
144 struct type *copro_type;
145 };
146
147
148 /* Return name of register number specified by REGNUM. */
149
150 static const char *
151 mt_register_name (struct gdbarch *gdbarch, int regnum)
152 {
153 static const char *const register_names[] = {
154 /* CPU regs. */
155 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
156 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
157 "pc", "IE",
158 /* Co-processor regs. */
159 "", /* copro register. */
160 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
161 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
162 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
163 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
164 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
165 /* Pseudo-registers. */
166 "coprocessor", "MAC"
167 };
168 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
169 * MT_COPRO_PSEUDOREG_DIM_1
170 * MT_COPRO_PSEUDOREG_DIM_2];
171
172 if (regnum < 0)
173 return "";
174 if (regnum < ARRAY_SIZE (register_names))
175 return register_names[regnum];
176 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
177 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
178
179 {
180 char *name;
181 const char *stub;
182 unsigned dim_1;
183 unsigned dim_2;
184 unsigned index;
185
186 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
187 index = regnum % MT_COPRO_PSEUDOREG_REGS;
188 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
189 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
190 % MT_COPRO_PSEUDOREG_DIM_1);
191
192 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
193 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
194 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
195 stub = "";
196 else
197 stub = register_names[index + MT_CPR0_REGNUM];
198 if (!*stub)
199 {
200 array_names[regnum] = stub;
201 return stub;
202 }
203 name = (char *) xmalloc (30);
204 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
205 array_names[regnum] = name;
206 return name;
207 }
208 }
209
210 /* Return the type of a coprocessor register. */
211
212 static struct type *
213 mt_copro_register_type (struct gdbarch *arch, int regnum)
214 {
215 switch (regnum)
216 {
217 case MT_INT_ENABLE_REGNUM:
218 case MT_ICHANNEL_REGNUM:
219 case MT_QCHANNEL_REGNUM:
220 case MT_ISCRAMB_REGNUM:
221 case MT_QSCRAMB_REGNUM:
222 return builtin_type (arch)->builtin_int32;
223 case MT_BYPA_REGNUM:
224 case MT_BYPB_REGNUM:
225 case MT_BYPC_REGNUM:
226 case MT_Z1_REGNUM:
227 case MT_Z2_REGNUM:
228 case MT_OUT_REGNUM:
229 case MT_ZI2_REGNUM:
230 case MT_ZQ2_REGNUM:
231 return builtin_type (arch)->builtin_int16;
232 case MT_EXMAC_REGNUM:
233 case MT_MAC_REGNUM:
234 return builtin_type (arch)->builtin_uint32;
235 case MT_CONTEXT_REGNUM:
236 return builtin_type (arch)->builtin_long_long;
237 case MT_FLAG_REGNUM:
238 return builtin_type (arch)->builtin_unsigned_char;
239 default:
240 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
241 return builtin_type (arch)->builtin_int16;
242 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
243 {
244 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
245 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
246 return builtin_type (arch)->builtin_uint64;
247 else
248 return builtin_type (arch)->builtin_uint32;
249 }
250 else
251 return builtin_type (arch)->builtin_uint32;
252 }
253 }
254
255 /* Given ARCH and a register number specified by REGNUM, return the
256 type of that register. */
257
258 static struct type *
259 mt_register_type (struct gdbarch *arch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
262
263 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
264 {
265 switch (regnum)
266 {
267 case MT_PC_REGNUM:
268 case MT_RA_REGNUM:
269 case MT_IRA_REGNUM:
270 return builtin_type (arch)->builtin_func_ptr;
271 case MT_SP_REGNUM:
272 case MT_FP_REGNUM:
273 return builtin_type (arch)->builtin_data_ptr;
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
276 if (tdep->copro_type == NULL)
277 {
278 struct type *elt = builtin_type (arch)->builtin_int16;
279 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
280 }
281 return tdep->copro_type;
282 case MT_MAC_PSEUDOREG_REGNUM:
283 return mt_copro_register_type (arch,
284 MT_CPR0_REGNUM
285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
286 default:
