* amd64-sol2-tdep.c (amd64_sol2_gregset_reg_offset): Correct
[deliverable/binutils-gdb.git] / gdb / objc-exp.y
1 /* YACC parser for C expressions, for GDB.
2
3 Copyright (C) 1986, 1989-1991, 1993-1994, 2002, 2006-2012 Free
4 Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse a C expression from text in a string, and return the result
20 as a struct expression pointer. That structure contains arithmetic
21 operations in reverse polish, with constants represented by
22 operations that are followed by special data. See expression.h for
23 the details of the format. What is important here is that it can
24 be built up sequentially during the process of parsing; the lower
25 levels of the tree always come first in the result.
26
27 Note that malloc's and realloc's in this file are transformed to
28 xmalloc and xrealloc respectively by the same sed command in the
29 makefile that remaps any other malloc/realloc inserted by the
30 parser generator. Doing this with #defines and trying to control
31 the interaction with include files (<malloc.h> and <stdlib.h> for
32 example) just became too messy, particularly when such includes can
33 be inserted at random times by the parser generator. */
34
35 %{
36
37 #include "defs.h"
38 #include "gdb_string.h"
39 #include <ctype.h>
40 #include "expression.h"
41
42 #include "objc-lang.h" /* For objc language constructs. */
43
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
51 #include "top.h"
52 #include "completer.h" /* For skip_quoted(). */
53 #include "block.h"
54
55 #define parse_type builtin_type (parse_gdbarch)
56
57 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
58 etc), as well as gratuitiously global symbol names, so we can have
59 multiple yacc generated parsers in gdb. Note that these are only
60 the variables produced by yacc. If other parser generators (bison,
61 byacc, etc) produce additional global names that conflict at link
62 time, then those parser generators need to be fixed instead of
63 adding those names to this list. */
64
65 #define yymaxdepth objc_maxdepth
66 #define yyparse objc_parse
67 #define yylex objc_lex
68 #define yyerror objc_error
69 #define yylval objc_lval
70 #define yychar objc_char
71 #define yydebug objc_debug
72 #define yypact objc_pact
73 #define yyr1 objc_r1
74 #define yyr2 objc_r2
75 #define yydef objc_def
76 #define yychk objc_chk
77 #define yypgo objc_pgo
78 #define yyact objc_act
79 #define yyexca objc_exca
80 #define yyerrflag objc_errflag
81 #define yynerrs objc_nerrs
82 #define yyps objc_ps
83 #define yypv objc_pv
84 #define yys objc_s
85 #define yy_yys objc_yys
86 #define yystate objc_state
87 #define yytmp objc_tmp
88 #define yyv objc_v
89 #define yy_yyv objc_yyv
90 #define yyval objc_val
91 #define yylloc objc_lloc
92 #define yyreds objc_reds /* With YYDEBUG defined */
93 #define yytoks objc_toks /* With YYDEBUG defined */
94 #define yyname objc_name /* With YYDEBUG defined */
95 #define yyrule objc_rule /* With YYDEBUG defined */
96 #define yylhs objc_yylhs
97 #define yylen objc_yylen
98 #define yydefred objc_yydefred
99 #define yydgoto objc_yydgoto
100 #define yysindex objc_yysindex
101 #define yyrindex objc_yyrindex
102 #define yygindex objc_yygindex
103 #define yytable objc_yytable
104 #define yycheck objc_yycheck
105
106 #ifndef YYDEBUG
107 #define YYDEBUG 0 /* Default to no yydebug support. */
108 #endif
109
110 int yyparse (void);
111
112 static int yylex (void);
113
114 void yyerror (char *);
115
116 %}
117
118 /* Although the yacc "value" of an expression is not used,
119 since the result is stored in the structure being created,
120 other node types do have values. */
121
122 %union
123 {
124 LONGEST lval;
125 struct {
126 LONGEST val;
127 struct type *type;
128 } typed_val_int;
129 struct {
130 DOUBLEST dval;
131 struct type *type;
132 } typed_val_float;
133 struct symbol *sym;
134 struct type *tval;
135 struct stoken sval;
136 struct ttype tsym;
137 struct symtoken ssym;
138 int voidval;
139 struct block *bval;
140 enum exp_opcode opcode;
141 struct internalvar *ivar;
142 struct objc_class_str class;
143
144 struct type **tvec;
145 int *ivec;
146 }
147
148 %{
149 /* YYSTYPE gets defined by %union. */
150 static int parse_number (char *, int, int, YYSTYPE *);
151 %}
152
153 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
154 %type <lval> rcurly
155 %type <tval> type typebase
156 %type <tvec> nonempty_typelist
157 /* %type <bval> block */
158
159 /* Fancy type parsing. */
160 %type <voidval> func_mod direct_abs_decl abs_decl
161 %type <tval> ptype
162 %type <lval> array_mod
163
164 %token <typed_val_int> INT
165 %token <typed_val_float> FLOAT
166
167 /* Both NAME and TYPENAME tokens represent symbols in the input, and
168 both convey their data as strings. But a TYPENAME is a string that
169 happens to be defined as a typedef or builtin type name (such as
170 int or char) and a NAME is any other symbol. Contexts where this
171 distinction is not important can use the nonterminal "name", which
172 matches either NAME or TYPENAME. */
173
174 %token <sval> STRING
175 %token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
176 %token <sval> SELECTOR /* ObjC "@selector" pseudo-operator */
177 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
178 %token <tsym> TYPENAME
179 %token <class> CLASSNAME /* ObjC Class name */
180 %type <sval> name
181 %type <ssym> name_not_typename
182 %type <tsym> typename
183
184 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
185 but which would parse as a valid number in the current input radix.
186 E.g. "c" when input_radix==16. Depending on the parse, it will be
187 turned into a name or into a number. */
188
189 %token <ssym> NAME_OR_INT
190
191 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
192 %token TEMPLATE
193 %token ERROR
194
195 /* Special type cases, put in to allow the parser to distinguish
196 different legal basetypes. */
197 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
198
199 %token <voidval> VARIABLE
200
201 %token <opcode> ASSIGN_MODIFY
202
203 %left ','
204 %left ABOVE_COMMA
205 %right '=' ASSIGN_MODIFY
206 %right '?'
