*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / objc-exp.y
1 /* YACC parser for C expressions, for GDB.
2
3 Copyright (C) 1986, 1989-1991, 1993-1994, 2002, 2006-2012 Free
4 Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse a C expression from text in a string, and return the result
20 as a struct expression pointer. That structure contains arithmetic
21 operations in reverse polish, with constants represented by
22 operations that are followed by special data. See expression.h for
23 the details of the format. What is important here is that it can
24 be built up sequentially during the process of parsing; the lower
25 levels of the tree always come first in the result.
26
27 Note that malloc's and realloc's in this file are transformed to
28 xmalloc and xrealloc respectively by the same sed command in the
29 makefile that remaps any other malloc/realloc inserted by the
30 parser generator. Doing this with #defines and trying to control
31 the interaction with include files (<malloc.h> and <stdlib.h> for
32 example) just became too messy, particularly when such includes can
33 be inserted at random times by the parser generator. */
34
35 %{
36
37 #include "defs.h"
38 #include "gdb_string.h"
39 #include <ctype.h>
40 #include "expression.h"
41
42 #include "objc-lang.h" /* For objc language constructs. */
43
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
51 #include "top.h"
52 #include "completer.h" /* For skip_quoted(). */
53 #include "block.h"
54
55 #define parse_type builtin_type (parse_gdbarch)
56
57 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
58 etc), as well as gratuitiously global symbol names, so we can have
59 multiple yacc generated parsers in gdb. Note that these are only
60 the variables produced by yacc. If other parser generators (bison,
61 byacc, etc) produce additional global names that conflict at link
62 time, then those parser generators need to be fixed instead of
63 adding those names to this list. */
64
65 #define yymaxdepth objc_maxdepth
66 #define yyparse objc_parse
67 #define yylex objc_lex
68 #define yyerror objc_error
69 #define yylval objc_lval
70 #define yychar objc_char
71 #define yydebug objc_debug
72 #define yypact objc_pact
73 #define yyr1 objc_r1
74 #define yyr2 objc_r2
75 #define yydef objc_def
76 #define yychk objc_chk
77 #define yypgo objc_pgo
78 #define yyact objc_act
79 #define yyexca objc_exca
80 #define yyerrflag objc_errflag
81 #define yynerrs objc_nerrs
82 #define yyps objc_ps
83 #define yypv objc_pv
84 #define yys objc_s
85 #define yy_yys objc_yys
86 #define yystate objc_state
87 #define yytmp objc_tmp
88 #define yyv objc_v
89 #define yy_yyv objc_yyv
90 #define yyval objc_val
91 #define yylloc objc_lloc
92 #define yyreds objc_reds /* With YYDEBUG defined */
93 #define yytoks objc_toks /* With YYDEBUG defined */
94 #define yyname objc_name /* With YYDEBUG defined */
95 #define yyrule objc_rule /* With YYDEBUG defined */
96 #define yylhs objc_yylhs
97 #define yylen objc_yylen
98 #define yydefred objc_yydefred
99 #define yydgoto objc_yydgoto
100 #define yysindex objc_yysindex
101 #define yyrindex objc_yyrindex
102 #define yygindex objc_yygindex
103 #define yytable objc_yytable
104 #define yycheck objc_yycheck
105
106 #ifndef YYDEBUG
107 #define YYDEBUG 0 /* Default to no yydebug support. */
108 #endif
109
110 int yyparse (void);
111
112 static int yylex (void);
113
114 void yyerror (char *);
115
116 %}
117
118 /* Although the yacc "value" of an expression is not used,
119 since the result is stored in the structure being created,
120 other node types do have values. */
121
122 %union
123 {
124 LONGEST lval;
125 struct {
126 LONGEST val;
127 struct type *type;
128 } typed_val_int;
129 struct {
130 DOUBLEST dval;
131 struct type *type;
132 } typed_val_float;
133 struct symbol *sym;
134 struct type *tval;
135 struct stoken sval;
136 struct ttype tsym;
137 struct symtoken ssym;
138 int voidval;
139 struct block *bval;
140 enum exp_opcode opcode;
141 struct internalvar *ivar;
142 struct objc_class_str class;
143
144 struct type **tvec;
145 int *ivec;
146 }
147
148 %{
149 /* YYSTYPE gets defined by %union. */
150 static int parse_number (char *, int, int, YYSTYPE *);
151 %}
152
153 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
154 %type <lval> rcurly
155 %type <tval> type typebase
156 %type <tvec> nonempty_typelist
157 /* %type <bval> block */
158
159 /* Fancy type parsing. */
160 %type <voidval> func_mod direct_abs_decl abs_decl
161 %type <tval> ptype
162 %type <lval> array_mod
163
164 %token <typed_val_int> INT
165 %token <typed_val_float> FLOAT
166
167 /* Both NAME and TYPENAME tokens represent symbols in the input, and
168 both convey their data as strings. But a TYPENAME is a string that
169 happens to be defined as a typedef or builtin type name (such as
170 int or char) and a NAME is any other symbol. Contexts where this
171 distinction is not important can use the nonterminal "name", which
172 matches either NAME or TYPENAME. */
173
174 %token <sval> STRING
175 %token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
176 %token <sval> SELECTOR /* ObjC "@selector" pseudo-operator */
177 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
178 %token <tsym> TYPENAME
179 %token <class> CLASSNAME /* ObjC Class name */
180 %type <sval> name
181 %type <ssym> name_not_typename
182 %type <tsym> typename
183
184 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
185 but which would parse as a valid number in the current input radix.
186 E.g. "c" when input_radix==16. Depending on the parse, it will be
187 turned into a name or into a number. */
188
189 %token <ssym> NAME_OR_INT
190
191 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
192 %token TEMPLATE
193 %token ERROR
194
195 /* Special type cases, put in to allow the parser to distinguish
196 different legal basetypes. */
197 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
198
199 %token <voidval> VARIABLE
200
201 %token <opcode> ASSIGN_MODIFY
202
203 %left ','
204 %left ABOVE_COMMA
205 %right '=' ASSIGN_MODIFY
206 %right '?'
