* lib/gdb.exp (gdb_expect): Fix timeout typo.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile;
198
199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
202 /* We could use obstack_specify_allocation here instead, but
203 gdb_obstack.h specifies the alloc/dealloc functions. */
204 obstack_init (&objfile->objfile_obstack);
205 terminate_minimal_symbol_table (objfile);
206
207 objfile_alloc_data (objfile);
208
209 /* Update the per-objfile information that comes from the bfd, ensuring
210 that any data that is reference is saved in the per-objfile data
211 region. */
212
213 objfile->obfd = gdb_bfd_ref (abfd);
214 if (objfile->name != NULL)
215 {
216 xfree (objfile->name);
217 }
218 if (abfd != NULL)
219 {
220 /* Look up the gdbarch associated with the BFD. */
221 objfile->gdbarch = gdbarch_from_bfd (abfd);
222
223 objfile->name = xstrdup (bfd_get_filename (abfd));
224 objfile->mtime = bfd_get_mtime (abfd);
225
226 /* Build section table. */
227
228 if (build_objfile_section_table (objfile))
229 {
230 error (_("Can't find the file sections in `%s': %s"),
231 objfile->name, bfd_errmsg (bfd_get_error ()));
232 }
233 }
234 else
235 {
236 objfile->name = xstrdup ("<<anonymous objfile>>");
237 }
238
239 objfile->pspace = current_program_space;
240
241 /* Initialize the section indexes for this objfile, so that we can
242 later detect if they are used w/o being properly assigned to. */
243
244 objfile->sect_index_text = -1;
245 objfile->sect_index_data = -1;
246 objfile->sect_index_bss = -1;
247 objfile->sect_index_rodata = -1;
248
249 /* We don't yet have a C++-specific namespace symtab. */
250
251 objfile->cp_namespace_symtab = NULL;
252
253 /* Add this file onto the tail of the linked list of other such files. */
254
255 objfile->next = NULL;
256 if (object_files == NULL)
257 object_files = objfile;
258 else
259 {
260 struct objfile *last_one;
261
262 for (last_one = object_files;
263 last_one->next;
264 last_one = last_one->next);
265 last_one->next = objfile;
266 }
267
268 /* Save passed in flag bits. */
269 objfile->flags |= flags;
270
271 /* Rebuild section map next time we need it. */
272 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
273
274 return objfile;
275 }
276
277 /* Retrieve the gdbarch associated with OBJFILE. */
278 struct gdbarch *
279 get_objfile_arch (struct objfile *objfile)
280 {
281 return objfile->gdbarch;
282 }
283
284 /* Initialize entry point information for this objfile. */
285
286 void
287 init_entry_point_info (struct objfile *objfile)
288 {
289 /* Save startup file's range of PC addresses to help blockframe.c
290 decide where the bottom of the stack is. */
291
292 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
293 {
294 /* Executable file -- record its entry point so we'll recognize
295 the startup file because it contains the entry point. */
296 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
297 objfile->ei.entry_point_p = 1;
298 }
299 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
300 && bfd_get_start_address (objfile->obfd) != 0)
301 {
302 /* Some shared libraries may have entry points set and be
303 runnable. There's no clear way to indicate this, so just check
304 for values other than zero. */
305 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
306 objfile->ei.entry_point_p = 1;
307 }
308 else
309 {
310 /* Examination of non-executable.o files. Short-circuit this stuff. */
311 objfile->ei.entry_point_p = 0;
312 }
313 }
314
315 /* If there is a valid and known entry point, function fills *ENTRY_P with it
316 and returns non-zero; otherwise it returns zero. */
317
318 int
319 entry_point_address_query (CORE_ADDR *entry_p)
320 {
321 struct gdbarch *gdbarch;
322 CORE_ADDR entry_point;
323
324 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
325 return 0;
326
327 gdbarch = get_objfile_arch (symfile_objfile);
328
329 entry_point = symfile_objfile->ei.entry_point;
330
331 /* Make certain that the address points at real code, and not a
332 function descriptor. */
333 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
334 &current_target);
335
336 /* Remove any ISA markers, so that this matches entries in the
337 symbol table. */
338 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
339
340 *entry_p = entry_point;
341 return 1;
342 }
343
344 /* Get current entry point address. Call error if it is not known. */
345
346 CORE_ADDR
347 entry_point_address (void)
348 {
349 CORE_ADDR retval;
350
351 if (!entry_point_address_query (&retval))
352 error (_("Entry point address is not known."));
353
354 return retval;
355 }
356
357 /* Create the terminating entry of OBJFILE's minimal symbol table.
