* mt-tdep.c (enum mt_gdb_regnums): Add MT_COPRO_PSEUDOREG_ARRAY,
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* Contributed by Michael Snyder, msnyder@redhat.com. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "symtab.h"
29 #include "dis-asm.h"
30 #include "arch-utils.h"
31 #include "gdbtypes.h"
32 #include "gdb_string.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "gdbcore.h"
36 #include "trad-frame.h"
37 #include "inferior.h"
38 #include "dwarf2-frame.h"
39 #include "infcall.h"
40 #include "gdb_assert.h"
41
42 enum mt_arch_constants
43 {
44 MT_MAX_STRUCT_SIZE = 16
45 };
46
47 enum mt_gdb_regnums
48 {
49 MT_R0_REGNUM, /* 32 bit regs. */
50 MT_R1_REGNUM,
51 MT_1ST_ARGREG = MT_R1_REGNUM,
52 MT_R2_REGNUM,
53 MT_R3_REGNUM,
54 MT_R4_REGNUM,
55 MT_LAST_ARGREG = MT_R4_REGNUM,
56 MT_R5_REGNUM,
57 MT_R6_REGNUM,
58 MT_R7_REGNUM,
59 MT_R8_REGNUM,
60 MT_R9_REGNUM,
61 MT_R10_REGNUM,
62 MT_R11_REGNUM,
63 MT_R12_REGNUM,
64 MT_FP_REGNUM = MT_R12_REGNUM,
65 MT_R13_REGNUM,
66 MT_SP_REGNUM = MT_R13_REGNUM,
67 MT_R14_REGNUM,
68 MT_RA_REGNUM = MT_R14_REGNUM,
69 MT_R15_REGNUM,
70 MT_IRA_REGNUM = MT_R15_REGNUM,
71 MT_PC_REGNUM,
72
73 /* Interrupt Enable pseudo-register, exported by SID. */
74 MT_INT_ENABLE_REGNUM,
75 /* End of CPU regs. */
76
77 MT_NUM_CPU_REGS,
78
79 /* Co-processor registers. */
80 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
81 MT_CPR0_REGNUM,
82 MT_CPR1_REGNUM,
83 MT_CPR2_REGNUM,
84 MT_CPR3_REGNUM,
85 MT_CPR4_REGNUM,
86 MT_CPR5_REGNUM,
87 MT_CPR6_REGNUM,
88 MT_CPR7_REGNUM,
89 MT_CPR8_REGNUM,
90 MT_CPR9_REGNUM,
91 MT_CPR10_REGNUM,
92 MT_CPR11_REGNUM,
93 MT_CPR12_REGNUM,
94 MT_CPR13_REGNUM,
95 MT_CPR14_REGNUM,
96 MT_CPR15_REGNUM,
97 MT_BYPA_REGNUM, /* 32 bit regs. */
98 MT_BYPB_REGNUM,
99 MT_BYPC_REGNUM,
100 MT_FLAG_REGNUM,
101 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
102 six bytes). */
103 MT_MAC_REGNUM, /* 32 bits. */
104 MT_Z1_REGNUM, /* 16 bits. */
105 MT_Z2_REGNUM, /* 16 bits. */
106 MT_ICHANNEL_REGNUM, /* 32 bits. */
107 MT_ISCRAMB_REGNUM, /* 32 bits. */
108 MT_QSCRAMB_REGNUM, /* 32 bits. */
109 MT_OUT_REGNUM, /* 16 bits. */
110 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
111 MT_QCHANNEL_REGNUM, /* 32 bits. */
112
113 /* Number of real registers. */
114 MT_NUM_REGS,
115
116 /* Pseudo-registers. */
117 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
118 MT_MAC_PSEUDOREG_REGNUM,
119 MT_COPRO_PSEUDOREG_ARRAY,
120
121 MT_COPRO_PSEUDOREG_DIM_1 = 2,
122 MT_COPRO_PSEUDOREG_DIM_2 = 8,
123 MT_COPRO_PSEUDOREG_REGS = 32,
124
125 /* Two pseudo-regs ('coprocessor' and 'mac'). */
126 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
127 * MT_COPRO_PSEUDOREG_DIM_1
128 * MT_COPRO_PSEUDOREG_DIM_2)
129 };
130
131 /* Return name of register number specified by REGNUM. */
132
133 static const char *
134 mt_register_name (int regnum)
135 {
136 static const char *const register_names[] = {
137 /* CPU regs. */
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "IE",
141 /* Co-processor regs. */
142 "", /* copro register. */
143 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
144 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
145 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
146 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
147 /* Pseudo-registers. */
148 "coprocessor", "MAC"
149 };
150 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
151 * MT_COPRO_PSEUDOREG_DIM_1
152 * MT_COPRO_PSEUDOREG_DIM_2];
153
154 if (regnum < 0)
155 return "";
156 if (regnum < ARRAY_SIZE (register_names))
157 return register_names[regnum];
158 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
159 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
160
161 {
162 char *name;
163 const char *stub;
164 unsigned dim_1;
165 unsigned dim_2;
166 unsigned index;
167
168 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
169 index = regnum % MT_COPRO_PSEUDOREG_REGS;
170 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
171 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
172 % MT_COPRO_PSEUDOREG_DIM_1);
173
174 if (index == MT_COPRO_PSEUDOREG_REGS - 1)