207 %left OROR
208 %left ANDAND
209 %left '|'
210 %left '^'
211 %left '&'
212 %left EQUAL NOTEQUAL
213 %left '<' '>' LEQ GEQ
214 %left LSH RSH
215 %left '@'
216 %left '+' '-'
217 %left '*' '/' '%'
218 %right UNARY INCREMENT DECREMENT
219 %right ARROW '.' '[' '('
220 %token <ssym> BLOCKNAME
221 %type <bval> block
222 %left COLONCOLON
223
224 \f
225 %%
226
227 start : exp1
228 | type_exp
229 ;
230
231 type_exp: type
232 { write_exp_elt_opcode(OP_TYPE);
233 write_exp_elt_type($1);
234 write_exp_elt_opcode(OP_TYPE);}
235 ;
236
237 /* Expressions, including the comma operator. */
238 exp1 : exp
239 | exp1 ',' exp
240 { write_exp_elt_opcode (BINOP_COMMA); }
241 ;
242
243 /* Expressions, not including the comma operator. */
244 exp : '*' exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_IND); }
246 ;
247
248 exp : '&' exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_ADDR); }
250 ;
251
252 exp : '-' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_NEG); }
254 ;
255
256 exp : '!' exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
258 ;
259
260 exp : '~' exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
262 ;
263
264 exp : INCREMENT exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
266 ;
267
268 exp : DECREMENT exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
270 ;
271
272 exp : exp INCREMENT %prec UNARY
273 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
274 ;
275
276 exp : exp DECREMENT %prec UNARY
277 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
278 ;
279
280 exp : SIZEOF exp %prec UNARY
281 { write_exp_elt_opcode (UNOP_SIZEOF); }
282 ;
283
284 exp : exp ARROW name
285 { write_exp_elt_opcode (STRUCTOP_PTR);
286 write_exp_string ($3);
287 write_exp_elt_opcode (STRUCTOP_PTR); }
288 ;
289
290 exp : exp ARROW qualified_name
291 { /* exp->type::name becomes exp->*(&type::name) */
292 /* Note: this doesn't work if name is a
293 static member! FIXME */
294 write_exp_elt_opcode (UNOP_ADDR);
295 write_exp_elt_opcode (STRUCTOP_MPTR); }
296 ;
297 exp : exp ARROW '*' exp
298 { write_exp_elt_opcode (STRUCTOP_MPTR); }
299 ;
300
301 exp : exp '.' name
302 { write_exp_elt_opcode (STRUCTOP_STRUCT);
303 write_exp_string ($3);
304 write_exp_elt_opcode (STRUCTOP_STRUCT); }
305 ;
306
307
308 exp : exp '.' qualified_name
309 { /* exp.type::name becomes exp.*(&type::name) */
310 /* Note: this doesn't work if name is a
311 static member! FIXME */
312 write_exp_elt_opcode (UNOP_ADDR);
313 write_exp_elt_opcode (STRUCTOP_MEMBER); }
314 ;
315
316 exp : exp '.' '*' exp
317 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
318 ;
319
320 exp : exp '[' exp1 ']'
321 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
322 ;
323 /*
324 * The rules below parse ObjC message calls of the form:
325 * '[' target selector {':' argument}* ']'
326 */
327
328 exp : '[' TYPENAME
329 {
330 CORE_ADDR class;
331
332 class = lookup_objc_class (parse_gdbarch,
333 copy_name ($2.stoken));
334 if (class == 0)
335 error (_("%s is not an ObjC Class"),
336 copy_name ($2.stoken));
337 write_exp_elt_opcode (OP_LONG);
338 write_exp_elt_type (parse_type->builtin_int);
339 write_exp_elt_longcst ((LONGEST) class);
340 write_exp_elt_opcode (OP_LONG);
341 start_msglist();
342 }
343 msglist ']'
344 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
345 end_msglist();
346 write_exp_elt_opcode (OP_OBJC_MSGCALL);
347 }
348 ;
349
350 exp : '[' CLASSNAME
351 {
352 write_exp_elt_opcode (OP_LONG);
353 write_exp_elt_type (parse_type->builtin_int);
354 write_exp_elt_longcst ((LONGEST) $2.class);
355 write_exp_elt_opcode (OP_LONG);
356 start_msglist();
357 }
358 msglist ']'
359 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
360 end_msglist();
361 write_exp_elt_opcode (OP_OBJC_MSGCALL);
362 }
363 ;
364
365 exp : '[' exp
366 { start_msglist(); }
367 msglist ']'
368 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
369 end_msglist();
370 write_exp_elt_opcode (OP_OBJC_MSGCALL);
371 }
372 ;
373
374 msglist : name
375 { add_msglist(&$1, 0); }
376 | msgarglist
377 ;
378
379 msgarglist : msgarg
380 | msgarglist msgarg
381 ;
382
383 msgarg : name ':' exp
384 { add_msglist(&$1, 1); }
385 | ':' exp /* Unnamed arg. */
386 { add_msglist(0, 1); }
387 | ',' exp /* Variable number of args. */
388 { add_msglist(0, 0); }
389 ;
390
391 exp : exp '('
392 /* This is to save the value of arglist_len
393 being accumulated by an outer function call. */
394 { start_arglist (); }
395 arglist ')' %prec ARROW
396 { write_exp_elt_opcode (OP_FUNCALL);
397 write_exp_elt_longcst ((LONGEST) end_arglist ());
398 write_exp_elt_opcode (OP_FUNCALL); }
399 ;
400
401 lcurly : '{'
402 { start_arglist (); }
403 ;
404
405 arglist :
406 ;
407
408 arglist : exp
409 { arglist_len = 1; }
410 ;
411
412 arglist : arglist ',' exp %prec ABOVE_COMMA
413 { arglist_len++; }
414 ;
415
416 rcurly : '}'
417 { $$ = end_arglist () - 1; }
418 ;
419 exp : lcurly arglist rcurly %prec ARROW
420 { write_exp_elt_opcode (OP_ARRAY);
421 write_exp_elt_longcst ((LONGEST) 0);
422 write_exp_elt_longcst ((LONGEST) $3);
423 write_exp_elt_opcode (OP_ARRAY); }
424 ;
425
426 exp : lcurly type rcurly exp %prec UNARY
427 { write_exp_elt_opcode (UNOP_MEMVAL);
428 write_exp_elt_type ($2);
429 write_exp_elt_opcode (UNOP_MEMVAL); }
430 ;
431
432 exp : '(' type ')' exp %prec UNARY
433 { write_exp_elt_opcode (UNOP_CAST);
434 write_exp_elt_type ($2);
435 write_exp_elt_opcode (UNOP_CAST); }
436 ;
437
438 exp : '(' exp1 ')'
439 { }
440 ;
441
442 /* Binary operators in order of decreasing precedence. */
443
444 exp : exp '@' exp
445 { write_exp_elt_opcode (BINOP_REPEAT); }
446 ;
447
448 exp : exp '*' exp
449 { write_exp_elt_opcode (BINOP_MUL); }
450 ;
451
452 exp : exp '/' exp
453 { write_exp_elt_opcode (BINOP_DIV); }
454 ;
455
456 exp : exp '%' exp
457 { write_exp_elt_opcode (BINOP_REM); }
458 ;
459
460 exp : exp '+' exp
461 { write_exp_elt_opcode (BINOP_ADD); }
462 ;
463
464 exp : exp '-' exp
465 { write_exp_elt_opcode (BINOP_SUB); }
466 ;
467
468 exp : exp LSH exp
469 { write_exp_elt_opcode (BINOP_LSH); }
470 ;
471
472 exp : exp RSH exp
473 { write_exp_elt_opcode (BINOP_RSH); }
474 ;
475
476 exp : exp EQUAL exp
477 { write_exp_elt_opcode (BINOP_EQUAL); }
478 ;
479
480 exp : exp NOTEQUAL exp
481 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
482 ;
483
484 exp : exp LEQ exp
485 { write_exp_elt_opcode (BINOP_LEQ); }
486 ;
487
488 exp : exp GEQ exp
489 { write_exp_elt_opcode (BINOP_GEQ); }
490 ;
491
492 exp : exp '<' exp
493 { write_exp_elt_opcode (BINOP_LESS); }
494 ;
495
496 exp : exp '>' exp
497 { write_exp_elt_opcode (BINOP_GTR); }
498 ;
499
500 exp : exp '&' exp
501 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
502 ;
503
504 exp : exp '^' exp
505 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
506 ;
507
508 exp : exp '|' exp
509 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
510 ;
511
512 exp : exp ANDAND exp
513 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
514 ;
515
516 exp : exp OROR exp
517 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
518 ;
519
520 exp : exp '?' exp ':' exp %prec '?'