207 %left OROR
208 %left ANDAND
209 %left '|'
210 %left '^'
211 %left '&'
212 %left EQUAL NOTEQUAL
213 %left '<' '>' LEQ GEQ
214 %left LSH RSH
215 %left '@'
216 %left '+' '-'
217 %left '*' '/' '%'
218 %right UNARY INCREMENT DECREMENT
219 %right ARROW '.' '[' '('
220 %token <ssym> BLOCKNAME
221 %type <bval> block
222 %left COLONCOLON
223
224 \f
225 %%
226
227 start : exp1
228 | type_exp
229 ;
230
231 type_exp: type
232 { write_exp_elt_opcode(OP_TYPE);
233 write_exp_elt_type($1);
234 write_exp_elt_opcode(OP_TYPE);}
235 ;
236
237 /* Expressions, including the comma operator. */
238 exp1 : exp
239 | exp1 ',' exp
240 { write_exp_elt_opcode (BINOP_COMMA); }
241 ;
242
243 /* Expressions, not including the comma operator. */
244 exp : '*' exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_IND); }
246 ;
247
248 exp : '&' exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_ADDR); }
250 ;
251
252 exp : '-' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_NEG); }
254 ;
255
256 exp : '!' exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
258 ;
259
260 exp : '~' exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
262 ;
263
264 exp : INCREMENT exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
266 ;
267
268 exp : DECREMENT exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
270 ;
271
272 exp : exp INCREMENT %prec UNARY
273 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
274 ;
275
276 exp : exp DECREMENT %prec UNARY
277 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
278 ;
279
280 exp : SIZEOF exp %prec UNARY
281 { write_exp_elt_opcode (UNOP_SIZEOF); }
282 ;
283
284 exp : exp ARROW name
285 { write_exp_elt_opcode (STRUCTOP_PTR);
286 write_exp_string ($3);
287 write_exp_elt_opcode (STRUCTOP_PTR); }
288 ;
289
290 exp : exp ARROW qualified_name
291 { /* exp->type::name becomes exp->*(&type::name) */
292 /* Note: this doesn't work if name is a
293 static member! FIXME */
294 write_exp_elt_opcode (UNOP_ADDR);
295 write_exp_elt_opcode (STRUCTOP_MPTR); }
296 ;
297 exp : exp ARROW '*' exp
298 { write_exp_elt_opcode (STRUCTOP_MPTR); }
299 ;
300
301 exp : exp '.' name
302 { write_exp_elt_opcode (STRUCTOP_STRUCT);
303 write_exp_string ($3);
304 write_exp_elt_opcode (STRUCTOP_STRUCT); }
305 ;
306
307
308 exp : exp '.' qualified_name
309 { /* exp.type::name becomes exp.*(&type::name) */
310 /* Note: this doesn't work if name is a
311 static member! FIXME */
312 write_exp_elt_opcode (UNOP_ADDR);
313 write_exp_elt_opcode (STRUCTOP_MEMBER); }
314 ;
315
316 exp : exp '.' '*' exp
317 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
318 ;
319
320 exp : exp '[' exp1 ']'
321 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
322 ;
323 /*
324 * The rules below parse ObjC message calls of the form:
325 * '[' target selector {':' argument}* ']'
326 */
327
328 exp : '[' TYPENAME
329 {
330 CORE_ADDR class;
331
332 class = lookup_objc_class (parse_gdbarch,
333 copy_name ($2.stoken));
334 if (class == 0)
335 error (_("%s is not an ObjC Class"),
336 copy_name ($2.stoken));
337 write_exp_elt_opcode (OP_LONG);
338 write_exp_elt_type (parse_type->builtin_int);
339 write_exp_elt_longcst ((LONGEST) class);
340 write_exp_elt_opcode (OP_LONG);
341 start_msglist();
342 }
343 msglist ']'
344 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
345 end_msglist();
346 write_exp_elt_opcode (OP_OBJC_MSGCALL);
347 }
348 ;
349
350 exp : '[' CLASSNAME
351 {
352 write_exp_elt_opcode (OP_LONG);
353 write_exp_elt_type (parse_type->builtin_int);
354 write_exp_elt_longcst ((LONGEST) $2.class);
355 write_exp_elt_opcode (OP_LONG);
356 start_msglist();
357 }
358 msglist ']'
359 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
360 end_msglist();
361 write_exp_elt_opcode (OP_OBJC_MSGCALL);
362 }
363 ;
364
365 exp : '[' exp
366 { start_msglist(); }
367 msglist ']'
368 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
369 end_msglist();
370 write_exp_elt_opcode (OP_OBJC_MSGCALL);
371 }
372 ;
373
374 msglist : name
375 { add_msglist(&$1, 0); }
376 | msgarglist
377 ;
378
379 msgarglist : msgarg
380 | msgarglist msgarg
381 ;
382
383 msgarg : name ':' exp
384 { add_msglist(&$1, 1); }
385 | ':' exp /* Unnamed arg. */
386 { add_msglist(0, 1); }
387 | ',' exp /* Variable number of args. */
388 { add_msglist(0, 0); }
389 ;
390
391 exp : exp '('
392 /* This is to save the value of arglist_len
393 being accumulated by an outer function call. */
394 { start_arglist (); }
395 arglist ')' %prec ARROW
396 { write_exp_elt_opcode (OP_FUNCALL);
397 write_exp_elt_longcst ((LONGEST) end_arglist ());
398 write_exp_elt_opcode (OP_FUNCALL); }
399 ;
400
401 lcurly : '{'
402 { start_arglist (); }
403 ;
404
405 arglist :
406 ;
407
408 arglist : exp
409 { arglist_len = 1; }
410 ;
411
412 arglist : arglist ',' exp %prec ABOVE_COMMA
413 { arglist_len++; }
414 ;
415
416 rcurly : '}'
417 { $$ = end_arglist () - 1; }
418 ;
419 exp : lcurly arglist rcurly %prec ARROW
420 { write_exp_elt_opcode (OP_ARRAY);
421 write_exp_elt_longcst ((LONGEST) 0);
422 write_exp_elt_longcst ((LONGEST) $3);
423 write_exp_elt_opcode (OP_ARRAY); }
424 ;
425
426 exp : lcurly type rcurly exp %prec UNARY
427 { write_exp_elt_opcode (UNOP_MEMVAL);
428 write_exp_elt_type ($2);
429 write_exp_elt_opcode (UNOP_MEMVAL); }
430 ;
431
432 exp : '(' type ')' exp %prec UNARY
433 { write_exp_elt_opcode (UNOP_CAST);
434 write_exp_elt_type ($2);
435 write_exp_elt_opcode (UNOP_CAST); }
436 ;
437
438 exp : '(' exp1 ')'
439 { }
440 ;
441
442 /* Binary operators in order of decreasing precedence. */
443
444 exp : exp '@' exp
445 { write_exp_elt_opcode (BINOP_REPEAT); }
446 ;
447
448 exp : exp '*' exp
449 { write_exp_elt_opcode (BINOP_MUL); }
450 ;
451
452 exp : exp '/' exp
453 { write_exp_elt_opcode (BINOP_DIV); }
454 ;
455
456 exp : exp '%' exp
457 { write_exp_elt_opcode (BINOP_REM); }
458 ;
459
460 exp : exp '+' exp
461 { write_exp_elt_opcode (BINOP_ADD); }
462 ;
463
464 exp : exp '-' exp
465 { write_exp_elt_opcode (BINOP_SUB); }
466 ;
467
468 exp : exp LSH exp
469 { write_exp_elt_opcode (BINOP_LSH); }
470 ;
471
472 exp : exp RSH exp
473 { write_exp_elt_opcode (BINOP_RSH); }
474 ;
475
476 exp : exp EQUAL exp
477 { write_exp_elt_opcode (BINOP_EQUAL); }
478 ;
479
480 exp : exp NOTEQUAL exp
481 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
482 ;
483
484 exp : exp LEQ exp
485 { write_exp_elt_opcode (BINOP_LEQ); }
486 ;
487
488 exp : exp GEQ exp
489 { write_exp_elt_opcode (BINOP_GEQ); }
490 ;
491
492 exp : exp '<' exp
493 { write_exp_elt_opcode (BINOP_LESS); }
494 ;
495
496 exp : exp '>' exp
497 { write_exp_elt_opcode (BINOP_GTR); }
498 ;
499
500 exp : exp '&' exp
501 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
502 ;
503
504 exp : exp '^' exp
505 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
506 ;
507
508 exp : exp '|' exp
509 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
510 ;
511
512 exp : exp ANDAND exp
513 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
514 ;
515
516 exp : exp OROR exp
517 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
518 ;
519
520 exp : exp '?' exp ':' exp %prec '?'