175 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
176 else if (index > MT_QCHANNEL_REGNUM - MT_CPR0_REGNUM)
177 stub = "";
178 else
179 stub = register_names[index + MT_CPR0_REGNUM];
180 if (!*stub)
181 {
182 array_names[regnum] = stub;
183 return stub;
184 }
185 name = xmalloc (30);
186 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
187 array_names[regnum] = name;
188 return name;
189 }
190 }
191
192 /* Return the type of a coprocessor register. */
193
194 static struct type *
195 mt_copro_register_type (struct gdbarch *arch, int regnum)
196 {
197 switch (regnum)
198 {
199 case MT_INT_ENABLE_REGNUM:
200 case MT_ICHANNEL_REGNUM:
201 case MT_QCHANNEL_REGNUM:
202 case MT_ISCRAMB_REGNUM:
203 case MT_QSCRAMB_REGNUM:
204 return builtin_type_int32;
205 case MT_BYPA_REGNUM:
206 case MT_BYPB_REGNUM:
207 case MT_BYPC_REGNUM:
208 case MT_Z1_REGNUM:
209 case MT_Z2_REGNUM:
210 case MT_OUT_REGNUM:
211 return builtin_type_int16;
212 case MT_EXMAC_REGNUM:
213 case MT_MAC_REGNUM:
214 return builtin_type_uint32;
215 case MT_CONTEXT_REGNUM:
216 return builtin_type_long_long;
217 case MT_FLAG_REGNUM:
218 return builtin_type_unsigned_char;
219 default:
220 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
221 return builtin_type_int16;
222 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_REGS - 1)
223 {
224 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
225 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
226 return builtin_type_uint64;
227 else
228 return builtin_type_uint32;
229 }
230 else
231 return builtin_type_uint32;
232 }
233 }
234
235 /* Given ARCH and a register number specified by REGNUM, return the
236 type of that register. */
237
238 static struct type *
239 mt_register_type (struct gdbarch *arch, int regnum)
240 {
241 static struct type *void_func_ptr = NULL;
242 static struct type *void_ptr = NULL;
243 static struct type *copro_type;
244
245 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
246 {
247 if (void_func_ptr == NULL)
248 {
249 struct type *temp;
250
251 void_ptr = lookup_pointer_type (builtin_type_void);
252 void_func_ptr =
253 lookup_pointer_type (lookup_function_type (builtin_type_void));
254 temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
255 copro_type = create_array_type (NULL, builtin_type_int16, temp);
256 }
257 switch (regnum)
258 {
259 case MT_PC_REGNUM:
260 case MT_RA_REGNUM:
261 case MT_IRA_REGNUM:
262 return void_func_ptr;
263 case MT_SP_REGNUM:
264 case MT_FP_REGNUM:
265 return void_ptr;
266 case MT_COPRO_REGNUM:
267 case MT_COPRO_PSEUDOREG_REGNUM:
268 return copro_type;
269 case MT_MAC_PSEUDOREG_REGNUM:
270 return mt_copro_register_type (arch,
271 MT_CPR0_REGNUM
272 + MT_COPRO_PSEUDOREG_REGS - 1);
273 default:
274 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
275 return builtin_type_int32;
276 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
277 return mt_copro_register_type (arch, regnum);
278 else
279 {
280 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
281 regnum %= MT_COPRO_PSEUDOREG_REGS;
282 regnum += MT_CPR0_REGNUM;
283 return mt_copro_register_type (arch, regnum);
284 }
285 }
286 }
287 internal_error (__FILE__, __LINE__,
288 _("mt_register_type: illegal register number %d"), regnum);
289 }
290
291 /* Return true if register REGNUM is a member of the register group
292 specified by GROUP. */
293
294 static int
295 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
296 struct reggroup *group)
297 {
298 /* Groups of registers that can be displayed via "info reg". */
299 if (group == all_reggroup)
300 return (regnum >= 0
301 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
302 && mt_register_name (regnum)[0] != '\0');
303
304 if (group == general_reggroup)
305 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
306
307 if (group == float_reggroup)
308 return 0; /* No float regs. */
309
310 if (group == vector_reggroup)
311 return 0; /* No vector regs. */
312
313 /* For any that are not handled above. */
314 return default_register_reggroup_p (gdbarch, regnum, group);
315 }
316
317 /* Return the return value convention used for a given type TYPE.