521 { write_exp_elt_opcode (TERNOP_COND); }
522 ;
523
524 exp : exp '=' exp
525 { write_exp_elt_opcode (BINOP_ASSIGN); }
526 ;
527
528 exp : exp ASSIGN_MODIFY exp
529 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
530 write_exp_elt_opcode ($2);
531 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
532 ;
533
534 exp : INT
535 { write_exp_elt_opcode (OP_LONG);
536 write_exp_elt_type ($1.type);
537 write_exp_elt_longcst ((LONGEST)($1.val));
538 write_exp_elt_opcode (OP_LONG); }
539 ;
540
541 exp : NAME_OR_INT
542 { YYSTYPE val;
543 parse_number ($1.stoken.ptr,
544 $1.stoken.length, 0, &val);
545 write_exp_elt_opcode (OP_LONG);
546 write_exp_elt_type (val.typed_val_int.type);
547 write_exp_elt_longcst ((LONGEST)
548 val.typed_val_int.val);
549 write_exp_elt_opcode (OP_LONG);
550 }
551 ;
552
553
554 exp : FLOAT
555 { write_exp_elt_opcode (OP_DOUBLE);
556 write_exp_elt_type ($1.type);
557 write_exp_elt_dblcst ($1.dval);
558 write_exp_elt_opcode (OP_DOUBLE); }
559 ;
560
561 exp : variable
562 ;
563
564 exp : VARIABLE
565 /* Already written by write_dollar_variable. */
566 ;
567
568 exp : SELECTOR
569 {
570 write_exp_elt_opcode (OP_OBJC_SELECTOR);
571 write_exp_string ($1);
572 write_exp_elt_opcode (OP_OBJC_SELECTOR); }
573 ;
574
575 exp : SIZEOF '(' type ')' %prec UNARY
576 { write_exp_elt_opcode (OP_LONG);
577 write_exp_elt_type (parse_type->builtin_int);
578 CHECK_TYPEDEF ($3);
579 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
580 write_exp_elt_opcode (OP_LONG); }
581 ;
582
583 exp : STRING
584 { /* C strings are converted into array
585 constants with an explicit null byte
586 added at the end. Thus the array upper
587 bound is the string length. There is no
588 such thing in C as a completely empty
589 string. */
590 char *sp = $1.ptr; int count = $1.length;
591 while (count-- > 0)
592 {
593 write_exp_elt_opcode (OP_LONG);
594 write_exp_elt_type (parse_type->builtin_char);
595 write_exp_elt_longcst ((LONGEST)(*sp++));
596 write_exp_elt_opcode (OP_LONG);
597 }
598 write_exp_elt_opcode (OP_LONG);
599 write_exp_elt_type (parse_type->builtin_char);
600 write_exp_elt_longcst ((LONGEST)'\0');
601 write_exp_elt_opcode (OP_LONG);
602 write_exp_elt_opcode (OP_ARRAY);
603 write_exp_elt_longcst ((LONGEST) 0);
604 write_exp_elt_longcst ((LONGEST) ($1.length));
605 write_exp_elt_opcode (OP_ARRAY); }
606 ;
607
608 exp : NSSTRING /* ObjC NextStep NSString constant
609 * of the form '@' '"' string '"'.
610 */
611 { write_exp_elt_opcode (OP_OBJC_NSSTRING);
612 write_exp_string ($1);
613 write_exp_elt_opcode (OP_OBJC_NSSTRING); }
614 ;
615
616 block : BLOCKNAME
617 {
618 if ($1.sym != 0)
619 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
620 else
621 {
622 struct symtab *tem =
623 lookup_symtab (copy_name ($1.stoken));
624 if (tem)
625 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem),
626 STATIC_BLOCK);
627 else
628 error (_("No file or function \"%s\"."),
629 copy_name ($1.stoken));
630 }
631 }
632 ;
633
634 block : block COLONCOLON name
635 { struct symbol *tem
636 = lookup_symbol (copy_name ($3), $1,
637 VAR_DOMAIN, (int *) NULL);
638 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
639 error (_("No function \"%s\" in specified context."),
640 copy_name ($3));
641 $$ = SYMBOL_BLOCK_VALUE (tem); }
642 ;
643
644 variable: block COLONCOLON name
645 { struct symbol *sym;
646 sym = lookup_symbol (copy_name ($3), $1,
647 VAR_DOMAIN, (int *) NULL);
648 if (sym == 0)
649 error (_("No symbol \"%s\" in specified context."),
650 copy_name ($3));
651 if (symbol_read_needs_frame (sym))
652 {
653 if (innermost_block == 0
654 || contained_in (block_found,
655 innermost_block))
656 innermost_block = block_found;
657 }
658
659 write_exp_elt_opcode (OP_VAR_VALUE);
660 /* block_found is set by lookup_symbol. */
661 write_exp_elt_block (block_found);
662 write_exp_elt_sym (sym);
663 write_exp_elt_opcode (OP_VAR_VALUE); }
664 ;
665
666 qualified_name: typebase COLONCOLON name
667 {
668 struct type *type = $1;
669 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
670 && TYPE_CODE (type) != TYPE_CODE_UNION)
671 error (_("`%s' is not defined as an aggregate type."),
672 TYPE_NAME (type));
673
674 write_exp_elt_opcode (OP_SCOPE);
675 write_exp_elt_type (type);
676 write_exp_string ($3);
677 write_exp_elt_opcode (OP_SCOPE);
678 }
679 | typebase COLONCOLON '~' name
680 {
681 struct type *type = $1;
682 struct stoken tmp_token;
683 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
684 && TYPE_CODE (type) != TYPE_CODE_UNION)
685 error (_("`%s' is not defined as an aggregate type."),
686 TYPE_NAME (type));
687
688 if (strcmp (type_name_no_tag (type), $4.ptr) != 0)
689 error (_("invalid destructor `%s::~%s'"),
690 type_name_no_tag (type), $4.ptr);
691
692 tmp_token.ptr = (char*) alloca ($4.length + 2);
693 tmp_token.length = $4.length + 1;
694 tmp_token.ptr[0] = '~';
695 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
696 tmp_token.ptr[tmp_token.length] = 0;
697 write_exp_elt_opcode (OP_SCOPE);
698 write_exp_elt_type (type);
699 write_exp_string (tmp_token);
700 write_exp_elt_opcode (OP_SCOPE);
701 }
702 ;
703
704 variable: qualified_name
705 | COLONCOLON name
706 {
707 char *name = copy_name ($2);
708 struct symbol *sym;
709 struct minimal_symbol *msymbol;
710
711 sym =
712 lookup_symbol (name, (const struct block *) NULL,
713 VAR_DOMAIN, (int *) NULL);
714 if (sym)
715 {
716 write_exp_elt_opcode (OP_VAR_VALUE);
717 write_exp_elt_block (NULL);
718 write_exp_elt_sym (sym);
719 write_exp_elt_opcode (OP_VAR_VALUE);
720 break;
721 }
722
723 msymbol = lookup_minimal_symbol (name, NULL, NULL);
724 if (msymbol != NULL)
725 write_exp_msymbol (msymbol);
726 else if (!have_full_symbols ()
727 && !have_partial_symbols ())
728 error (_("No symbol table is loaded. "
729 "Use the \"file\" command."));
730 else
731 error (_("No symbol \"%s\" in current context."),
732 name);
733 }
734 ;
735
736 variable: name_not_typename
737 { struct symbol *sym = $1.sym;
738
739 if (sym)
740 {
741 if (symbol_read_needs_frame (sym))
742 {
743 if (innermost_block == 0 ||
744 contained_in (block_found,
745 innermost_block))
746 innermost_block = block_found;
747 }
748
749 write_exp_elt_opcode (OP_VAR_VALUE);
750 /* We want to use the selected frame, not
751 another more inner frame which happens to
752 be in the same block. */
753 write_exp_elt_block (NULL);
754 write_exp_elt_sym (sym);
755 write_exp_elt_opcode (OP_VAR_VALUE);
756 }
757 else if ($1.is_a_field_of_this)
758 {
759 /* C++/ObjC: it hangs off of `this'/'self'.