521 { write_exp_elt_opcode (TERNOP_COND); }
522 ;
523
524 exp : exp '=' exp
525 { write_exp_elt_opcode (BINOP_ASSIGN); }
526 ;
527
528 exp : exp ASSIGN_MODIFY exp
529 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
530 write_exp_elt_opcode ($2);
531 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
532 ;
533
534 exp : INT
535 { write_exp_elt_opcode (OP_LONG);
536 write_exp_elt_type ($1.type);
537 write_exp_elt_longcst ((LONGEST)($1.val));
538 write_exp_elt_opcode (OP_LONG); }
539 ;
540
541 exp : NAME_OR_INT
542 { YYSTYPE val;
543 parse_number ($1.stoken.ptr,
544 $1.stoken.length, 0, &val);
545 write_exp_elt_opcode (OP_LONG);
546 write_exp_elt_type (val.typed_val_int.type);
547 write_exp_elt_longcst ((LONGEST)
548 val.typed_val_int.val);
549 write_exp_elt_opcode (OP_LONG);
550 }
551 ;
552
553
554 exp : FLOAT
555 { write_exp_elt_opcode (OP_DOUBLE);
556 write_exp_elt_type ($1.type);
557 write_exp_elt_dblcst ($1.dval);
558 write_exp_elt_opcode (OP_DOUBLE); }
559 ;
560
561 exp : variable
562 ;
563
564 exp : VARIABLE
565 /* Already written by write_dollar_variable. */
566 ;
567
568 exp : SELECTOR
569 {
570 write_exp_elt_opcode (OP_OBJC_SELECTOR);
571 write_exp_string ($1);
572 write_exp_elt_opcode (OP_OBJC_SELECTOR); }
573 ;
574
575 exp : SIZEOF '(' type ')' %prec UNARY
576 { write_exp_elt_opcode (OP_LONG);
577 write_exp_elt_type (parse_type->builtin_int);
578 CHECK_TYPEDEF ($3);
579 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
580 write_exp_elt_opcode (OP_LONG); }
581 ;
582
583 exp : STRING
584 { /* C strings are converted into array
585 constants with an explicit null byte
586 added at the end. Thus the array upper
587 bound is the string length. There is no
588 such thing in C as a completely empty
589 string. */
590 char *sp = $1.ptr; int count = $1.length;
591 while (count-- > 0)
592 {
593 write_exp_elt_opcode (OP_LONG);
594 write_exp_elt_type (parse_type->builtin_char);
595 write_exp_elt_longcst ((LONGEST)(*sp++));
596 write_exp_elt_opcode (OP_LONG);
597 }
598 write_exp_elt_opcode (OP_LONG);
599 write_exp_elt_type (parse_type->builtin_char);
600 write_exp_elt_longcst ((LONGEST)'\0');
601 write_exp_elt_opcode (OP_LONG);
602 write_exp_elt_opcode (OP_ARRAY);
603 write_exp_elt_longcst ((LONGEST) 0);
604 write_exp_elt_longcst ((LONGEST) ($1.length));
605 write_exp_elt_opcode (OP_ARRAY); }
606 ;
607
608 exp : NSSTRING /* ObjC NextStep NSString constant
609 * of the form '@' '"' string '"'.
610 */
611 { write_exp_elt_opcode (OP_OBJC_NSSTRING);
612 write_exp_string ($1);
613 write_exp_elt_opcode (OP_OBJC_NSSTRING); }
614 ;
615
616 block : BLOCKNAME
617 {
618 if ($1.sym != 0)
619 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
620 else
621 {
622 struct symtab *tem =
623 lookup_symtab (copy_name ($1.stoken));
624 if (tem)
625 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem),
626 STATIC_BLOCK);
627 else
628 error (_("No file or function \"%s\"."),
629 copy_name ($1.stoken));
630 }
631 }
632 ;
633
634 block : block COLONCOLON name
635 { struct symbol *tem
636 = lookup_symbol (copy_name ($3), $1,
637 VAR_DOMAIN, (int *) NULL);
638 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
639 error (_("No function \"%s\" in specified context."),
640 copy_name ($3));
641 $$ = SYMBOL_BLOCK_VALUE (tem); }
642 ;
643
644 variable: block COLONCOLON name
645 { struct symbol *sym;
646 sym = lookup_symbol (copy_name ($3), $1,
647 VAR_DOMAIN, (int *) NULL);
648 if (sym == 0)
649 error (_("No symbol \"%s\" in specified context."),
650 copy_name ($3));
651 if (symbol_read_needs_frame (sym))
652 {
653 if (innermost_block == 0
654 || contained_in (block_found,
655 innermost_block))
656 innermost_block = block_found;
657 }
658
659 write_exp_elt_opcode (OP_VAR_VALUE);
660 /* block_found is set by lookup_symbol. */
661 write_exp_elt_block (block_found);
662 write_exp_elt_sym (sym);
663 write_exp_elt_opcode (OP_VAR_VALUE); }
664 ;
665
666 qualified_name: typebase COLONCOLON name
667 {
668 struct type *type = $1;
669 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
670 && TYPE_CODE (type) != TYPE_CODE_UNION)
671 error (_("`%s' is not defined as an aggregate type."),
672 TYPE_NAME (type));
673
674 write_exp_elt_opcode (OP_SCOPE);
675 write_exp_elt_type (type);
676 write_exp_string ($3);
677 write_exp_elt_opcode (OP_SCOPE);
678 }
679 | typebase COLONCOLON '~' name
680 {
681 struct type *type = $1;
682 struct stoken tmp_token;
683 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
684 && TYPE_CODE (type) != TYPE_CODE_UNION)
685 error (_("`%s' is not defined as an aggregate type."),
686 TYPE_NAME (type));
687
688 if (strcmp (type_name_no_tag (type), $4.ptr) != 0)
689 error (_("invalid destructor `%s::~%s'"),
690 type_name_no_tag (type), $4.ptr);
691
692 tmp_token.ptr = (char*) alloca ($4.length + 2);
693 tmp_token.length = $4.length + 1;
694 tmp_token.ptr[0] = '~';
695 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
696 tmp_token.ptr[tmp_token.length] = 0;
697 write_exp_elt_opcode (OP_SCOPE);
698 write_exp_elt_type (type);
699 write_exp_string (tmp_token);
700 write_exp_elt_opcode (OP_SCOPE);
701 }
702 ;
703
704 variable: qualified_name
705 | COLONCOLON name
706 {
707 char *name = copy_name ($2);
708 struct symbol *sym;
709 struct minimal_symbol *msymbol;
710
711 sym =
712 lookup_symbol (name, (const struct block *) NULL,
713 VAR_DOMAIN, (int *) NULL);
714 if (sym)
715 {
716 write_exp_elt_opcode (OP_VAR_VALUE);
717 write_exp_elt_block (NULL);
718 write_exp_elt_sym (sym);
719 write_exp_elt_opcode (OP_VAR_VALUE);
720 break;
721 }
722
723 msymbol = lookup_minimal_symbol (name, NULL, NULL);
724 if (msymbol != NULL)
725 write_exp_msymbol (msymbol);
726 else if (!have_full_symbols ()
727 && !have_partial_symbols ())
728 error (_("No symbol table is loaded. "
729 "Use the \"file\" command."));
730 else
731 error (_("No symbol \"%s\" in current context."),
732 name);
733 }
734 ;
735
736 variable: name_not_typename
737 { struct symbol *sym = $1.sym;
738
739 if (sym)
740 {
741 if (symbol_read_needs_frame (sym))
742 {
743 if (innermost_block == 0 ||
744 contained_in (block_found,
745 innermost_block))
746 innermost_block = block_found;
747 }
748
749 write_exp_elt_opcode (OP_VAR_VALUE);
750 /* We want to use the selected frame, not
751 another more inner frame which happens to
752 be in the same block. */
753 write_exp_elt_block (NULL);
754 write_exp_elt_sym (sym);
755 write_exp_elt_opcode (OP_VAR_VALUE);
756 }
757 else if ($1.is_a_field_of_this)
758 {
759 /* C++/ObjC: it hangs off of `this'/'self'.