287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
288 return builtin_type (arch)->builtin_int32;
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
291 else
292 {
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
297 }
298 }
299 }
300 internal_error (__FILE__, __LINE__,
301 _("mt_register_type: illegal register number %d"), regnum);
302 }
303
304 /* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
306
307 static int
308 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
309 struct reggroup *group)
310 {
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
313 return (regnum >= 0
314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
315 && mt_register_name (gdbarch, regnum)[0] != '\0');
316
317 if (group == general_reggroup)
318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
319
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
322
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
325
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
328 }
329
330 /* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
333 values. */
334
335 static enum return_value_convention
336 mt_return_value (struct gdbarch *gdbarch, struct value *function,
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
339 {
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
341
342 if (TYPE_LENGTH (type) > 4)
343 {
344 /* Return values > 4 bytes are returned in memory,
345 pointed to by R11. */
346 if (readbuf)
347 {
348 ULONGEST addr;
349
350 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
351 read_memory (addr, readbuf, TYPE_LENGTH (type));
352 }
353
354 if (writebuf)
355 {
356 ULONGEST addr;
357
358 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
359 write_memory (addr, writebuf, TYPE_LENGTH (type));
360 }
361
362 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
363 }
364 else
365 {
366 if (readbuf)
367 {
368 ULONGEST temp;
369
370 /* Return values of <= 4 bytes are returned in R11. */
371 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
372 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
373 byte_order, temp);
374 }
375
376 if (writebuf)
377 {
378 if (TYPE_LENGTH (type) < 4)
379 {
380 gdb_byte buf[4];
381 /* Add leading zeros to the value. */
382 memset (buf, 0, sizeof (buf));
383 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
384 writebuf, TYPE_LENGTH (type));
385 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
386 }
387 else /* (TYPE_LENGTH (type) == 4 */
388 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
389 }
390
391 return RETURN_VALUE_REGISTER_CONVENTION;
392 }
393 }
394
395 /* If the input address, PC, is in a function prologue, return the
396 address of the end of the prologue, otherwise return the input
397 address.
398
399 Note: PC is likely to be the function start, since this function
400 is mainly used for advancing a breakpoint to the first line, or
401 stepping to the first line when we have stepped into a function
402 call. */
403
404 static CORE_ADDR
405 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
406 {
407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
408 CORE_ADDR func_addr = 0, func_end = 0;
409 const char *func_name;
410 unsigned long instr;
411
412 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
413 {
414 struct symtab_and_line sal;
415 struct symbol *sym;
416
417 /* Found a function. */
418 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
419 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
420 {
421 /* Don't use this trick for assembly source files. */
422 sal = find_pc_line (func_addr, 0);
423
424 if (sal.end && sal.end < func_end)
425 {
426 /* Found a line number, use it as end of prologue. */
427 return sal.end;
428 }
429 }
430 }
431
432 /* No function symbol, or no line symbol. Use prologue scanning method. */
433 for (;; pc += 4)
434 {
435 instr = read_memory_unsigned_integer (pc, 4, byte_order);
436 if (instr == 0x12000000) /* nop */
437 continue;
438 if (instr == 0x12ddc000) /* copy sp into fp */
439 continue;
440 instr >>= 16;
441 if (instr == 0x05dd) /* subi sp, sp, imm */
442 continue;
443 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
444 continue;
445 /* Not an obvious prologue instruction. */
446 break;
447 }
448
449 return pc;
450 }
451
452 /* The breakpoint instruction must be the same size as the smallest
453 instruction in the instruction set.