760 Must not inadvertently convert from a
761 method call to data ref. */
762 if (innermost_block == 0 ||
763 contained_in (block_found, innermost_block))
764 innermost_block = block_found;
765 write_exp_elt_opcode (OP_THIS);
766 write_exp_elt_opcode (OP_THIS);
767 write_exp_elt_opcode (STRUCTOP_PTR);
768 write_exp_string ($1.stoken);
769 write_exp_elt_opcode (STRUCTOP_PTR);
770 }
771 else
772 {
773 struct minimal_symbol *msymbol;
774 char *arg = copy_name ($1.stoken);
775
776 msymbol =
777 lookup_minimal_symbol (arg, NULL, NULL);
778 if (msymbol != NULL)
779 write_exp_msymbol (msymbol);
780 else if (!have_full_symbols () &&
781 !have_partial_symbols ())
782 error (_("No symbol table is loaded. "
783 "Use the \"file\" command."));
784 else
785 error (_("No symbol \"%s\" in current context."),
786 copy_name ($1.stoken));
787 }
788 }
789 ;
790
791
792 ptype : typebase
793 /* "const" and "volatile" are curently ignored. A type
794 qualifier before the type is currently handled in the
795 typebase rule. The reason for recognizing these here
796 (shift/reduce conflicts) might be obsolete now that some
797 pointer to member rules have been deleted. */
798 | typebase CONST_KEYWORD
799 | typebase VOLATILE_KEYWORD
800 | typebase abs_decl
801 { $$ = follow_types ($1); }
802 | typebase CONST_KEYWORD abs_decl
803 { $$ = follow_types ($1); }
804 | typebase VOLATILE_KEYWORD abs_decl
805 { $$ = follow_types ($1); }
806 ;
807
808 abs_decl: '*'
809 { push_type (tp_pointer); $$ = 0; }
810 | '*' abs_decl
811 { push_type (tp_pointer); $$ = $2; }
812 | '&'
813 { push_type (tp_reference); $$ = 0; }
814 | '&' abs_decl
815 { push_type (tp_reference); $$ = $2; }
816 | direct_abs_decl
817 ;
818
819 direct_abs_decl: '(' abs_decl ')'
820 { $$ = $2; }
821 | direct_abs_decl array_mod
822 {
823 push_type_int ($2);
824 push_type (tp_array);
825 }
826 | array_mod
827 {
828 push_type_int ($1);
829 push_type (tp_array);
830 $$ = 0;
831 }
832
833 | direct_abs_decl func_mod
834 { push_type (tp_function); }
835 | func_mod
836 { push_type (tp_function); }
837 ;
838
839 array_mod: '[' ']'
840 { $$ = -1; }
841 | '[' INT ']'
842 { $$ = $2.val; }
843 ;
844
845 func_mod: '(' ')'
846 { $$ = 0; }
847 | '(' nonempty_typelist ')'
848 { free ($2); $$ = 0; }
849 ;
850
851 /* We used to try to recognize more pointer to member types here, but
852 that didn't work (shift/reduce conflicts meant that these rules
853 never got executed). The problem is that
854 int (foo::bar::baz::bizzle)
855 is a function type but
856 int (foo::bar::baz::bizzle::*)
857 is a pointer to member type. Stroustrup loses again! */
858
859 type : ptype
860 ;
861
862 typebase /* Implements (approximately): (type-qualifier)* type-specifier. */
863 : TYPENAME
864 { $$ = $1.type; }
865 | CLASSNAME
866 {
867 if ($1.type == NULL)
868 error (_("No symbol \"%s\" in current context."),
869 copy_name($1.stoken));
870 else
871 $$ = $1.type;
872 }
873 | INT_KEYWORD
874 { $$ = parse_type->builtin_int; }
875 | LONG
876 { $$ = parse_type->builtin_long; }
877 | SHORT
878 { $$ = parse_type->builtin_short; }
879 | LONG INT_KEYWORD
880 { $$ = parse_type->builtin_long; }
881 | UNSIGNED LONG INT_KEYWORD
882 { $$ = parse_type->builtin_unsigned_long; }
883 | LONG LONG
884 { $$ = parse_type->builtin_long_long; }
885 | LONG LONG INT_KEYWORD
886 { $$ = parse_type->builtin_long_long; }
887 | UNSIGNED LONG LONG
888 { $$ = parse_type->builtin_unsigned_long_long; }
889 | UNSIGNED LONG LONG INT_KEYWORD
890 { $$ = parse_type->builtin_unsigned_long_long; }
891 | SHORT INT_KEYWORD
892 { $$ = parse_type->builtin_short; }
893 | UNSIGNED SHORT INT_KEYWORD
894 { $$ = parse_type->builtin_unsigned_short; }
895 | DOUBLE_KEYWORD
896 { $$ = parse_type->builtin_double; }
897 | LONG DOUBLE_KEYWORD
898 { $$ = parse_type->builtin_long_double; }
899 | STRUCT name
900 { $$ = lookup_struct (copy_name ($2),
901 expression_context_block); }
902 | CLASS name
903 { $$ = lookup_struct (copy_name ($2),
904 expression_context_block); }
905 | UNION name
906 { $$ = lookup_union (copy_name ($2),
907 expression_context_block); }
908 | ENUM name
909 { $$ = lookup_enum (copy_name ($2),
910 expression_context_block); }
911 | UNSIGNED typename
912 { $$ = lookup_unsigned_typename (parse_language,
913 parse_gdbarch,
914 TYPE_NAME($2.type)); }
915 | UNSIGNED
916 { $$ = parse_type->builtin_unsigned_int; }
917 | SIGNED_KEYWORD typename
918 { $$ = lookup_signed_typename (parse_language,
919 parse_gdbarch,
920 TYPE_NAME($2.type)); }