760 Must not inadvertently convert from a
761 method call to data ref. */
762 if (innermost_block == 0 ||
763 contained_in (block_found, innermost_block))
764 innermost_block = block_found;
765 write_exp_elt_opcode (OP_THIS);
766 write_exp_elt_opcode (OP_THIS);
767 write_exp_elt_opcode (STRUCTOP_PTR);
768 write_exp_string ($1.stoken);
769 write_exp_elt_opcode (STRUCTOP_PTR);
770 }
771 else
772 {
773 struct minimal_symbol *msymbol;
774 char *arg = copy_name ($1.stoken);
775
776 msymbol =
777 lookup_minimal_symbol (arg, NULL, NULL);
778 if (msymbol != NULL)
779 write_exp_msymbol (msymbol);
780 else if (!have_full_symbols () &&
781 !have_partial_symbols ())
782 error (_("No symbol table is loaded. "
783 "Use the \"file\" command."));
784 else
785 error (_("No symbol \"%s\" in current context."),
786 copy_name ($1.stoken));
787 }
788 }
789 ;
790
791
792 ptype : typebase
793 /* "const" and "volatile" are curently ignored. A type
794 qualifier before the type is currently handled in the
795 typebase rule. The reason for recognizing these here
796 (shift/reduce conflicts) might be obsolete now that some
797 pointer to member rules have been deleted. */
798 | typebase CONST_KEYWORD
799 | typebase VOLATILE_KEYWORD
800 | typebase abs_decl
801 { $$ = follow_types ($1); }
802 | typebase CONST_KEYWORD abs_decl
803 { $$ = follow_types ($1); }
804 | typebase VOLATILE_KEYWORD abs_decl
805 { $$ = follow_types ($1); }
806 ;
807
808 abs_decl: '*'
809 { push_type (tp_pointer); $$ = 0; }
810 | '*' abs_decl
811 { push_type (tp_pointer); $$ = $2; }
812 | '&'
813 { push_type (tp_reference); $$ = 0; }
814 | '&' abs_decl
815 { push_type (tp_reference); $$ = $2; }
816 | direct_abs_decl
817 ;
818
819 direct_abs_decl: '(' abs_decl ')'
820 { $$ = $2; }
821 | direct_abs_decl array_mod
822 {
823 push_type_int ($2);
824 push_type (tp_array);
825 }
826 | array_mod
827 {
828 push_type_int ($1);
829 push_type (tp_array);
830 $$ = 0;
831 }
832
833 | direct_abs_decl func_mod
834 { push_type (tp_function); }
835 | func_mod
836 { push_type (tp_function); }
837 ;
838
839 array_mod: '[' ']'
840 { $$ = -1; }
841 | '[' INT ']'
842 { $$ = $2.val; }
843 ;
844
845 func_mod: '(' ')'
846 { $$ = 0; }
847 | '(' nonempty_typelist ')'
848 { free ($2); $$ = 0; }
849 ;
850
851 /* We used to try to recognize more pointer to member types here, but
852 that didn't work (shift/reduce conflicts meant that these rules
853 never got executed). The problem is that
854 int (foo::bar::baz::bizzle)
855 is a function type but
856 int (foo::bar::baz::bizzle::*)
857 is a pointer to member type. Stroustrup loses again! */
858
859 type : ptype
860 ;
861
862 typebase /* Implements (approximately): (type-qualifier)* type-specifier. */
863 : TYPENAME
864 { $$ = $1.type; }
865 | CLASSNAME
866 {
867 if ($1.type == NULL)
868 error (_("No symbol \"%s\" in current context."),
869 copy_name($1.stoken));
870 else
871 $$ = $1.type;
872 }
873 | INT_KEYWORD
874 { $$ = parse_type->builtin_int; }
875 | LONG
876 { $$ = parse_type->builtin_long; }
877 | SHORT
878 { $$ = parse_type->builtin_short; }
879 | LONG INT_KEYWORD
880 { $$ = parse_type->builtin_long; }
881 | UNSIGNED LONG INT_KEYWORD
882 { $$ = parse_type->builtin_unsigned_long; }
883 | LONG LONG
884 { $$ = parse_type->builtin_long_long; }
885 | LONG LONG INT_KEYWORD
886 { $$ = parse_type->builtin_long_long; }
887 | UNSIGNED LONG LONG
888 { $$ = parse_type->builtin_unsigned_long_long; }
889 | UNSIGNED LONG LONG INT_KEYWORD
890 { $$ = parse_type->builtin_unsigned_long_long; }
891 | SHORT INT_KEYWORD
892 { $$ = parse_type->builtin_short; }
893 | UNSIGNED SHORT INT_KEYWORD
894 { $$ = parse_type->builtin_unsigned_short; }
895 | DOUBLE_KEYWORD
896 { $$ = parse_type->builtin_double; }
897 | LONG DOUBLE_KEYWORD
898 { $$ = parse_type->builtin_long_double; }
899 | STRUCT name
900 { $$ = lookup_struct (copy_name ($2),
901 expression_context_block); }
902 | CLASS name
903 { $$ = lookup_struct (copy_name ($2),
904 expression_context_block); }
905 | UNION name
906 { $$ = lookup_union (copy_name ($2),
907 expression_context_block); }
908 | ENUM name
909 { $$ = lookup_enum (copy_name ($2),
910 expression_context_block); }
911 | UNSIGNED typename
912 { $$ = lookup_unsigned_typename (parse_language,
913 parse_gdbarch,
914 TYPE_NAME($2.type)); }
915 | UNSIGNED
916 { $$ = parse_type->builtin_unsigned_int; }
917 | SIGNED_KEYWORD typename
918 { $$ = lookup_signed_typename (parse_language,
919 parse_gdbarch,