454
455 The BP for ms1 is defined as 0x68000000 (BREAK).
456 The BP for ms2 is defined as 0x69000000 (illegal). */
457
458 static const gdb_byte *
459 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
460 int *bp_size)
461 {
462 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
463 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
464
465 *bp_size = 4;
466 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
467 return ms2_breakpoint;
468
469 return ms1_breakpoint;
470 }
471
472 /* Select the correct coprocessor register bank. Return the pseudo
473 regnum we really want to read. */
474
475 static int
476 mt_select_coprocessor (struct gdbarch *gdbarch,
477 struct regcache *regcache, int regno)
478 {
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
480 unsigned index, base;
481 gdb_byte copro[4];
482
483 /* Get the copro pseudo regnum. */
484 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
485 base = ((extract_signed_integer (&copro[0], 2, byte_order)
486 * MT_COPRO_PSEUDOREG_DIM_2)
487 + extract_signed_integer (&copro[2], 2, byte_order));
488
489 regno -= MT_COPRO_PSEUDOREG_ARRAY;
490 index = regno % MT_COPRO_PSEUDOREG_REGS;
491 regno /= MT_COPRO_PSEUDOREG_REGS;
492 if (base != regno)
493 {
494 /* Select the correct coprocessor register bank. Invalidate the
495 coprocessor register cache. */
496 unsigned ix;
497
498 store_signed_integer (&copro[0], 2, byte_order,
499 regno / MT_COPRO_PSEUDOREG_DIM_2);
500 store_signed_integer (&copro[2], 2, byte_order,
501 regno % MT_COPRO_PSEUDOREG_DIM_2);
502 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
503
504 /* We must flush the cache, as it is now invalid. */
505 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
506 regcache_invalidate (regcache, ix);
507 }
508
509 return index;
510 }
511
512 /* Fetch the pseudo registers:
513
514 There are two regular pseudo-registers:
515 1) The 'coprocessor' pseudo-register (which mirrors the
516 "real" coprocessor register sent by the target), and
517 2) The 'MAC' pseudo-register (which represents the union
518 of the original 32 bit target MAC register and the new
519 8-bit extended-MAC register).
520
521 Additionally there is an array of coprocessor registers which track
522 the coprocessor registers for each coprocessor. */
523
524 static enum register_status
525 mt_pseudo_register_read (struct gdbarch *gdbarch,
526 struct regcache *regcache, int regno, gdb_byte *buf)
527 {
528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
529
530 switch (regno)
531 {
532 case MT_COPRO_REGNUM:
533 case MT_COPRO_PSEUDOREG_REGNUM:
534 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
535 case MT_MAC_REGNUM:
536 case MT_MAC_PSEUDOREG_REGNUM:
537 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
538 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
539 {
540 enum register_status status;
541 ULONGEST oldmac = 0, ext_mac = 0;
542 ULONGEST newmac;
543
544 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
545 if (status != REG_VALID)
546 return status;
547
548 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
549 if (status != REG_VALID)
550 return status;
551
552 newmac =
553 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
554 store_signed_integer (buf, 8, byte_order, newmac);
555
556 return REG_VALID;
557 }
558 else
559 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
560 break;
561 default:
562 {
563 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
564
565 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
566 return mt_pseudo_register_read (gdbarch, regcache,
567 MT_MAC_PSEUDOREG_REGNUM, buf);
568 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
569 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
570 else
571 /* ??? */
572 return REG_VALID;
573 }
574 break;
575 }
576 }
577
578 /* Write the pseudo registers:
579
580 Mt pseudo-registers are stored directly to the target. The
581 'coprocessor' register is special, because when it is modified, all
582 the other coprocessor regs must be flushed from the reg cache. */
583
584 static void
585 mt_pseudo_register_write (struct gdbarch *gdbarch,
586 struct regcache *regcache,
587 int regno, const gdb_byte *buf)
588 {
589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
590 int i;
591
592 switch (regno)
593 {
594 case MT_COPRO_REGNUM:
595 case MT_COPRO_PSEUDOREG_REGNUM:
596 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
597 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
598 regcache_invalidate (regcache, i);
599 break;
600 case MT_MAC_REGNUM:
601 case MT_MAC_PSEUDOREG_REGNUM:
602 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
603 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
604 {
605 /* The 8-byte MAC pseudo-register must be broken down into two
606 32-byte registers. */
607 unsigned int oldmac, ext_mac;
608 ULONGEST newmac;
609
610 newmac = extract_unsigned_integer (buf, 8, byte_order);
611 oldmac = newmac & 0xffffffff;