318 Optionally, fetch or set the return value via READBUF or
319 WRITEBUF respectively using REGCACHE for the register
320 values. */
321
322 static enum return_value_convention
323 mt_return_value (struct gdbarch *gdbarch, struct type *type,
324 struct regcache *regcache, gdb_byte *readbuf,
325 const gdb_byte *writebuf)
326 {
327 if (TYPE_LENGTH (type) > 4)
328 {
329 /* Return values > 4 bytes are returned in memory,
330 pointed to by R11. */
331 if (readbuf)
332 {
333 ULONGEST addr;
334
335 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
336 read_memory (addr, readbuf, TYPE_LENGTH (type));
337 }
338
339 if (writebuf)
340 {
341 ULONGEST addr;
342
343 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
344 write_memory (addr, writebuf, TYPE_LENGTH (type));
345 }
346
347 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
348 }
349 else
350 {
351 if (readbuf)
352 {
353 ULONGEST temp;
354
355 /* Return values of <= 4 bytes are returned in R11. */
356 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
357 store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
358 }
359
360 if (writebuf)
361 {
362 if (TYPE_LENGTH (type) < 4)
363 {
364 gdb_byte buf[4];
365 /* Add leading zeros to the value. */
366 memset (buf, 0, sizeof (buf));
367 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
368 writebuf, TYPE_LENGTH (type));
369 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
370 }
371 else /* (TYPE_LENGTH (type) == 4 */
372 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
373 }
374
375 return RETURN_VALUE_REGISTER_CONVENTION;
376 }
377 }
378
379 /* If the input address, PC, is in a function prologue, return the
380 address of the end of the prologue, otherwise return the input
381 address.
382
383 Note: PC is likely to be the function start, since this function
384 is mainly used for advancing a breakpoint to the first line, or
385 stepping to the first line when we have stepped into a function
386 call. */
387
388 static CORE_ADDR
389 mt_skip_prologue (CORE_ADDR pc)
390 {
391 CORE_ADDR func_addr = 0, func_end = 0;
392 char *func_name;
393 unsigned long instr;
394
395 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
396 {
397 struct symtab_and_line sal;
398 struct symbol *sym;
399
400 /* Found a function. */
401 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
402 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
403 {
404 /* Don't use this trick for assembly source files. */
405 sal = find_pc_line (func_addr, 0);
406
407 if (sal.end && sal.end < func_end)
408 {
409 /* Found a line number, use it as end of prologue. */
410 return sal.end;
411 }
412 }
413 }
414
415 /* No function symbol, or no line symbol. Use prologue scanning method. */
416 for (;; pc += 4)
417 {
418 instr = read_memory_unsigned_integer (pc, 4);
419 if (instr == 0x12000000) /* nop */
420 continue;
421 if (instr == 0x12ddc000) /* copy sp into fp */
422 continue;
423 instr >>= 16;
424 if (instr == 0x05dd) /* subi sp, sp, imm */
425 continue;
426 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
427 continue;
428 /* Not an obvious prologue instruction. */
429 break;
430 }
431
432 return pc;
433 }
434
435 /* The breakpoint instruction must be the same size as the smallest
436 instruction in the instruction set.