921 | SIGNED_KEYWORD
922 { $$ = parse_type->builtin_int; }
923 | TEMPLATE name '<' type '>'
924 { $$ = lookup_template_type(copy_name($2), $4,
925 expression_context_block);
926 }
927 /* "const" and "volatile" are curently ignored. A type
928 qualifier after the type is handled in the ptype rule. I
929 think these could be too. */
930 | CONST_KEYWORD typebase { $$ = $2; }
931 | VOLATILE_KEYWORD typebase { $$ = $2; }
932 ;
933
934 typename: TYPENAME
935 | INT_KEYWORD
936 {
937 $$.stoken.ptr = "int";
938 $$.stoken.length = 3;
939 $$.type = parse_type->builtin_int;
940 }
941 | LONG
942 {
943 $$.stoken.ptr = "long";
944 $$.stoken.length = 4;
945 $$.type = parse_type->builtin_long;
946 }
947 | SHORT
948 {
949 $$.stoken.ptr = "short";
950 $$.stoken.length = 5;
951 $$.type = parse_type->builtin_short;
952 }
953 ;
954
955 nonempty_typelist
956 : type
957 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
958 $<ivec>$[0] = 1; /* Number of types in vector. */
959 $$[1] = $1;
960 }
961 | nonempty_typelist ',' type
962 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
963 $$ = (struct type **) realloc ((char *) $1, len);
964 $$[$<ivec>$[0]] = $3;
965 }
966 ;
967
968 name : NAME { $$ = $1.stoken; }
969 | BLOCKNAME { $$ = $1.stoken; }
970 | TYPENAME { $$ = $1.stoken; }
971 | CLASSNAME { $$ = $1.stoken; }
972 | NAME_OR_INT { $$ = $1.stoken; }
973 ;
974
975 name_not_typename : NAME
976 | BLOCKNAME
977 /* These would be useful if name_not_typename was useful, but it is
978 just a fake for "variable", so these cause reduce/reduce conflicts
979 because the parser can't tell whether NAME_OR_INT is a
980 name_not_typename (=variable, =exp) or just an exp. If
981 name_not_typename was ever used in an lvalue context where only a
982 name could occur, this might be useful. */
983 /* | NAME_OR_INT */
984 ;
985
986 %%
987
988 /* Take care of parsing a number (anything that starts with a digit).
989 Set yylval and return the token type; update lexptr. LEN is the
990 number of characters in it. */
991
992 /*** Needs some error checking for the float case. ***/
993
994 static int
995 parse_number (p, len, parsed_float, putithere)
996 char *p;
997 int len;
998 int parsed_float;
999 YYSTYPE *putithere;
1000 {
1001 /* FIXME: Shouldn't these be unsigned? We don't deal with negative
1002 values here, and we do kind of silly things like cast to
1003 unsigned. */
1004 LONGEST n = 0;
1005 LONGEST prevn = 0;
1006 unsigned LONGEST un;
1007
1008 int i = 0;
1009 int c;
1010 int base = input_radix;
1011 int unsigned_p = 0;
1012
1013 /* Number of "L" suffixes encountered. */
1014 int long_p = 0;
1015
1016 /* We have found a "L" or "U" suffix. */
1017 int found_suffix = 0;
1018
1019 unsigned LONGEST high_bit;
1020 struct type *signed_type;
1021 struct type *unsigned_type;
1022
1023 if (parsed_float)
1024 {
1025 if (! parse_c_float (parse_gdbarch, p, len,
1026 &putithere->typed_val_float.dval,
1027 &putithere->typed_val_float.type))
1028 return ERROR;
1029 return FLOAT;
1030 }
1031
1032 /* Handle base-switching prefixes 0x, 0t, 0d, and 0. */
1033 if (p[0] == '0')
1034 switch (p[1])
1035 {
1036 case 'x':
1037 case 'X':
1038 if (len >= 3)
1039 {
1040 p += 2;
1041 base = 16;
1042 len -= 2;
1043 }
1044 break;
1045
1046 case 't':
1047 case 'T':
1048 case 'd':
1049 case 'D':
1050 if (len >= 3)
1051 {
1052 p += 2;
1053 base = 10;
1054 len -= 2;
1055 }
1056 break;
1057
1058 default:
1059 base = 8;
1060 break;
1061 }
1062
1063 while (len-- > 0)
1064 {
1065 c = *p++;
1066 if (c >= 'A' && c <= 'Z')
1067 c += 'a' - 'A';
1068 if (c != 'l' && c != 'u')
1069 n *= base;
1070 if (c >= '0' && c <= '9')
1071 {
1072 if (found_suffix)
1073 return ERROR;
1074 n += i = c - '0';
1075 }
1076 else
1077 {
1078 if (base > 10 && c >= 'a' && c <= 'f')
1079 {
1080 if (found_suffix)
1081 return ERROR;
1082 n += i = c - 'a' + 10;
1083 }
1084 else if (c == 'l')
1085 {
1086 ++long_p;
1087 found_suffix = 1;
1088 }
1089 else if (c == 'u')
1090 {
1091 unsigned_p = 1;
1092 found_suffix = 1;
1093 }
1094 else
1095 return ERROR; /* Char not a digit. */
1096 }
1097 if (i >= base)
1098 return ERROR; /* Invalid digit in this base. */
1099
1100 /* Portably test for overflow (only works for nonzero values, so
1101 make a second check for zero). FIXME: Can't we just make n
1102 and prevn unsigned and avoid this? */
1103 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1104 unsigned_p = 1; /* Try something unsigned. */
1105
1106 /* Portably test for unsigned overflow.