612 ext_mac = (newmac >> 32) & 0xff;
613 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
614 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
615 }
616 else
617 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
618 break;
619 default:
620 {
621 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
622
623 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
624 mt_pseudo_register_write (gdbarch, regcache,
625 MT_MAC_PSEUDOREG_REGNUM, buf);
626 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
627 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
628 }
629 break;
630 }
631 }
632
633 static CORE_ADDR
634 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
635 {
636 /* Register size is 4 bytes. */
637 return align_down (sp, 4);
638 }
639
640 /* Implements the "info registers" command. When ``all'' is non-zero,
641 the coprocessor registers will be printed in addition to the rest
642 of the registers. */
643
644 static void
645 mt_registers_info (struct gdbarch *gdbarch,
646 struct ui_file *file,
647 struct frame_info *frame, int regnum, int all)
648 {
649 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
650
651 if (regnum == -1)
652 {
653 int lim;
654
655 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
656
657 for (regnum = 0; regnum < lim; regnum++)
658 {
659 /* Don't display the Qchannel register since it will be displayed
660 along with Ichannel. (See below.) */
661 if (regnum == MT_QCHANNEL_REGNUM)
662 continue;
663
664 mt_registers_info (gdbarch, file, frame, regnum, all);
665
666 /* Display the Qchannel register immediately after Ichannel. */
667 if (regnum == MT_ICHANNEL_REGNUM)
668 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
669 }
670 }
671 else
672 {
673 if (regnum == MT_EXMAC_REGNUM)
674 return;
675 else if (regnum == MT_CONTEXT_REGNUM)
676 {
677 /* Special output handling for 38-bit context register. */
678 unsigned char *buff;
679 unsigned int i, regsize;
680
681 regsize = register_size (gdbarch, regnum);
682
683 buff = (unsigned char *) alloca (regsize);
684
685 deprecated_frame_register_read (frame, regnum, buff);
686
687 fputs_filtered (gdbarch_register_name
688 (gdbarch, regnum), file);
689 print_spaces_filtered (15 - strlen (gdbarch_register_name
690 (gdbarch, regnum)),
691 file);
692 fputs_filtered ("0x", file);
693
694 for (i = 0; i < regsize; i++)
695 fprintf_filtered (file, "%02x", (unsigned int)
696 extract_unsigned_integer (buff + i, 1, byte_order));
697 fputs_filtered ("\t", file);
698 print_longest (file, 'd', 0,
699 extract_unsigned_integer (buff, regsize, byte_order));
700 fputs_filtered ("\n", file);
701 }
702 else if (regnum == MT_COPRO_REGNUM
703 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
704 {
705 /* Special output handling for the 'coprocessor' register. */
706 gdb_byte *buf;
707 struct value_print_options opts;
708
709 buf = (gdb_byte *) alloca (register_size (gdbarch, MT_COPRO_REGNUM));
710 deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf);
711 /* And print. */
712 regnum = MT_COPRO_PSEUDOREG_REGNUM;
713 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
714 file);
715 print_spaces_filtered (15 - strlen (gdbarch_register_name
716 (gdbarch, regnum)),
717 file);
718 get_no_prettyformat_print_options (&opts);
719 opts.deref_ref = 1;
720 val_print (register_type (gdbarch, regnum), buf,
721 0, 0, file, 0, NULL,
722 &opts, current_language);
723 fputs_filtered ("\n", file);
724 }
725 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
726 {
727 ULONGEST oldmac, ext_mac, newmac;
728 gdb_byte buf[3 * sizeof (LONGEST)];
729
730 /* Get the two "real" mac registers. */
731 deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf);
732 oldmac = extract_unsigned_integer
733 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
734 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
735 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
736 {
737 deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf);
738 ext_mac = extract_unsigned_integer
739 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
740 }
741 else
742 ext_mac = 0;
743
744 /* Add them together. */
745 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
746
747 /* And print. */
748 regnum = MT_MAC_PSEUDOREG_REGNUM;
749 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
750 file);
751 print_spaces_filtered (15 - strlen (gdbarch_register_name
752 (gdbarch, regnum)),
753 file);
754 fputs_filtered ("0x", file);
755 print_longest (file, 'x', 0, newmac);
756 fputs_filtered ("\t", file);
757 print_longest (file, 'u', 0, newmac);
758 fputs_filtered ("\n", file);
759 }
760 else
761 default_print_registers_info (gdbarch, file, frame, regnum, all);
762 }
763 }
764
765 /* Set up the callee's arguments for an inferior function call. The
766 arguments are pushed on the stack or are placed in registers as
767 appropriate. It also sets up the return address (which points to
768 the call dummy breakpoint).