920 TYPE_NAME($2.type)); }
921 | SIGNED_KEYWORD
922 { $$ = parse_type->builtin_int; }
923 | TEMPLATE name '<' type '>'
924 { $$ = lookup_template_type(copy_name($2), $4,
925 expression_context_block);
926 }
927 /* "const" and "volatile" are curently ignored. A type
928 qualifier after the type is handled in the ptype rule. I
929 think these could be too. */
930 | CONST_KEYWORD typebase { $$ = $2; }
931 | VOLATILE_KEYWORD typebase { $$ = $2; }
932 ;
933
934 typename: TYPENAME
935 | INT_KEYWORD
936 {
937 $$.stoken.ptr = "int";
938 $$.stoken.length = 3;
939 $$.type = parse_type->builtin_int;
940 }
941 | LONG
942 {
943 $$.stoken.ptr = "long";
944 $$.stoken.length = 4;
945 $$.type = parse_type->builtin_long;
946 }
947 | SHORT
948 {
949 $$.stoken.ptr = "short";
950 $$.stoken.length = 5;
951 $$.type = parse_type->builtin_short;
952 }
953 ;
954
955 nonempty_typelist
956 : type
957 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
958 $<ivec>$[0] = 1; /* Number of types in vector. */
959 $$[1] = $1;
960 }
961 | nonempty_typelist ',' type
962 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
963 $$ = (struct type **) realloc ((char *) $1, len);
964 $$[$<ivec>$[0]] = $3;
965 }
966 ;
967
968 name : NAME { $$ = $1.stoken; }
969 | BLOCKNAME { $$ = $1.stoken; }
970 | TYPENAME { $$ = $1.stoken; }
971 | CLASSNAME { $$ = $1.stoken; }
972 | NAME_OR_INT { $$ = $1.stoken; }
973 ;
974
975 name_not_typename : NAME
976 | BLOCKNAME
977 /* These would be useful if name_not_typename was useful, but it is
978 just a fake for "variable", so these cause reduce/reduce conflicts
979 because the parser can't tell whether NAME_OR_INT is a
980 name_not_typename (=variable, =exp) or just an exp. If
981 name_not_typename was ever used in an lvalue context where only a
982 name could occur, this might be useful. */
983 /* | NAME_OR_INT */
984 ;
985
986 %%
987
988 /* Take care of parsing a number (anything that starts with a digit).
989 Set yylval and return the token type; update lexptr. LEN is the
990 number of characters in it. */
991
992 /*** Needs some error checking for the float case. ***/
993
994 static int
995 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
996 {
997 /* FIXME: Shouldn't these be unsigned? We don't deal with negative
998 values here, and we do kind of silly things like cast to
999 unsigned. */
1000 LONGEST n = 0;
1001 LONGEST prevn = 0;
1002 unsigned LONGEST un;
1003
1004 int i = 0;
1005 int c;
1006 int base = input_radix;
1007 int unsigned_p = 0;
1008
1009 /* Number of "L" suffixes encountered. */
1010 int long_p = 0;
1011
1012 /* We have found a "L" or "U" suffix. */
1013 int found_suffix = 0;
1014
1015 unsigned LONGEST high_bit;
1016 struct type *signed_type;
1017 struct type *unsigned_type;
1018
1019 if (parsed_float)
1020 {
1021 if (! parse_c_float (parse_gdbarch, p, len,
1022 &putithere->typed_val_float.dval,
1023 &putithere->typed_val_float.type))
1024 return ERROR;
1025 return FLOAT;
1026 }
1027
1028 /* Handle base-switching prefixes 0x, 0t, 0d, and 0. */
1029 if (p[0] == '0')
1030 switch (p[1])
1031 {
1032 case 'x':
1033 case 'X':
1034 if (len >= 3)
1035 {
1036 p += 2;
1037 base = 16;
1038 len -= 2;
1039 }
1040 break;
1041
1042 case 't':
1043 case 'T':
1044 case 'd':
1045 case 'D':
1046 if (len >= 3)
1047 {
1048 p += 2;
1049 base = 10;
1050 len -= 2;
1051 }
1052 break;
1053
1054 default:
1055 base = 8;
1056 break;
1057 }
1058
1059 while (len-- > 0)
1060 {
1061 c = *p++;
1062 if (c >= 'A' && c <= 'Z')
1063 c += 'a' - 'A';
1064 if (c != 'l' && c != 'u')
1065 n *= base;
1066 if (c >= '0' && c <= '9')
1067 {
1068 if (found_suffix)
1069 return ERROR;
1070 n += i = c - '0';
1071 }
1072 else
1073 {
1074 if (base > 10 && c >= 'a' && c <= 'f')
1075 {
1076 if (found_suffix)
1077 return ERROR;
1078 n += i = c - 'a' + 10;
1079 }
1080 else if (c == 'l')
1081 {
1082 ++long_p;
1083 found_suffix = 1;
1084 }
1085 else if (c == 'u')
1086 {
1087 unsigned_p = 1;
1088 found_suffix = 1;
1089 }
1090 else
1091 return ERROR; /* Char not a digit. */
1092 }
1093 if (i >= base)
1094 return ERROR; /* Invalid digit in this base. */
1095
1096 /* Portably test for overflow (only works for nonzero values, so
1097 make a second check for zero). FIXME: Can't we just make n
1098 and prevn unsigned and avoid this? */
1099 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1100 unsigned_p = 1; /* Try something unsigned. */
1101
1102 /* Portably test for unsigned overflow.