1107 FIXME: This check is wrong; for example it doesn't find
1108 overflow on 0x123456789 when LONGEST is 32 bits. */
1109 if (c != 'l' && c != 'u' && n != 0)
1110 {
1111 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1112 error (_("Numeric constant too large."));
1113 }
1114 prevn = n;
1115 }
1116
1117 /* An integer constant is an int, a long, or a long long. An L
1118 suffix forces it to be long; an LL suffix forces it to be long
1119 long. If not forced to a larger size, it gets the first type of
1120 the above that it fits in. To figure out whether it fits, we
1121 shift it right and see whether anything remains. Note that we
1122 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1123 operation, because many compilers will warn about such a shift
1124 (which always produces a zero result). Sometimes gdbarch_int_bit
1125 or gdbarch_long_int will be that big, sometimes not. To deal with
1126 the case where it is we just always shift the value more than
1127 once, with fewer bits each time. */
1128
1129 un = (unsigned LONGEST)n >> 2;
1130 if (long_p == 0
1131 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1132 {
1133 high_bit
1134 = ((unsigned LONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1135
1136 /* A large decimal (not hex or octal) constant (between INT_MAX
1137 and UINT_MAX) is a long or unsigned long, according to ANSI,
1138 never an unsigned int, but this code treats it as unsigned
1139 int. This probably should be fixed. GCC gives a warning on
1140 such constants. */
1141
1142 unsigned_type = parse_type->builtin_unsigned_int;
1143 signed_type = parse_type->builtin_int;
1144 }
1145 else if (long_p <= 1
1146 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1147 {
1148 high_bit
1149 = ((unsigned LONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1150 unsigned_type = parse_type->builtin_unsigned_long;
1151 signed_type = parse_type->builtin_long;
1152 }
1153 else
1154 {
1155 high_bit = (((unsigned LONGEST)1)
1156 << (gdbarch_long_long_bit (parse_gdbarch) - 32 - 1)
1157 << 16
1158 << 16);
1159 if (high_bit == 0)
1160 /* A long long does not fit in a LONGEST. */
1161 high_bit =
1162 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1163 unsigned_type = parse_type->builtin_unsigned_long_long;
1164 signed_type = parse_type->builtin_long_long;
1165 }
1166
1167 putithere->typed_val_int.val = n;
1168
1169 /* If the high bit of the worked out type is set then this number
1170 has to be unsigned. */
1171
1172 if (unsigned_p || (n & high_bit))
1173 {
1174 putithere->typed_val_int.type = unsigned_type;
1175 }
1176 else
1177 {
1178 putithere->typed_val_int.type = signed_type;
1179 }
1180
1181 return INT;
1182 }
1183
1184 struct token
1185 {
1186 char *operator;
1187 int token;
1188 enum exp_opcode opcode;
1189 };
1190
1191 static const struct token tokentab3[] =
1192 {
1193 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1194 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1195 };
1196
1197 static const struct token tokentab2[] =
1198 {
1199 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1200 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1201 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1202 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1203 {"%=", ASSIGN_MODIFY, BINOP_REM},
1204 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1205 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1206 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1207 {"++", INCREMENT, BINOP_END},
1208 {"--", DECREMENT, BINOP_END},
1209 {"->", ARROW, BINOP_END},
1210 {"&&", ANDAND, BINOP_END},
1211 {"||", OROR, BINOP_END},
1212 {"::", COLONCOLON, BINOP_END},
1213 {"<<", LSH, BINOP_END},
1214 {">>", RSH, BINOP_END},
1215 {"==", EQUAL, BINOP_END},
1216 {"!=", NOTEQUAL, BINOP_END},
1217 {"<=", LEQ, BINOP_END},
1218 {">=", GEQ, BINOP_END}
1219 };
1220
1221 /* Read one token, getting characters through lexptr. */
1222
1223 static int
1224 yylex (void)
1225 {
1226 int c, tokchr;
1227 int namelen;
1228 unsigned int i;
1229 char *tokstart;
1230 char *tokptr;
1231 int tempbufindex;
1232 static char *tempbuf;
1233 static int tempbufsize;
1234
1235 retry:
1236
1237 tokstart = lexptr;
1238 /* See if it is a special token of length 3. */
1239 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1240 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1241 {
1242 lexptr += 3;
1243 yylval.opcode = tokentab3[i].opcode;
1244 return tokentab3[i].token;
1245 }
1246
1247 /* See if it is a special token of length 2. */
1248 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1249 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1250 {
1251 lexptr += 2;
1252 yylval.opcode = tokentab2[i].opcode;
1253 return tokentab2[i].token;
1254 }
1255
1256 c = 0;
1257 switch (tokchr = *tokstart)
1258 {
1259 case 0:
1260 return 0;
1261
1262 case ' ':
1263 case '\t':
1264 case '\n':
1265 lexptr++;
1266 goto retry;
1267
1268 case '\'':
1269 /* We either have a character constant ('0' or '\177' for
1270 example) or we have a quoted symbol reference ('foo(int,int)'
1271 in C++ for example). */
1272 lexptr++;
1273 c = *lexptr++;
1274 if (c == '\\')
1275 c = parse_escape (parse_gdbarch, &lexptr);
1276 else if (c == '\'')
1277 error (_("Empty character constant."));
1278
1279 yylval.typed_val_int.val = c;
1280 yylval.typed_val_int.type = parse_type->builtin_char;
1281
1282 c = *lexptr++;
1283 if (c != '\'')
1284 {
1285 namelen = skip_quoted (tokstart) - tokstart;
1286 if (namelen > 2)
1287 {
1288 lexptr = tokstart + namelen;
1289 if (lexptr[-1] != '\'')
1290 error (_("Unmatched single quote."));
1291 namelen -= 2;
1292 tokstart++;
1293 goto tryname;
1294 }
1295 error (_("Invalid character constant."));
1296 }
1297 return INT;
1298
1299 case '(':
1300 paren_depth++;
1301 lexptr++;
1302 return '(';
1303
1304 case ')':
1305 if (paren_depth == 0)
1306 return 0;
1307 paren_depth--;
1308 lexptr++;
1309 return ')';
1310
1311 case ',':
1312 if (comma_terminates && paren_depth == 0)
1313 return 0;
1314 lexptr++;
1315 return ',';
1316
1317 case '.':
1318 /* Might be a floating point number. */
1319 if (lexptr[1] < '0' || lexptr[1] > '9')
1320 goto symbol; /* Nope, must be a symbol. */
1321 /* FALL THRU into number case. */
1322
1323 case '0':
1324 case '1':
1325 case '2':
1326 case '3':
1327 case '4':
1328 case '5':
1329 case '6':
1330 case '7':
1331 case '8':
1332 case '9':
1333 {
1334 /* It's a number. */
1335 int got_dot = 0, got_e = 0, toktype = FLOAT;
1336 /* Initialize toktype to anything other than ERROR. */
1337 char *p = tokstart;
1338 int hex = input_radix > 10;
1339 int local_radix = input_radix;
1340 if (tokchr == '0' && (p[1] == 'x' || p[1] == 'X'))
1341 {
1342 p += 2;
1343 hex = 1;
1344 local_radix = 16;
1345 }
1346 else if (tokchr == '0' && (p[1]=='t' || p[1]=='T'
1347 || p[1]=='d' || p[1]=='D'))
1348 {
1349 p += 2;
1350 hex = 0;
1351 local_radix = 10;
1352 }
1353
1354 for (;; ++p)
1355 {
1356 /* This test includes !hex because 'e' is a valid hex digit
1357 and thus does not indicate a floating point number when
1358 the radix is hex. */
1359
1360 if (!hex && (*p == 'e' || *p == 'E'))
1361 if (got_e)
1362 toktype = ERROR; /* Only one 'e' in a float. */
1363 else
1364 got_e = 1;
1365 /* This test does not include !hex, because a '.' always
1366 indicates a decimal floating point number regardless of
1367 the radix. */
1368 else if (*p == '.')