769
770 Returns the updated (and aligned) stack pointer. */
771
772 static CORE_ADDR
773 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
774 struct regcache *regcache, CORE_ADDR bp_addr,
775 int nargs, struct value **args, CORE_ADDR sp,
776 int struct_return, CORE_ADDR struct_addr)
777 {
778 #define wordsize 4
779 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
780 gdb_byte buf[MT_MAX_STRUCT_SIZE];
781 int argreg = MT_1ST_ARGREG;
782 int split_param_len = 0;
783 int stack_dest = sp;
784 int slacklen;
785 int typelen;
786 int i, j;
787
788 /* First handle however many args we can fit into MT_1ST_ARGREG thru
789 MT_LAST_ARGREG. */
790 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
791 {
792 const gdb_byte *val;
793 typelen = TYPE_LENGTH (value_type (args[i]));
794 switch (typelen)
795 {
796 case 1:
797 case 2:
798 case 3:
799 case 4:
800 regcache_cooked_write_unsigned (regcache, argreg++,
801 extract_unsigned_integer
802 (value_contents (args[i]),
803 wordsize, byte_order));
804 break;
805 case 8:
806 case 12:
807 case 16:
808 val = value_contents (args[i]);
809 while (typelen > 0)
810 {
811 if (argreg <= MT_LAST_ARGREG)
812 {
813 /* This word of the argument is passed in a register. */
814 regcache_cooked_write_unsigned (regcache, argreg++,
815 extract_unsigned_integer
816 (val, wordsize, byte_order));
817 typelen -= wordsize;
818 val += wordsize;
819 }
820 else
821 {
822 /* Remainder of this arg must be passed on the stack
823 (deferred to do later). */
824 split_param_len = typelen;
825 memcpy (buf, val, typelen);
826 break; /* No more args can be handled in regs. */
827 }
828 }
829 break;
830 default:
831 /* By reverse engineering of gcc output, args bigger than
832 16 bytes go on the stack, and their address is passed
833 in the argreg. */
834 stack_dest -= typelen;
835 write_memory (stack_dest, value_contents (args[i]), typelen);
836 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
837 break;
838 }
839 }
840
841 /* Next, the rest of the arguments go onto the stack, in reverse order. */
842 for (j = nargs - 1; j >= i; j--)
843 {
844 gdb_byte *val;
845 struct cleanup *back_to;
846 const gdb_byte *contents = value_contents (args[j]);
847
848 /* Right-justify the value in an aligned-length buffer. */
849 typelen = TYPE_LENGTH (value_type (args[j]));
850 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
851 val = (gdb_byte *) xmalloc (typelen + slacklen);
852 back_to = make_cleanup (xfree, val);
853 memcpy (val, contents, typelen);
854 memset (val + typelen, 0, slacklen);
855 /* Now write this data to the stack. */
856 stack_dest -= typelen + slacklen;
857 write_memory (stack_dest, val, typelen + slacklen);
858 do_cleanups (back_to);
859 }
860
861 /* Finally, if a param needs to be split between registers and stack,
862 write the second half to the stack now. */
863 if (split_param_len != 0)
864 {
865 stack_dest -= split_param_len;
866 write_memory (stack_dest, buf, split_param_len);
867 }
868
869 /* Set up return address (provided to us as bp_addr). */
870 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
871
872 /* Store struct return address, if given. */
873 if (struct_return && struct_addr != 0)
874 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
875
876 /* Set aside 16 bytes for the callee to save regs 1-4. */
877 stack_dest -= 16;
878
879 /* Update the stack pointer. */
880 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
881
882 /* And that should do it. Return the new stack pointer. */
883 return stack_dest;
884 }
885
886
887 /* The 'unwind_cache' data structure. */
888
889 struct mt_unwind_cache
890 {
891 /* The previous frame's inner most stack address.
892 Used as this frame ID's stack_addr. */
893 CORE_ADDR prev_sp;
894 CORE_ADDR frame_base;
895 int framesize;
896 int frameless_p;
897
898 /* Table indicating the location of each and every register. */
899 struct trad_frame_saved_reg *saved_regs;
900 };
901
902 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
903 the frame. */
904
905 static struct mt_unwind_cache *
906 mt_frame_unwind_cache (struct frame_info *this_frame,
907 void **this_prologue_cache)
908 {
909 struct gdbarch *gdbarch;
910 struct mt_unwind_cache *info;
911 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
912 unsigned long instr, upper_half, delayed_store = 0;
913 int regnum, offset;
914 ULONGEST sp, fp;
915
916 if ((*this_prologue_cache))
917 return (struct mt_unwind_cache *) (*this_prologue_cache);
918
919 gdbarch = get_frame_arch (this_frame);
920 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
921 (*this_prologue_cache) = info;
922
923 info->prev_sp = 0;
924 info->framesize = 0;
925 info->frame_base = 0;
926 info->frameless_p = 1;
927 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
928
929 /* Grab the frame-relative values of SP and FP, needed below.