437
438 The BP for ms1 is defined as 0x68000000 (BREAK).
439 The BP for ms2 is defined as 0x69000000 (illegal) */
440
441 static const gdb_byte *
442 mt_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
443 {
444 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
445 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
446
447 *bp_size = 4;
448 if (gdbarch_bfd_arch_info (current_gdbarch)->mach == bfd_mach_ms2)
449 return ms2_breakpoint;
450
451 return ms1_breakpoint;
452 }
453
454 /* Select the correct coprocessor register bank. Return the pseudo
455 regnum we really want to read. */
456
457 static int
458 mt_select_coprocessor (struct gdbarch *gdbarch,
459 struct regcache *regcache, int regno)
460 {
461 unsigned index, base;
462 gdb_byte copro[4];
463
464 /* Get the copro pseudo regnum. */
465 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
466 base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
467 + extract_signed_integer (&copro[2], 2));
468
469 regno -= MT_COPRO_PSEUDOREG_ARRAY;
470 index = regno % MT_COPRO_PSEUDOREG_REGS;
471 regno /= MT_COPRO_PSEUDOREG_REGS;
472 if (base != regno)
473 {
474 /* Select the correct coprocessor register bank. Invalidate the
475 coprocessor register cache. */
476 unsigned ix;
477
478 store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
479 store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
480 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
481
482 /* We must flush the cache, as it is now invalid. */
483 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
484 set_register_cached (ix, 0);
485 }
486
487 return index;
488 }
489
490 /* Fetch the pseudo registers:
491
492 There are two regular pseudo-registers:
493 1) The 'coprocessor' pseudo-register (which mirrors the
494 "real" coprocessor register sent by the target), and
495 2) The 'MAC' pseudo-register (which represents the union
496 of the original 32 bit target MAC register and the new
497 8-bit extended-MAC register).
498
499 Additionally there is an array of coprocessor registers which track
500 the coprocessor registers for each coprocessor. */
501
502 static void
503 mt_pseudo_register_read (struct gdbarch *gdbarch,
504 struct regcache *regcache, int regno, gdb_byte *buf)
505 {
506 switch (regno)
507 {
508 case MT_COPRO_REGNUM:
509 case MT_COPRO_PSEUDOREG_REGNUM:
510 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
511 break;
512 case MT_MAC_REGNUM:
513 case MT_MAC_PSEUDOREG_REGNUM:
514 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
515 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
516 {
517 ULONGEST oldmac = 0, ext_mac = 0;
518 ULONGEST newmac;
519
520 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
521 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
522 newmac =
523 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
524 store_signed_integer (buf, 8, newmac);
525 }
526 else
527 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
528 break;
529 default:
530 {
531 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
532
533 if (index == MT_COPRO_PSEUDOREG_REGS - 1)
534 mt_pseudo_register_read (gdbarch, regcache,
535 MT_COPRO_PSEUDOREG_REGNUM, buf);
536 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
537 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
538 }
539 break;
540 }
541 }
542
543 /* Write the pseudo registers:
544
545 Mt pseudo-registers are stored directly to the target. The
546 'coprocessor' register is special, because when it is modified, all
547 the other coprocessor regs must be flushed from the reg cache. */
548
549 static void
550 mt_pseudo_register_write (struct gdbarch *gdbarch,
551 struct regcache *regcache,
552 int regno, const gdb_byte *buf)
553 {
554 int i;
555
556 switch (regno)
557 {
558 case MT_COPRO_REGNUM:
559 case MT_COPRO_PSEUDOREG_REGNUM:
560 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
561 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
562 set_register_cached (i, 0);
563 break;
564 case MT_MAC_REGNUM:
565 case MT_MAC_PSEUDOREG_REGNUM:
566 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
567 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
568 {
569 /* The 8-byte MAC pseudo-register must be broken down into two
570 32-byte registers. */
571 unsigned int oldmac, ext_mac;
572 ULONGEST newmac;
573
574 newmac = extract_unsigned_integer (buf, 8);
575 oldmac = newmac & 0xffffffff;
576 ext_mac = (newmac >> 32) & 0xff;
577 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