1369 if (got_dot)
1370 toktype = ERROR; /* Only one '.' in a float. */
1371 else
1372 got_dot = 1;
1373 else if (got_e && (p[-1] == 'e' || p[-1] == 'E') &&
1374 (*p == '-' || *p == '+'))
1375 /* This is the sign of the exponent, not the end of the
1376 number. */
1377 continue;
1378 /* Always take decimal digits; parse_number handles radix
1379 error. */
1380 else if (*p >= '0' && *p <= '9')
1381 continue;
1382 /* We will take letters only if hex is true, and only up
1383 to what the input radix would permit. FSF was content
1384 to rely on parse_number to validate; but it leaks. */
1385 else if (*p >= 'a' && *p <= 'z')
1386 {
1387 if (!hex || *p >= ('a' + local_radix - 10))
1388 toktype = ERROR;
1389 }
1390 else if (*p >= 'A' && *p <= 'Z')
1391 {
1392 if (!hex || *p >= ('A' + local_radix - 10))
1393 toktype = ERROR;
1394 }
1395 else break;
1396 }
1397 if (toktype != ERROR)
1398 toktype = parse_number (tokstart, p - tokstart,
1399 got_dot | got_e, &yylval);
1400 if (toktype == ERROR)
1401 {
1402 char *err_copy = (char *) alloca (p - tokstart + 1);
1403
1404 memcpy (err_copy, tokstart, p - tokstart);
1405 err_copy[p - tokstart] = 0;
1406 error (_("Invalid number \"%s\"."), err_copy);
1407 }
1408 lexptr = p;
1409 return toktype;
1410 }
1411
1412 case '+':
1413 case '-':
1414 case '*':
1415 case '/':
1416 case '%':
1417 case '|':
1418 case '&':
1419 case '^':
1420 case '~':
1421 case '!':
1422 #if 0
1423 case '@': /* Moved out below. */
1424 #endif
1425 case '<':
1426 case '>':
1427 case '[':
1428 case ']':
1429 case '?':
1430 case ':':
1431 case '=':
1432 case '{':
1433 case '}':
1434 symbol:
1435 lexptr++;
1436 return tokchr;
1437
1438 case '@':
1439 if (strncmp(tokstart, "@selector", 9) == 0)
1440 {
1441 tokptr = strchr(tokstart, '(');
1442 if (tokptr == NULL)
1443 {
1444 error (_("Missing '(' in @selector(...)"));
1445 }
1446 tempbufindex = 0;
1447 tokptr++; /* Skip the '('. */
1448 do {
1449 /* Grow the static temp buffer if necessary, including
1450 allocating the first one on demand. */
1451 if (tempbufindex + 1 >= tempbufsize)
1452 {
1453 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1454 }
1455 tempbuf[tempbufindex++] = *tokptr++;
1456 } while ((*tokptr != ')') && (*tokptr != '\0'));
1457 if (*tokptr++ != ')')
1458 {
1459 error (_("Missing ')' in @selector(...)"));
1460 }
1461 tempbuf[tempbufindex] = '\0';
1462 yylval.sval.ptr = tempbuf;
1463 yylval.sval.length = tempbufindex;
1464 lexptr = tokptr;
1465 return SELECTOR;
1466 }
1467 if (tokstart[1] != '"')
1468 {
1469 lexptr++;
1470 return tokchr;
1471 }
1472 /* ObjC NextStep NSString constant: fall thru and parse like
1473 STRING. */
1474 tokstart++;
1475
1476 case '"':
1477
1478 /* Build the gdb internal form of the input string in tempbuf,
1479 translating any standard C escape forms seen. Note that the
1480 buffer is null byte terminated *only* for the convenience of
1481 debugging gdb itself and printing the buffer contents when
1482 the buffer contains no embedded nulls. Gdb does not depend
1483 upon the buffer being null byte terminated, it uses the
1484 length string instead. This allows gdb to handle C strings
1485 (as well as strings in other languages) with embedded null
1486 bytes. */
1487
1488 tokptr = ++tokstart;
1489 tempbufindex = 0;
1490
1491 do {
1492 /* Grow the static temp buffer if necessary, including
1493 allocating the first one on demand. */
1494 if (tempbufindex + 1 >= tempbufsize)
1495 {
1496 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1497 }
1498 switch (*tokptr)
1499 {
1500 case '\0':
1501 case '"':
1502 /* Do nothing, loop will terminate. */
1503 break;
1504 case '\\':
1505 tokptr++;
1506 c = parse_escape (parse_gdbarch, &tokptr);
1507 if (c == -1)
1508 {
1509 continue;
1510 }
1511 tempbuf[tempbufindex++] = c;
1512 break;
1513 default:
1514 tempbuf[tempbufindex++] = *tokptr++;
1515 break;
1516 }
1517 } while ((*tokptr != '"') && (*tokptr != '\0'));
1518 if (*tokptr++ != '"')
1519 {
1520 error (_("Unterminated string in expression."));
1521 }
1522 tempbuf[tempbufindex] = '\0'; /* See note above. */
1523 yylval.sval.ptr = tempbuf;
1524 yylval.sval.length = tempbufindex;
1525 lexptr = tokptr;
1526 return (tokchr == '@' ? NSSTRING : STRING);
1527 }
1528
1529 if (!(tokchr == '_' || tokchr == '$' ||
1530 (tokchr >= 'a' && tokchr <= 'z') || (tokchr >= 'A' && tokchr <= 'Z')))
1531 /* We must have come across a bad character (e.g. ';'). */
1532 error (_("Invalid character '%c' in expression."), c);
1533
1534 /* It's a name. See how long it is. */
1535 namelen = 0;
1536 for (c = tokstart[namelen];
1537 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1538 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1539 {
1540 if (c == '<')
1541 {
1542 int i = namelen;
1543 while (tokstart[++i] && tokstart[i] != '>');
1544 if (tokstart[i] == '>')
1545 namelen = i;
1546 }
1547 c = tokstart[++namelen];
1548 }
1549
1550 /* The token "if" terminates the expression and is NOT
1551 removed from the input stream. */
1552 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1553 {
1554 return 0;
1555 }
1556
1557 lexptr += namelen;
1558
1559 tryname:
1560
1561 /* Catch specific keywords. Should be done with a data structure. */
1562 switch (namelen)
1563 {
1564 case 8:
1565 if (strncmp (tokstart, "unsigned", 8) == 0)
1566 return UNSIGNED;
1567 if (parse_language->la_language == language_cplus
1568 && strncmp (tokstart, "template", 8) == 0)
1569 return TEMPLATE;
1570 if (strncmp (tokstart, "volatile", 8) == 0)
1571 return VOLATILE_KEYWORD;
1572 break;
1573 case 6:
1574 if (strncmp (tokstart, "struct", 6) == 0)
1575 return STRUCT;
1576 if (strncmp (tokstart, "signed", 6) == 0)
1577 return SIGNED_KEYWORD;
1578 if (strncmp (tokstart, "sizeof", 6) == 0)
1579 return SIZEOF;
1580 if (strncmp (tokstart, "double", 6) == 0)
1581 return DOUBLE_KEYWORD;
1582 break;
1583 case 5:
1584 if ((parse_language->la_language == language_cplus)
1585 && strncmp (tokstart, "class", 5) == 0)
1586 return CLASS;
1587 if (strncmp (tokstart, "union", 5) == 0)
1588 return UNION;
1589 if (strncmp (tokstart, "short", 5) == 0)
1590 return SHORT;
1591 if (strncmp (tokstart, "const", 5) == 0)
1592 return CONST_KEYWORD;
1593 break;
1594 case 4:
1595 if (strncmp (tokstart, "enum", 4) == 0)
1596 return ENUM;
1597 if (strncmp (tokstart, "long", 4) == 0)
1598 return LONG;
1599 break;
1600 case 3:
1601 if (strncmp (tokstart, "int", 3) == 0)
1602 return INT_KEYWORD;
1603 break;
1604 default:
1605 break;
1606 }
1607
1608 yylval.sval.ptr = tokstart;
1609 yylval.sval.length = namelen;
1610
1611 if (*tokstart == '$')
1612 {
1613 write_dollar_variable (yylval.sval);
1614 return VARIABLE;
1615 }
1616
1617 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1618 functions or symtabs. If this is not so, then ...