930 The frame_saved_register function will find them on the
931 stack or in the registers as appropriate. */
932 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
933 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
934
935 start_addr = get_frame_func (this_frame);
936
937 /* Return early if GDB couldn't find the function. */
938 if (start_addr == 0)
939 return info;
940
941 end_addr = get_frame_pc (this_frame);
942 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
943 if (end_addr == 0)
944 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
945 {
946 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
947 if (delayed_store) /* Previous instr was a push. */
948 {
949 upper_half = delayed_store >> 16;
950 regnum = upper_half & 0xf;
951 offset = delayed_store & 0xffff;
952 switch (upper_half & 0xfff0)
953 {
954 case 0x43c0: /* push using frame pointer. */
955 info->saved_regs[regnum].addr = offset;
956 break;
957 case 0x43d0: /* push using stack pointer. */
958 info->saved_regs[regnum].addr = offset;
959 break;
960 default: /* lint */
961 break;
962 }
963 delayed_store = 0;
964 }
965
966 switch (instr)
967 {
968 case 0x12000000: /* NO-OP */
969 continue;
970 case 0x12ddc000: /* copy sp into fp */
971 info->frameless_p = 0; /* Record that the frame
972 pointer is in use. */
973 continue;
974 default:
975 upper_half = instr >> 16;
976 if (upper_half == 0x05dd || /* subi sp, sp, imm */
977 upper_half == 0x07dd) /* subui sp, sp, imm */
978 {
979 /* Record the frame size. */
980 info->framesize = instr & 0xffff;
981 continue;
982 }
983 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
984 (upper_half & 0xfff0) == 0x43d0) /* stack push */
985 {
986 /* Save this instruction, but don't record the
987 pushed register as 'saved' until we see the
988 next instruction. That's because of deferred stores
989 on this target -- GDB won't be able to read the register
990 from the stack until one instruction later. */
991 delayed_store = instr;
992 continue;
993 }
994 /* Not a prologue instruction. Is this the end of the prologue?
995 This is the most difficult decision; when to stop scanning.
996
997 If we have no line symbol, then the best thing we can do
998 is to stop scanning when we encounter an instruction that
999 is not likely to be a part of the prologue.
1000
1001 But if we do have a line symbol, then we should
1002 keep scanning until we reach it (or we reach end_addr). */
1003
1004 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
1005 continue; /* Keep scanning, recording saved_regs etc. */
1006 else
1007 break; /* Quit scanning: breakpoint can be set here. */
1008 }
1009 }
1010
1011 /* Special handling for the "saved" address of the SP:
1012 The SP is of course never saved on the stack at all, so
1013 by convention what we put here is simply the previous
1014 _value_ of the SP (as opposed to an address where the
1015 previous value would have been pushed). This will also
1016 give us the frame base address. */
1017
1018 if (info->frameless_p)
1019 {
1020 info->frame_base = sp + info->framesize;
1021 info->prev_sp = sp + info->framesize;
1022 }
1023 else
1024 {
1025 info->frame_base = fp + info->framesize;
1026 info->prev_sp = fp + info->framesize;
1027 }
1028 /* Save prev_sp in saved_regs as a value, not as an address. */
1029 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1030
1031 /* Now convert frame offsets to actual addresses (not offsets). */
1032 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1033 if (trad_frame_addr_p (info->saved_regs, regnum))
1034 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1035
1036 /* The call instruction moves the caller's PC in the callee's RA reg.