358 If OBJFILE->msymbols is zero, allocate a single entry from
359 OBJFILE->objfile_obstack; otherwise, just initialize
360 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
361 void
362 terminate_minimal_symbol_table (struct objfile *objfile)
363 {
364 if (! objfile->msymbols)
365 objfile->msymbols = ((struct minimal_symbol *)
366 obstack_alloc (&objfile->objfile_obstack,
367 sizeof (objfile->msymbols[0])));
368
369 {
370 struct minimal_symbol *m
371 = &objfile->msymbols[objfile->minimal_symbol_count];
372
373 memset (m, 0, sizeof (*m));
374 /* Don't rely on these enumeration values being 0's. */
375 MSYMBOL_TYPE (m) = mst_unknown;
376 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
377 }
378 }
379
380
381 /* Put one object file before a specified on in the global list.
382 This can be used to make sure an object file is destroyed before
383 another when using ALL_OBJFILES_SAFE to free all objfiles. */
384 void
385 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
386 {
387 struct objfile **objp;
388
389 unlink_objfile (objfile);
390
391 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
392 {
393 if (*objp == before_this)
394 {
395 objfile->next = *objp;
396 *objp = objfile;
397 return;
398 }
399 }
400
401 internal_error (__FILE__, __LINE__,
402 _("put_objfile_before: before objfile not in list"));
403 }
404
405 /* Put OBJFILE at the front of the list. */
406
407 void
408 objfile_to_front (struct objfile *objfile)
409 {
410 struct objfile **objp;
411 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
412 {
413 if (*objp == objfile)
414 {
415 /* Unhook it from where it is. */
416 *objp = objfile->next;
417 /* Put it in the front. */
418 objfile->next = object_files;
419 object_files = objfile;
420 break;
421 }
422 }
423 }
424
425 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
426 list.
427
428 It is not a bug, or error, to call this function if OBJFILE is not known
429 to be in the current list. This is done in the case of mapped objfiles,
430 for example, just to ensure that the mapped objfile doesn't appear twice
431 in the list. Since the list is threaded, linking in a mapped objfile
432 twice would create a circular list.
433
434 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
435 unlinking it, just to ensure that we have completely severed any linkages
436 between the OBJFILE and the list. */
437
438 void
439 unlink_objfile (struct objfile *objfile)
440 {
441 struct objfile **objpp;
442
443 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
444 {
445 if (*objpp == objfile)
446 {
447 *objpp = (*objpp)->next;
448 objfile->next = NULL;
449 return;
450 }
451 }
452
453 internal_error (__FILE__, __LINE__,
454 _("unlink_objfile: objfile already unlinked"));
455 }
456
457
458 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
459 that as much as possible is allocated on the objfile_obstack
460 so that the memory can be efficiently freed.
461
462 Things which we do NOT free because they are not in malloc'd memory
463 or not in memory specific to the objfile include:
464
465 objfile -> sf
466
467 FIXME: If the objfile is using reusable symbol information (via mmalloc),
468 then we need to take into account the fact that more than one process
469 may be using the symbol information at the same time (when mmalloc is
470 extended to support cooperative locking). When more than one process
471 is using the mapped symbol info, we need to be more careful about when
472 we free objects in the reusable area. */
473
474 void
475 free_objfile (struct objfile *objfile)
476 {
477 if (objfile->separate_debug_objfile)
478 {
479 free_objfile (objfile->separate_debug_objfile);
480 }
481
482 if (objfile->separate_debug_objfile_backlink)
483 {
484 /* We freed the separate debug file, make sure the base objfile
485 doesn't reference it. */
486 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
487 }
488
489 /* Remove any references to this objfile in the global value
490 lists. */
491 preserve_values (objfile);
492
493 /* First do any symbol file specific actions required when we are
494 finished with a particular symbol file. Note that if the objfile
495 is using reusable symbol information (via mmalloc) then each of
496 these routines is responsible for doing the correct thing, either
497 freeing things which are valid only during this particular gdb
498 execution, or leaving them to be reused during the next one. */
499
500 if (objfile->sf != NULL)
501 {
502 (*objfile->sf->sym_finish) (objfile);
503 }
504
505 /* Discard any data modules have associated with the objfile. */
506 objfile_free_data (objfile);
507
508 gdb_bfd_unref (objfile->obfd);
509
510 /* Remove it from the chain of all objfiles. */
511
512 unlink_objfile (objfile);
513
514 if (objfile == symfile_objfile)
515 symfile_objfile = NULL;
516
517 if (objfile == rt_common_objfile)
518 rt_common_objfile = NULL;
519
520 /* Before the symbol table code was redone to make it easier to
521 selectively load and remove information particular to a specific
522 linkage unit, gdb used to do these things whenever the monolithic
523 symbol table was blown away. How much still needs to be done
524 is unknown, but we play it safe for now and keep each action until
525 it is shown to be no longer needed. */
526
527 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
528 for example), so we need to call this here. */
529 clear_pc_function_cache ();
530
531 /* Clear globals which might have pointed into a removed objfile.