1619 Use token-type TYPENAME for symbols that happen to be defined
1620 currently as names of types; NAME for other symbols.
1621 The caller is not constrained to care about the distinction. */
1622 {
1623 char *tmp = copy_name (yylval.sval);
1624 struct symbol *sym;
1625 int is_a_field_of_this = 0, *need_this;
1626 int hextype;
1627
1628 if (parse_language->la_language == language_cplus ||
1629 parse_language->la_language == language_objc)
1630 need_this = &is_a_field_of_this;
1631 else
1632 need_this = (int *) NULL;
1633
1634 sym = lookup_symbol (tmp, expression_context_block,
1635 VAR_DOMAIN,
1636 need_this);
1637 /* Call lookup_symtab, not lookup_partial_symtab, in case there
1638 are no psymtabs (coff, xcoff, or some future change to blow
1639 away the psymtabs once symbols are read). */
1640 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1641 lookup_symtab (tmp))
1642 {
1643 yylval.ssym.sym = sym;
1644 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1645 return BLOCKNAME;
1646 }
1647 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1648 {
1649 #if 1
1650 /* Despite the following flaw, we need to keep this code
1651 enabled. Because we can get called from
1652 check_stub_method, if we don't handle nested types then
1653 it screws many operations in any program which uses
1654 nested types. */
1655 /* In "A::x", if x is a member function of A and there
1656 happens to be a type (nested or not, since the stabs
1657 don't make that distinction) named x, then this code
1658 incorrectly thinks we are dealing with nested types
1659 rather than a member function. */
1660
1661 char *p;
1662 char *namestart;
1663 struct symbol *best_sym;
1664
1665 /* Look ahead to detect nested types. This probably should
1666 be done in the grammar, but trying seemed to introduce a
1667 lot of shift/reduce and reduce/reduce conflicts. It's
1668 possible that it could be done, though. Or perhaps a
1669 non-grammar, but less ad hoc, approach would work well. */
1670
1671 /* Since we do not currently have any way of distinguishing
1672 a nested type from a non-nested one (the stabs don't tell
1673 us whether a type is nested), we just ignore the
1674 containing type. */
1675
1676 p = lexptr;
1677 best_sym = sym;
1678 while (1)
1679 {
1680 /* Skip whitespace. */
1681 while (*p == ' ' || *p == '\t' || *p == '\n')
1682 ++p;
1683 if (*p == ':' && p[1] == ':')
1684 {
1685 /* Skip the `::'. */
1686 p += 2;
1687 /* Skip whitespace. */
1688 while (*p == ' ' || *p == '\t' || *p == '\n')
1689 ++p;
1690 namestart = p;
1691 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1692 || (*p >= 'a' && *p <= 'z')
1693 || (*p >= 'A' && *p <= 'Z'))
1694 ++p;
1695 if (p != namestart)
1696 {
1697 struct symbol *cur_sym;
1698 /* As big as the whole rest of the expression,
1699 which is at least big enough. */
1700 char *ncopy = alloca (strlen (tmp) +
1701 strlen (namestart) + 3);
1702 char *tmp1;
1703
1704 tmp1 = ncopy;
1705 memcpy (tmp1, tmp, strlen (tmp));
1706 tmp1 += strlen (tmp);
1707 memcpy (tmp1, "::", 2);
1708 tmp1 += 2;
1709 memcpy (tmp1, namestart, p - namestart);
1710 tmp1[p - namestart] = '\0';
1711 cur_sym = lookup_symbol (ncopy,
1712 expression_context_block,
1713 VAR_DOMAIN, (int *) NULL);
1714 if (cur_sym)
1715 {
1716 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1717 {
1718 best_sym = cur_sym;
1719 lexptr = p;
1720 }
1721 else
1722 break;
1723 }
1724 else
1725 break;
1726 }
1727 else
1728 break;
1729 }
1730 else
1731 break;
1732 }
1733
1734 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1735 #else /* not 0 */
1736 yylval.tsym.type = SYMBOL_TYPE (sym);
1737 #endif /* not 0 */
1738 return TYPENAME;
1739 }
1740 yylval.tsym.type
1741 = language_lookup_primitive_type_by_name (parse_language,
1742 parse_gdbarch, tmp);
1743 if (yylval.tsym.type != NULL)
1744 return TYPENAME;
1745
1746 /* See if it's an ObjC classname. */
1747 if (!sym)
1748 {
1749 CORE_ADDR Class = lookup_objc_class (parse_gdbarch, tmp);
1750 if (Class)
1751 {
1752 yylval.class.class = Class;
1753 if ((sym = lookup_struct_typedef (tmp,
1754 expression_context_block,
1755 1)))
1756 yylval.class.type = SYMBOL_TYPE (sym);
1757 return CLASSNAME;
1758 }
1759 }
1760
1761 /* Input names that aren't symbols but ARE valid hex numbers,
1762 when the input radix permits them, can be names or numbers
1763 depending on the parse. Note we support radixes > 16 here. */
1764 if (!sym &&
1765 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1766 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1767 {
1768 YYSTYPE newlval; /* Its value is ignored. */
1769 hextype = parse_number (tokstart, namelen, 0, &newlval);
1770 if (hextype == INT)
1771 {
1772 yylval.ssym.sym = sym;
1773 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1774 return NAME_OR_INT;
1775 }
1776 }
1777
1778 /* Any other kind of symbol. */
1779 yylval.ssym.sym = sym;
1780 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1781 return NAME;
1782 }
1783 }
1784
1785 void
1786 yyerror (msg)
1787 char *msg;
1788 {
1789 if (*lexptr == '\0')
1790 error(_("A %s near end of expression."), (msg ? msg : "error"));
1791 else
1792 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"),
1793 lexptr);
1794 }
This page took 0.065864 seconds and 4 git commands to generate.