578 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
579 }
580 else
581 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
582 break;
583 default:
584 {
585 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
586
587 if (index == MT_COPRO_PSEUDOREG_REGS - 1)
588 mt_pseudo_register_write (gdbarch, regcache,
589 MT_COPRO_PSEUDOREG_REGNUM, buf);
590 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
591 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
592 }
593 break;
594 }
595 }
596
597 static CORE_ADDR
598 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
599 {
600 /* Register size is 4 bytes. */
601 return align_down (sp, 4);
602 }
603
604 /* Implements the "info registers" command. When ``all'' is non-zero,
605 the coprocessor registers will be printed in addition to the rest
606 of the registers. */
607
608 static void
609 mt_registers_info (struct gdbarch *gdbarch,
610 struct ui_file *file,
611 struct frame_info *frame, int regnum, int all)
612 {
613 if (regnum == -1)
614 {
615 int lim;
616
617 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
618
619 for (regnum = 0; regnum < lim; regnum++)
620 {
621 /* Don't display the Qchannel register since it will be displayed
622 along with Ichannel. (See below.) */
623 if (regnum == MT_QCHANNEL_REGNUM)
624 continue;
625
626 mt_registers_info (gdbarch, file, frame, regnum, all);
627
628 /* Display the Qchannel register immediately after Ichannel. */
629 if (regnum == MT_ICHANNEL_REGNUM)
630 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
631 }
632 }
633 else
634 {
635 if (regnum == MT_EXMAC_REGNUM)
636 return;
637 else if (regnum == MT_CONTEXT_REGNUM)
638 {
639 /* Special output handling for 38-bit context register. */
640 unsigned char *buff;
641 unsigned int *bytes, i, regsize;
642
643 regsize = register_size (gdbarch, regnum);
644
645 buff = alloca (regsize);
646 bytes = alloca (regsize * sizeof (*bytes));
647
648 frame_register_read (frame, regnum, buff);
649
650 fputs_filtered (REGISTER_NAME (regnum), file);
651 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
652 fputs_filtered ("0x", file);
653
654 for (i = 0; i < regsize; i++)
655 fprintf_filtered (file, "%02x", (unsigned int)
656 extract_unsigned_integer (buff + i, 1));
657 fputs_filtered ("\t", file);
658 print_longest (file, 'd', 0,
659 extract_unsigned_integer (buff, regsize));
660 fputs_filtered ("\n", file);
661 }
662 else if (regnum == MT_COPRO_REGNUM
663 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
664 {
665 /* Special output handling for the 'coprocessor' register. */
666 gdb_byte *buf;
667
668 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
669 frame_register_read (frame, MT_COPRO_REGNUM, buf);
670 /* And print. */
671 regnum = MT_COPRO_PSEUDOREG_REGNUM;
672 fputs_filtered (REGISTER_NAME (regnum), file);
673 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
674 val_print (register_type (gdbarch, regnum), buf,
675 0, 0, file, 0, 1, 0, Val_no_prettyprint);
676 fputs_filtered ("\n", file);
677 }
678 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
679 {
680 ULONGEST oldmac, ext_mac, newmac;
681 gdb_byte buf[3 * sizeof (LONGEST)];
682
683 /* Get the two "real" mac registers. */
684 frame_register_read (frame, MT_MAC_REGNUM, buf);
685 oldmac = extract_unsigned_integer
686 (buf, register_size (gdbarch, MT_MAC_REGNUM));
687 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
688 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
689 {
690 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
691 ext_mac = extract_unsigned_integer
692 (buf, register_size (gdbarch, MT_EXMAC_REGNUM));
693 }
694 else
695 ext_mac = 0;
696
697 /* Add them together. */
698 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
699
700 /* And print. */
701 regnum = MT_MAC_PSEUDOREG_REGNUM;
702 fputs_filtered (REGISTER_NAME (regnum), file);
703 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
704 fputs_filtered ("0x", file);
705 print_longest (file, 'x', 0, newmac);
706 fputs_filtered ("\t", file);
707 print_longest (file, 'u', 0, newmac);
708 fputs_filtered ("\n", file);
709 }
710 else
711 default_print_registers_info (gdbarch, file, frame, regnum, all);
712 }
713 }
714
715 /* Set up the callee's arguments for an inferior function call. The
716 arguments are pushed on the stack or are placed in registers as
717 appropriate. It also sets up the return address (which points to
718 the call dummy breakpoint).