1103 FIXME: This check is wrong; for example it doesn't find
1104 overflow on 0x123456789 when LONGEST is 32 bits. */
1105 if (c != 'l' && c != 'u' && n != 0)
1106 {
1107 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1108 error (_("Numeric constant too large."));
1109 }
1110 prevn = n;
1111 }
1112
1113 /* An integer constant is an int, a long, or a long long. An L
1114 suffix forces it to be long; an LL suffix forces it to be long
1115 long. If not forced to a larger size, it gets the first type of
1116 the above that it fits in. To figure out whether it fits, we
1117 shift it right and see whether anything remains. Note that we
1118 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1119 operation, because many compilers will warn about such a shift
1120 (which always produces a zero result). Sometimes gdbarch_int_bit
1121 or gdbarch_long_int will be that big, sometimes not. To deal with
1122 the case where it is we just always shift the value more than
1123 once, with fewer bits each time. */
1124
1125 un = (unsigned LONGEST)n >> 2;
1126 if (long_p == 0
1127 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1128 {
1129 high_bit
1130 = ((unsigned LONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1131
1132 /* A large decimal (not hex or octal) constant (between INT_MAX
1133 and UINT_MAX) is a long or unsigned long, according to ANSI,
1134 never an unsigned int, but this code treats it as unsigned
1135 int. This probably should be fixed. GCC gives a warning on
1136 such constants. */
1137
1138 unsigned_type = parse_type->builtin_unsigned_int;
1139 signed_type = parse_type->builtin_int;
1140 }
1141 else if (long_p <= 1
1142 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1143 {
1144 high_bit
1145 = ((unsigned LONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1146 unsigned_type = parse_type->builtin_unsigned_long;
1147 signed_type = parse_type->builtin_long;
1148 }
1149 else
1150 {
1151 high_bit = (((unsigned LONGEST)1)
1152 << (gdbarch_long_long_bit (parse_gdbarch) - 32 - 1)
1153 << 16
1154 << 16);
1155 if (high_bit == 0)
1156 /* A long long does not fit in a LONGEST. */
1157 high_bit =
1158 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1159 unsigned_type = parse_type->builtin_unsigned_long_long;
1160 signed_type = parse_type->builtin_long_long;
1161 }
1162
1163 putithere->typed_val_int.val = n;
1164
1165 /* If the high bit of the worked out type is set then this number
1166 has to be unsigned. */
1167
1168 if (unsigned_p || (n & high_bit))
1169 {
1170 putithere->typed_val_int.type = unsigned_type;
1171 }
1172 else
1173 {
1174 putithere->typed_val_int.type = signed_type;
1175 }
1176
1177 return INT;
1178 }
1179
1180 struct token
1181 {
1182 char *operator;
1183 int token;
1184 enum exp_opcode opcode;
1185 };
1186
1187 static const struct token tokentab3[] =
1188 {
1189 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1190 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1191 };
1192
1193 static const struct token tokentab2[] =
1194 {
1195 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1196 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1197 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1198 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1199 {"%=", ASSIGN_MODIFY, BINOP_REM},
1200 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1201 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1202 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1203 {"++", INCREMENT, BINOP_END},
1204 {"--", DECREMENT, BINOP_END},
1205 {"->", ARROW, BINOP_END},
1206 {"&&", ANDAND, BINOP_END},
1207 {"||", OROR, BINOP_END},
1208 {"::", COLONCOLON, BINOP_END},
1209 {"<<", LSH, BINOP_END},
1210 {">>", RSH, BINOP_END},
1211 {"==", EQUAL, BINOP_END},
1212 {"!=", NOTEQUAL, BINOP_END},
1213 {"<=", LEQ, BINOP_END},
1214 {">=", GEQ, BINOP_END}
1215 };
1216
1217 /* Read one token, getting characters through lexptr. */
1218
1219 static int
1220 yylex (void)
1221 {
1222 int c, tokchr;
1223 int namelen;
1224 unsigned int i;
1225 char *tokstart;
1226 char *tokptr;
1227 int tempbufindex;
1228 static char *tempbuf;
1229 static int tempbufsize;
1230
1231 retry:
1232
1233 tokstart = lexptr;
1234 /* See if it is a special token of length 3. */
1235 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1236 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1237 {
1238 lexptr += 3;
1239 yylval.opcode = tokentab3[i].opcode;
1240 return tokentab3[i].token;
1241 }
1242
1243 /* See if it is a special token of length 2. */
1244 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1245 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1246 {
1247 lexptr += 2;
1248 yylval.opcode = tokentab2[i].opcode;
1249 return tokentab2[i].token;
1250 }
1251
1252 c = 0;
1253 switch (tokchr = *tokstart)
1254 {
1255 case 0:
1256 return 0;
1257
1258 case ' ':
1259 case '\t':
1260 case '\n':
1261 lexptr++;
1262 goto retry;
1263
1264 case '\'':
1265 /* We either have a character constant ('0' or '\177' for
1266 example) or we have a quoted symbol reference ('foo(int,int)'
1267 in C++ for example). */
1268 lexptr++;
1269 c = *lexptr++;
1270 if (c == '\\')
1271 c = parse_escape (parse_gdbarch, &lexptr);
1272 else if (c == '\'')
1273 error (_("Empty character constant."));
1274
1275 yylval.typed_val_int.val = c;
1276 yylval.typed_val_int.type = parse_type->builtin_char;
1277
1278 c = *lexptr++;
1279 if (c != '\'')
1280 {
1281 namelen = skip_quoted (tokstart) - tokstart;
1282 if (namelen > 2)
1283 {
1284 lexptr = tokstart + namelen;
1285 if (lexptr[-1] != '\'')
1286 error (_("Unmatched single quote."));
1287 namelen -= 2;
1288 tokstart++;
1289 goto tryname;
1290 }
1291 error (_("Invalid character constant."));
1292 }
1293 return INT;
1294
1295 case '(':
1296 paren_depth++;
1297 lexptr++;
1298 return '(';
1299
1300 case ')':
1301 if (paren_depth == 0)
1302 return 0;
1303 paren_depth--;
1304 lexptr++;
1305 return ')';
1306
1307 case ',':
1308 if (comma_terminates && paren_depth == 0)
1309 return 0;
1310 lexptr++;
1311 return ',';
1312
1313 case '.':
1314 /* Might be a floating point number. */
1315 if (lexptr[1] < '0' || lexptr[1] > '9')
1316 goto symbol; /* Nope, must be a symbol. */
1317 /* FALL THRU into number case. */
1318
1319 case '0':
1320 case '1':
1321 case '2':
1322 case '3':
1323 case '4':
1324 case '5':
1325 case '6':
1326 case '7':
1327 case '8':
1328 case '9':
1329 {
1330 /* It's a number. */
1331 int got_dot = 0, got_e = 0, toktype = FLOAT;
1332 /* Initialize toktype to anything other than ERROR. */
1333 char *p = tokstart;
1334 int hex = input_radix > 10;
1335 int local_radix = input_radix;
1336 if (tokchr == '0' && (p[1] == 'x' || p[1] == 'X'))
1337 {
1338 p += 2;
1339 hex = 1;
1340 local_radix = 16;
1341 }
1342 else if (tokchr == '0' && (p[1]=='t' || p[1]=='T'
1343 || p[1]=='d' || p[1]=='D'))
1344 {
1345 p += 2;
1346 hex = 0;
1347 local_radix = 10;
1348 }
1349
1350 for (;; ++p)
1351 {
1352 /* This test includes !hex because 'e' is a valid hex digit
1353 and thus does not indicate a floating point number when
1354 the radix is hex. */
1355
1356 if (!hex && (*p == 'e' || *p == 'E'))
1357 if (got_e)
1358 toktype = ERROR; /* Only one 'e' in a float. */
1359 else
1360 got_e = 1;
1361 /* This test does not include !hex, because a '.' always
1362 indicates a decimal floating point number regardless of
1363 the radix. */
1364 else if (*p == '.')