1037 Since this is an unwind, do the reverse. Copy the location of RA
1038 into PC (the address / regnum) so that a request for PC will be
1039 converted into a request for the RA. */
1040 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1041
1042 return info;
1043 }
1044
1045 static CORE_ADDR
1046 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1047 {
1048 ULONGEST pc;
1049
1050 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1051 return pc;
1052 }
1053
1054 static CORE_ADDR
1055 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1056 {
1057 ULONGEST sp;
1058
1059 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1060 return sp;
1061 }
1062
1063 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1064 frame. The frame ID's base needs to match the TOS value saved by
1065 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1066
1067 static struct frame_id
1068 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1069 {
1070 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1071 return frame_id_build (sp, get_frame_pc (this_frame));
1072 }
1073
1074 /* Given a GDB frame, determine the address of the calling function's
1075 frame. This will be used to create a new GDB frame struct. */
1076
1077 static void
1078 mt_frame_this_id (struct frame_info *this_frame,
1079 void **this_prologue_cache, struct frame_id *this_id)
1080 {
1081 struct mt_unwind_cache *info =
1082 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1083
1084 if (!(info == NULL || info->prev_sp == 0))
1085 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1086
1087 return;
1088 }
1089
1090 static struct value *
1091 mt_frame_prev_register (struct frame_info *this_frame,
1092 void **this_prologue_cache, int regnum)
1093 {
1094 struct mt_unwind_cache *info =
1095 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1096
1097 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1098 }
1099
1100 static CORE_ADDR
1101 mt_frame_base_address (struct frame_info *this_frame,
1102 void **this_prologue_cache)
1103 {
1104 struct mt_unwind_cache *info =
1105 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1106
1107 return info->frame_base;
1108 }
1109
1110 /* This is a shared interface: the 'frame_unwind' object is what's
1111 returned by the 'sniffer' function, and in turn specifies how to
1112 get a frame's ID and prev_regs.
1113
1114 This exports the 'prev_register' and 'this_id' methods. */
1115
1116 static const struct frame_unwind mt_frame_unwind = {
1117 NORMAL_FRAME,
1118 default_frame_unwind_stop_reason,
1119 mt_frame_this_id,
1120 mt_frame_prev_register,
1121 NULL,
1122 default_frame_sniffer
1123 };
1124
1125 /* Another shared interface: the 'frame_base' object specifies how to
1126 unwind a frame and secure the base addresses for frame objects
1127 (locals, args). */
1128
1129 static struct frame_base mt_frame_base = {
1130 &mt_frame_unwind,
1131 mt_frame_base_address,
1132 mt_frame_base_address,
1133 mt_frame_base_address
1134 };
1135
1136 static struct gdbarch *
1137 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1138 {
1139 struct gdbarch *gdbarch;
1140 struct gdbarch_tdep *tdep;
1141
1142 /* Find a candidate among the list of pre-declared architectures. */
1143 arches = gdbarch_list_lookup_by_info (arches, &info);
1144 if (arches != NULL)
1145 return arches->gdbarch;
1146
1147 /* None found, create a new architecture from the information
1148 provided. */
1149 tdep = XCNEW (struct gdbarch_tdep);
1150 gdbarch = gdbarch_alloc (&info, tdep);
1151
1152 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1153 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1154 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1155
1156 set_gdbarch_register_name (gdbarch, mt_register_name);
1157 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1158 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1159 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1160 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1161 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1162 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1163 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1164 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1165 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1166 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1167 set_gdbarch_frame_args_skip (gdbarch, 0);
1168 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1169 set_gdbarch_register_type (gdbarch, mt_register_type);
1170 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1171
1172 set_gdbarch_return_value (gdbarch, mt_return_value);
1173 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1174
1175 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1176
1177 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1178
1179 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1180
1181 /* Target builtin data types. */
1182 set_gdbarch_short_bit (gdbarch, 16);
1183 set_gdbarch_int_bit (gdbarch, 32);
1184 set_gdbarch_long_bit (gdbarch, 32);
1185 set_gdbarch_long_long_bit (gdbarch, 64);
1186 set_gdbarch_float_bit (gdbarch, 32);
1187 set_gdbarch_double_bit (gdbarch, 64);
1188 set_gdbarch_long_double_bit (gdbarch, 64);
1189 set_gdbarch_ptr_bit (gdbarch, 32);
1190
1191 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1192 based sniffer. */
1193 dwarf2_append_unwinders (gdbarch);
1194 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1195 frame_base_set_default (gdbarch, &mt_frame_base);
1196
1197 /* Register the 'unwind_pc' method. */
1198 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1199 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1200
1201 /* Methods for saving / extracting a dummy frame's ID.
1202 The ID's stack address must match the SP value returned by
1203 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1204 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1205
1206 return gdbarch;
1207 }
1208
1209 /* Provide a prototype to silence -Wmissing-prototypes. */
1210 extern initialize_file_ftype _initialize_mt_tdep;
1211
1212 void
1213 _initialize_mt_tdep (void)
1214 {
1215 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1216 }
This page took 0.074332 seconds and 4 git commands to generate.