719
720 Returns the updated (and aligned) stack pointer. */
721
722 static CORE_ADDR
723 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
724 struct regcache *regcache, CORE_ADDR bp_addr,
725 int nargs, struct value **args, CORE_ADDR sp,
726 int struct_return, CORE_ADDR struct_addr)
727 {
728 #define wordsize 4
729 gdb_byte buf[MT_MAX_STRUCT_SIZE];
730 int argreg = MT_1ST_ARGREG;
731 int split_param_len = 0;
732 int stack_dest = sp;
733 int slacklen;
734 int typelen;
735 int i, j;
736
737 /* First handle however many args we can fit into MT_1ST_ARGREG thru
738 MT_LAST_ARGREG. */
739 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
740 {
741 const gdb_byte *val;
742 typelen = TYPE_LENGTH (value_type (args[i]));
743 switch (typelen)
744 {
745 case 1:
746 case 2:
747 case 3:
748 case 4:
749 regcache_cooked_write_unsigned (regcache, argreg++,
750 extract_unsigned_integer
751 (value_contents (args[i]),
752 wordsize));
753 break;
754 case 8:
755 case 12:
756 case 16:
757 val = value_contents (args[i]);
758 while (typelen > 0)
759 {
760 if (argreg <= MT_LAST_ARGREG)
761 {
762 /* This word of the argument is passed in a register. */
763 regcache_cooked_write_unsigned (regcache, argreg++,
764 extract_unsigned_integer
765 (val, wordsize));
766 typelen -= wordsize;
767 val += wordsize;
768 }
769 else
770 {
771 /* Remainder of this arg must be passed on the stack
772 (deferred to do later). */
773 split_param_len = typelen;
774 memcpy (buf, val, typelen);
775 break; /* No more args can be handled in regs. */
776 }
777 }
778 break;
779 default:
780 /* By reverse engineering of gcc output, args bigger than
781 16 bytes go on the stack, and their address is passed
782 in the argreg. */
783 stack_dest -= typelen;
784 write_memory (stack_dest, value_contents (args[i]), typelen);
785 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
786 break;
787 }
788 }
789
790 /* Next, the rest of the arguments go onto the stack, in reverse order. */
791 for (j = nargs - 1; j >= i; j--)
792 {
793 gdb_byte *val;
794
795 /* Right-justify the value in an aligned-length buffer. */
796 typelen = TYPE_LENGTH (value_type (args[j]));
797 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
798 val = alloca (typelen + slacklen);
799 memcpy (val, value_contents (args[j]), typelen);
800 memset (val + typelen, 0, slacklen);
801 /* Now write this data to the stack. */
802 stack_dest -= typelen + slacklen;
803 write_memory (stack_dest, val, typelen + slacklen);
804 }
805
806 /* Finally, if a param needs to be split between registers and stack,
807 write the second half to the stack now. */
808 if (split_param_len != 0)
809 {
810 stack_dest -= split_param_len;
811 write_memory (stack_dest, buf, split_param_len);
812 }
813
814 /* Set up return address (provided to us as bp_addr). */
815 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
816
817 /* Store struct return address, if given. */
818 if (struct_return && struct_addr != 0)
819 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
820
821 /* Set aside 16 bytes for the callee to save regs 1-4. */
822 stack_dest -= 16;
823
824 /* Update the stack pointer. */
825 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
826
827 /* And that should do it. Return the new stack pointer. */
828 return stack_dest;
829 }
830
831
832 /* The 'unwind_cache' data structure. */
833
834 struct mt_unwind_cache
835 {
836 /* The previous frame's inner most stack address.
837 Used as this frame ID's stack_addr. */
838 CORE_ADDR prev_sp;
839 CORE_ADDR frame_base;
840 int framesize;
841 int frameless_p;
842
843 /* Table indicating the location of each and every register. */
844 struct trad_frame_saved_reg *saved_regs;
845 };
846
847 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
848 the frame. */
849
850 static struct mt_unwind_cache *
851 mt_frame_unwind_cache (struct frame_info *next_frame,
852 void **this_prologue_cache)
853 {
854 struct gdbarch *gdbarch;
855 struct mt_unwind_cache *info;
856 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
857 unsigned long instr, upper_half, delayed_store = 0;
858 int regnum, offset;
859 ULONGEST sp, fp;
860
861 if ((*this_prologue_cache))
862 return (*this_prologue_cache);
863
864 gdbarch = get_frame_arch (next_frame);
865 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
866 (*this_prologue_cache) = info;
867
868 info->prev_sp = 0;
869 info->framesize = 0;
870 info->frame_base = 0;
871 info->frameless_p = 1;
872 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
873
874 /* Grab the frame-relative values of SP and FP, needed below.