1365 if (got_dot)
1366 toktype = ERROR; /* Only one '.' in a float. */
1367 else
1368 got_dot = 1;
1369 else if (got_e && (p[-1] == 'e' || p[-1] == 'E') &&
1370 (*p == '-' || *p == '+'))
1371 /* This is the sign of the exponent, not the end of the
1372 number. */
1373 continue;
1374 /* Always take decimal digits; parse_number handles radix
1375 error. */
1376 else if (*p >= '0' && *p <= '9')
1377 continue;
1378 /* We will take letters only if hex is true, and only up
1379 to what the input radix would permit. FSF was content
1380 to rely on parse_number to validate; but it leaks. */
1381 else if (*p >= 'a' && *p <= 'z')
1382 {
1383 if (!hex || *p >= ('a' + local_radix - 10))
1384 toktype = ERROR;
1385 }
1386 else if (*p >= 'A' && *p <= 'Z')
1387 {
1388 if (!hex || *p >= ('A' + local_radix - 10))
1389 toktype = ERROR;
1390 }
1391 else break;
1392 }
1393 if (toktype != ERROR)
1394 toktype = parse_number (tokstart, p - tokstart,
1395 got_dot | got_e, &yylval);
1396 if (toktype == ERROR)
1397 {
1398 char *err_copy = (char *) alloca (p - tokstart + 1);
1399
1400 memcpy (err_copy, tokstart, p - tokstart);
1401 err_copy[p - tokstart] = 0;
1402 error (_("Invalid number \"%s\"."), err_copy);
1403 }
1404 lexptr = p;
1405 return toktype;
1406 }
1407
1408 case '+':
1409 case '-':
1410 case '*':
1411 case '/':
1412 case '%':
1413 case '|':
1414 case '&':
1415 case '^':
1416 case '~':
1417 case '!':
1418 case '<':
1419 case '>':
1420 case '[':
1421 case ']':
1422 case '?':
1423 case ':':
1424 case '=':
1425 case '{':
1426 case '}':
1427 symbol:
1428 lexptr++;
1429 return tokchr;
1430
1431 case '@':
1432 if (strncmp(tokstart, "@selector", 9) == 0)
1433 {
1434 tokptr = strchr(tokstart, '(');
1435 if (tokptr == NULL)
1436 {
1437 error (_("Missing '(' in @selector(...)"));
1438 }
1439 tempbufindex = 0;
1440 tokptr++; /* Skip the '('. */
1441 do {
1442 /* Grow the static temp buffer if necessary, including
1443 allocating the first one on demand. */
1444 if (tempbufindex + 1 >= tempbufsize)
1445 {
1446 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1447 }
1448 tempbuf[tempbufindex++] = *tokptr++;
1449 } while ((*tokptr != ')') && (*tokptr != '\0'));
1450 if (*tokptr++ != ')')
1451 {
1452 error (_("Missing ')' in @selector(...)"));
1453 }
1454 tempbuf[tempbufindex] = '\0';
1455 yylval.sval.ptr = tempbuf;
1456 yylval.sval.length = tempbufindex;
1457 lexptr = tokptr;
1458 return SELECTOR;
1459 }
1460 if (tokstart[1] != '"')
1461 {
1462 lexptr++;
1463 return tokchr;
1464 }
1465 /* ObjC NextStep NSString constant: fall thru and parse like
1466 STRING. */
1467 tokstart++;
1468
1469 case '"':
1470
1471 /* Build the gdb internal form of the input string in tempbuf,
1472 translating any standard C escape forms seen. Note that the
1473 buffer is null byte terminated *only* for the convenience of
1474 debugging gdb itself and printing the buffer contents when
1475 the buffer contains no embedded nulls. Gdb does not depend
1476 upon the buffer being null byte terminated, it uses the
1477 length string instead. This allows gdb to handle C strings
1478 (as well as strings in other languages) with embedded null
1479 bytes. */
1480
1481 tokptr = ++tokstart;
1482 tempbufindex = 0;
1483
1484 do {
1485 /* Grow the static temp buffer if necessary, including
1486 allocating the first one on demand. */
1487 if (tempbufindex + 1 >= tempbufsize)
1488 {
1489 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1490 }
1491 switch (*tokptr)
1492 {
1493 case '\0':
1494 case '"':
1495 /* Do nothing, loop will terminate. */
1496 break;
1497 case '\\':
1498 tokptr++;
1499 c = parse_escape (parse_gdbarch, &tokptr);
1500 if (c == -1)
1501 {
1502 continue;
1503 }
1504 tempbuf[tempbufindex++] = c;
1505 break;
1506 default:
1507 tempbuf[tempbufindex++] = *tokptr++;
1508 break;
1509 }
1510 } while ((*tokptr != '"') && (*tokptr != '\0'));
1511 if (*tokptr++ != '"')
1512 {
1513 error (_("Unterminated string in expression."));
1514 }
1515 tempbuf[tempbufindex] = '\0'; /* See note above. */
1516 yylval.sval.ptr = tempbuf;
1517 yylval.sval.length = tempbufindex;
1518 lexptr = tokptr;
1519 return (tokchr == '@' ? NSSTRING : STRING);
1520 }
1521
1522 if (!(tokchr == '_' || tokchr == '$' ||
1523 (tokchr >= 'a' && tokchr <= 'z') || (tokchr >= 'A' && tokchr <= 'Z')))
1524 /* We must have come across a bad character (e.g. ';'). */
1525 error (_("Invalid character '%c' in expression."), c);
1526
1527 /* It's a name. See how long it is. */
1528 namelen = 0;
1529 for (c = tokstart[namelen];
1530 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1531 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1532 {
1533 if (c == '<')
1534 {
1535 int i = namelen;
1536 while (tokstart[++i] && tokstart[i] != '>');
1537 if (tokstart[i] == '>')
1538 namelen = i;
1539 }
1540 c = tokstart[++namelen];
1541 }
1542
1543 /* The token "if" terminates the expression and is NOT
1544 removed from the input stream. */
1545 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1546 {
1547 return 0;
1548 }
1549
1550 lexptr += namelen;
1551
1552 tryname:
1553
1554 /* Catch specific keywords. Should be done with a data structure. */
1555 switch (namelen)
1556 {
1557 case 8:
1558 if (strncmp (tokstart, "unsigned", 8) == 0)
1559 return UNSIGNED;
1560 if (parse_language->la_language == language_cplus
1561 && strncmp (tokstart, "template", 8) == 0)
1562 return TEMPLATE;
1563 if (strncmp (tokstart, "volatile", 8) == 0)
1564 return VOLATILE_KEYWORD;
1565 break;
1566 case 6:
1567 if (strncmp (tokstart, "struct", 6) == 0)
1568 return STRUCT;
1569 if (strncmp (tokstart, "signed", 6) == 0)
1570 return SIGNED_KEYWORD;
1571 if (strncmp (tokstart, "sizeof", 6) == 0)
1572 return SIZEOF;
1573 if (strncmp (tokstart, "double", 6) == 0)
1574 return DOUBLE_KEYWORD;
1575 break;
1576 case 5:
1577 if ((parse_language->la_language == language_cplus)
1578 && strncmp (tokstart, "class", 5) == 0)
1579 return CLASS;
1580 if (strncmp (tokstart, "union", 5) == 0)
1581 return UNION;
1582 if (strncmp (tokstart, "short", 5) == 0)
1583 return SHORT;
1584 if (strncmp (tokstart, "const", 5) == 0)
1585 return CONST_KEYWORD;
1586 break;
1587 case 4:
1588 if (strncmp (tokstart, "enum", 4) == 0)
1589 return ENUM;
1590 if (strncmp (tokstart, "long", 4) == 0)
1591 return LONG;
1592 break;
1593 case 3:
1594 if (strncmp (tokstart, "int", 3) == 0)
1595 return INT_KEYWORD;
1596 break;
1597 default:
1598 break;
1599 }
1600
1601 yylval.sval.ptr = tokstart;
1602 yylval.sval.length = namelen;
1603
1604 if (*tokstart == '$')
1605 {
1606 write_dollar_variable (yylval.sval);
1607 return VARIABLE;
1608 }
1609
1610 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1611 functions or symtabs. If this is not so, then ...