875 The frame_saved_register function will find them on the
876 stack or in the registers as appropriate. */
877 frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
878 frame_unwind_unsigned_register (next_frame, MT_FP_REGNUM, &fp);
879
880 start_addr = frame_func_unwind (next_frame);
881
882 /* Return early if GDB couldn't find the function. */
883 if (start_addr == 0)
884 return info;
885
886 end_addr = frame_pc_unwind (next_frame);
887 prologue_end_addr = skip_prologue_using_sal (start_addr);
888 if (end_addr == 0)
889 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
890 {
891 instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
892 if (delayed_store) /* previous instr was a push */
893 {
894 upper_half = delayed_store >> 16;
895 regnum = upper_half & 0xf;
896 offset = delayed_store & 0xffff;
897 switch (upper_half & 0xfff0)
898 {
899 case 0x43c0: /* push using frame pointer */
900 info->saved_regs[regnum].addr = offset;
901 break;
902 case 0x43d0: /* push using stack pointer */
903 info->saved_regs[regnum].addr = offset;
904 break;
905 default: /* lint */
906 break;
907 }
908 delayed_store = 0;
909 }
910
911 switch (instr)
912 {
913 case 0x12000000: /* NO-OP */
914 continue;
915 case 0x12ddc000: /* copy sp into fp */
916 info->frameless_p = 0; /* Record that the frame pointer is in use. */
917 continue;
918 default:
919 upper_half = instr >> 16;
920 if (upper_half == 0x05dd || /* subi sp, sp, imm */
921 upper_half == 0x07dd) /* subui sp, sp, imm */
922 {
923 /* Record the frame size. */
924 info->framesize = instr & 0xffff;
925 continue;
926 }
927 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
928 (upper_half & 0xfff0) == 0x43d0) /* stack push */
929 {
930 /* Save this instruction, but don't record the
931 pushed register as 'saved' until we see the
932 next instruction. That's because of deferred stores
933 on this target -- GDB won't be able to read the register
934 from the stack until one instruction later. */
935 delayed_store = instr;
936 continue;
937 }
938 /* Not a prologue instruction. Is this the end of the prologue?
939 This is the most difficult decision; when to stop scanning.
940
941 If we have no line symbol, then the best thing we can do
942 is to stop scanning when we encounter an instruction that
943 is not likely to be a part of the prologue.
944
945 But if we do have a line symbol, then we should
946 keep scanning until we reach it (or we reach end_addr). */
947
948 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
949 continue; /* Keep scanning, recording saved_regs etc. */
950 else
951 break; /* Quit scanning: breakpoint can be set here. */
952 }
953 }
954
955 /* Special handling for the "saved" address of the SP:
956 The SP is of course never saved on the stack at all, so
957 by convention what we put here is simply the previous
958 _value_ of the SP (as opposed to an address where the
959 previous value would have been pushed). This will also
960 give us the frame base address. */
961
962 if (info->frameless_p)
963 {
964 info->frame_base = sp + info->framesize;
965 info->prev_sp = sp + info->framesize;
966 }
967 else
968 {
969 info->frame_base = fp + info->framesize;
970 info->prev_sp = fp + info->framesize;
971 }
972 /* Save prev_sp in saved_regs as a value, not as an address. */
973 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
974
975 /* Now convert frame offsets to actual addresses (not offsets). */
976 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
977 if (trad_frame_addr_p (info->saved_regs, regnum))
978 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
979
980 /* The call instruction moves the caller's PC in the callee's RA reg.
981 Since this is an unwind, do the reverse. Copy the location of RA
982 into PC (the address / regnum) so that a request for PC will be
983 converted into a request for the RA. */
984 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
985
986 return info;
987 }
988
989 static CORE_ADDR
990 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
991 {
992 ULONGEST pc;
993
994 frame_unwind_unsigned_register (next_frame, MT_PC_REGNUM, &pc);
995 return pc;
996 }
997
998 static CORE_ADDR
999 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1000 {
1001 ULONGEST sp;
1002
1003 frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
1004 return sp;
1005 }
1006
1007 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1008 dummy frame. The frame ID's base needs to match the TOS value
1009 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1010 breakpoint. */
1011
1012 static struct frame_id
1013 mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1014 {
1015 return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
1016 frame_pc_unwind (next_frame));
1017 }
1018
1019 /* Given a GDB frame, determine the address of the calling function's
1020 frame. This will be used to create a new GDB frame struct. */
1021
1022 static void
1023 mt_frame_this_id (struct frame_info *next_frame,
1024 void **this_prologue_cache, struct frame_id *this_id)
1025 {
1026 struct mt_unwind_cache *info =
1027 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1028
1029 if (!(info == NULL || info->prev_sp == 0))
1030 {
1031 (*this_id) = frame_id_build (info->prev_sp,
1032 frame_func_unwind (next_frame));
1033 }
1034 return;
1035 }
1036
1037 static void
1038 mt_frame_prev_register (struct frame_info *next_frame,
1039 void **this_prologue_cache,
1040 int regnum, int *optimizedp,
1041 enum lval_type *lvalp, CORE_ADDR *addrp,
1042 int *realnump, gdb_byte *bufferp)
1043 {
1044 struct mt_unwind_cache *info =
1045 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1046
1047 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1048 optimizedp, lvalp, addrp, realnump, bufferp);
1049 }
1050
1051 static CORE_ADDR
1052 mt_frame_base_address (struct frame_info *next_frame,
1053 void **this_prologue_cache)
1054 {
1055 struct mt_unwind_cache *info =
1056 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1057
1058 return info->frame_base;
1059 }
1060
1061 /* This is a shared interface: the 'frame_unwind' object is what's
1062 returned by the 'sniffer' function, and in turn specifies how to
1063 get a frame's ID and prev_regs.
1064
1065 This exports the 'prev_register' and 'this_id' methods. */
1066
1067 static const struct frame_unwind mt_frame_unwind = {
1068 NORMAL_FRAME,
1069 mt_frame_this_id,
1070 mt_frame_prev_register
1071 };
1072
1073 /* The sniffer is a registered function that identifies our family of
1074 frame unwind functions (this_id and prev_register). */
1075
1076 static const struct frame_unwind *
1077 mt_frame_sniffer (struct frame_info *next_frame)
1078 {
1079 return &mt_frame_unwind;
1080 }
1081
1082 /* Another shared interface: the 'frame_base' object specifies how to
1083 unwind a frame and secure the base addresses for frame objects
1084 (locals, args). */
1085
1086 static struct frame_base mt_frame_base = {
1087 &mt_frame_unwind,
1088 mt_frame_base_address,
1089 mt_frame_base_address,
1090 mt_frame_base_address
1091 };
1092
1093 static struct gdbarch *
1094 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1095 {
1096 struct gdbarch *gdbarch;
1097
1098 /* Find a candidate among the list of pre-declared architectures. */
1099 arches = gdbarch_list_lookup_by_info (arches, &info);
1100 if (arches != NULL)
1101 return arches->gdbarch;
1102
1103 /* None found, create a new architecture from the information
1104 provided. */
1105 gdbarch = gdbarch_alloc (&info, NULL);
1106
1107 switch (info.byte_order)
1108 {
1109 case BFD_ENDIAN_BIG:
1110 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1111 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
1112 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1113 break;
1114 case BFD_ENDIAN_LITTLE:
1115 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1116 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
1117 set_gdbarch_long_double_format (gdbarch,
1118 &floatformat_ieee_double_little);
1119 break;
1120 default:
1121 internal_error (__FILE__, __LINE__,
1122 _("mt_gdbarch_init: bad byte order for float format"));
1123 }
1124
1125 set_gdbarch_register_name (gdbarch, mt_register_name);
1126 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1127 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1128 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1129 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1130 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1131 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1132 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1133 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1134 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1135 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1136 set_gdbarch_frame_args_skip (gdbarch, 0);
1137 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1138 set_gdbarch_register_type (gdbarch, mt_register_type);
1139 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1140
1141 set_gdbarch_return_value (gdbarch, mt_return_value);
1142 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1143
1144 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1145
1146 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1147
1148 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1149
1150 /* Target builtin data types. */
1151 set_gdbarch_short_bit (gdbarch, 16);
1152 set_gdbarch_int_bit (gdbarch, 32);
1153 set_gdbarch_long_bit (gdbarch, 32);
1154 set_gdbarch_long_long_bit (gdbarch, 64);
1155 set_gdbarch_float_bit (gdbarch, 32);
1156 set_gdbarch_double_bit (gdbarch, 64);
1157 set_gdbarch_long_double_bit (gdbarch, 64);
1158 set_gdbarch_ptr_bit (gdbarch, 32);
1159
1160 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1161 based sniffer. */
1162 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1163 frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
1164 frame_base_set_default (gdbarch, &mt_frame_base);
1165
1166 /* Register the 'unwind_pc' method. */
1167 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1168 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1169
1170 /* Methods for saving / extracting a dummy frame's ID.
1171 The ID's stack address must match the SP value returned by
1172 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1173 set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
1174
1175 return gdbarch;
1176 }
1177
1178 void
1179 _initialize_mt_tdep (void)
1180 {
1181 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1182 }
This page took 0.056071 seconds and 5 git commands to generate.