1612 Use token-type TYPENAME for symbols that happen to be defined
1613 currently as names of types; NAME for other symbols.
1614 The caller is not constrained to care about the distinction. */
1615 {
1616 char *tmp = copy_name (yylval.sval);
1617 struct symbol *sym;
1618 int is_a_field_of_this = 0, *need_this;
1619 int hextype;
1620
1621 if (parse_language->la_language == language_cplus ||
1622 parse_language->la_language == language_objc)
1623 need_this = &is_a_field_of_this;
1624 else
1625 need_this = (int *) NULL;
1626
1627 sym = lookup_symbol (tmp, expression_context_block,
1628 VAR_DOMAIN,
1629 need_this);
1630 /* Call lookup_symtab, not lookup_partial_symtab, in case there
1631 are no psymtabs (coff, xcoff, or some future change to blow
1632 away the psymtabs once symbols are read). */
1633 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1634 lookup_symtab (tmp))
1635 {
1636 yylval.ssym.sym = sym;
1637 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1638 return BLOCKNAME;
1639 }
1640 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1641 {
1642 #if 1
1643 /* Despite the following flaw, we need to keep this code
1644 enabled. Because we can get called from
1645 check_stub_method, if we don't handle nested types then
1646 it screws many operations in any program which uses
1647 nested types. */
1648 /* In "A::x", if x is a member function of A and there
1649 happens to be a type (nested or not, since the stabs
1650 don't make that distinction) named x, then this code
1651 incorrectly thinks we are dealing with nested types
1652 rather than a member function. */
1653
1654 char *p;
1655 char *namestart;
1656 struct symbol *best_sym;
1657
1658 /* Look ahead to detect nested types. This probably should
1659 be done in the grammar, but trying seemed to introduce a
1660 lot of shift/reduce and reduce/reduce conflicts. It's
1661 possible that it could be done, though. Or perhaps a
1662 non-grammar, but less ad hoc, approach would work well. */
1663
1664 /* Since we do not currently have any way of distinguishing
1665 a nested type from a non-nested one (the stabs don't tell
1666 us whether a type is nested), we just ignore the
1667 containing type. */
1668
1669 p = lexptr;
1670 best_sym = sym;
1671 while (1)
1672 {
1673 /* Skip whitespace. */
1674 while (*p == ' ' || *p == '\t' || *p == '\n')
1675 ++p;
1676 if (*p == ':' && p[1] == ':')
1677 {
1678 /* Skip the `::'. */
1679 p += 2;
1680 /* Skip whitespace. */
1681 while (*p == ' ' || *p == '\t' || *p == '\n')
1682 ++p;
1683 namestart = p;
1684 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1685 || (*p >= 'a' && *p <= 'z')
1686 || (*p >= 'A' && *p <= 'Z'))
1687 ++p;
1688 if (p != namestart)
1689 {
1690 struct symbol *cur_sym;
1691 /* As big as the whole rest of the expression,
1692 which is at least big enough. */
1693 char *ncopy = alloca (strlen (tmp) +
1694 strlen (namestart) + 3);
1695 char *tmp1;
1696
1697 tmp1 = ncopy;
1698 memcpy (tmp1, tmp, strlen (tmp));
1699 tmp1 += strlen (tmp);
1700 memcpy (tmp1, "::", 2);
1701 tmp1 += 2;
1702 memcpy (tmp1, namestart, p - namestart);
1703 tmp1[p - namestart] = '\0';
1704 cur_sym = lookup_symbol (ncopy,
1705 expression_context_block,
1706 VAR_DOMAIN, (int *) NULL);
1707 if (cur_sym)
1708 {
1709 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1710 {
1711 best_sym = cur_sym;
1712 lexptr = p;
1713 }
1714 else
1715 break;
1716 }
1717 else
1718 break;
1719 }
1720 else
1721 break;
1722 }
1723 else
1724 break;
1725 }
1726
1727 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1728 #else /* not 0 */
1729 yylval.tsym.type = SYMBOL_TYPE (sym);
1730 #endif /* not 0 */
1731 return TYPENAME;
1732 }
1733 yylval.tsym.type
1734 = language_lookup_primitive_type_by_name (parse_language,
1735 parse_gdbarch, tmp);
1736 if (yylval.tsym.type != NULL)
1737 return TYPENAME;
1738
1739 /* See if it's an ObjC classname. */
1740 if (!sym)
1741 {
1742 CORE_ADDR Class = lookup_objc_class (parse_gdbarch, tmp);
1743 if (Class)
1744 {
1745 yylval.class.class = Class;
1746 if ((sym = lookup_struct_typedef (tmp,
1747 expression_context_block,
1748 1)))
1749 yylval.class.type = SYMBOL_TYPE (sym);
1750 return CLASSNAME;
1751 }
1752 }
1753
1754 /* Input names that aren't symbols but ARE valid hex numbers,
1755 when the input radix permits them, can be names or numbers
1756 depending on the parse. Note we support radixes > 16 here. */
1757 if (!sym &&
1758 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1759 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1760 {
1761 YYSTYPE newlval; /* Its value is ignored. */
1762 hextype = parse_number (tokstart, namelen, 0, &newlval);
1763 if (hextype == INT)
1764 {
1765 yylval.ssym.sym = sym;
1766 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1767 return NAME_OR_INT;
1768 }
1769 }
1770
1771 /* Any other kind of symbol. */
1772 yylval.ssym.sym = sym;
1773 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1774 return NAME;
1775 }
1776 }
1777
1778 void
1779 yyerror (char *msg)
1780 {
1781 if (*lexptr == '\0')
1782 error(_("A %s near end of expression."), (msg ? msg : "error"));
1783 else
1784 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"),
1785 lexptr);
1786 }
This page took 0.066684 seconds and 4 git commands to generate.