532 FIXME: It's not clear which of these are supposed to persist
533 between expressions and which ought to be reset each time. */
534 expression_context_block = NULL;
535 innermost_block = NULL;
536
537 /* Check to see if the current_source_symtab belongs to this objfile,
538 and if so, call clear_current_source_symtab_and_line. */
539
540 {
541 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
542 struct symtab *s;
543
544 ALL_OBJFILE_SYMTABS (objfile, s)
545 {
546 if (s == cursal.symtab)
547 clear_current_source_symtab_and_line ();
548 }
549 }
550
551 /* The last thing we do is free the objfile struct itself. */
552
553 if (objfile->name != NULL)
554 {
555 xfree (objfile->name);
556 }
557 if (objfile->global_psymbols.list)
558 xfree (objfile->global_psymbols.list);
559 if (objfile->static_psymbols.list)
560 xfree (objfile->static_psymbols.list);
561 /* Free the obstacks for non-reusable objfiles */
562 bcache_xfree (objfile->psymbol_cache);
563 bcache_xfree (objfile->macro_cache);
564 if (objfile->demangled_names_hash)
565 htab_delete (objfile->demangled_names_hash);
566 obstack_free (&objfile->objfile_obstack, 0);
567
568 /* Rebuild section map next time we need it. */
569 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
570
571 xfree (objfile);
572 }
573
574 static void
575 do_free_objfile_cleanup (void *obj)
576 {
577 free_objfile (obj);
578 }
579
580 struct cleanup *
581 make_cleanup_free_objfile (struct objfile *obj)
582 {
583 return make_cleanup (do_free_objfile_cleanup, obj);
584 }
585
586 /* Free all the object files at once and clean up their users. */
587
588 void
589 free_all_objfiles (void)
590 {
591 struct objfile *objfile, *temp;
592
593 ALL_OBJFILES_SAFE (objfile, temp)
594 {
595 free_objfile (objfile);
596 }
597 clear_symtab_users ();
598 }
599 \f
600 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
601 entries in new_offsets. */
602 void
603 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
604 {
605 struct obj_section *s;
606 struct section_offsets *delta =
607 ((struct section_offsets *)
608 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
609
610 {
611 int i;
612 int something_changed = 0;
613 for (i = 0; i < objfile->num_sections; ++i)
614 {
615 delta->offsets[i] =
616 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
617 if (ANOFFSET (delta, i) != 0)
618 something_changed = 1;
619 }
620 if (!something_changed)
621 return;
622 }
623
624 /* OK, get all the symtabs. */
625 {
626 struct symtab *s;
627
628 ALL_OBJFILE_SYMTABS (objfile, s)
629 {
630 struct linetable *l;
631 struct blockvector *bv;
632 int i;
633
634 /* First the line table. */
635 l = LINETABLE (s);
636 if (l)
637 {
638 for (i = 0; i < l->nitems; ++i)
639 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
640 }
641
642 /* Don't relocate a shared blockvector more than once. */
643 if (!s->primary)
644 continue;
645
646 bv = BLOCKVECTOR (s);
647 if (BLOCKVECTOR_MAP (bv))
648 addrmap_relocate (BLOCKVECTOR_MAP (bv),
649 ANOFFSET (delta, s->block_line_section));
650
651 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
652 {
653 struct block *b;
654 struct symbol *sym;
655 struct dict_iterator iter;
656
657 b = BLOCKVECTOR_BLOCK (bv, i);
658 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
659 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
660
661 ALL_BLOCK_SYMBOLS (b, iter, sym)
662 {
663 fixup_symbol_section (sym, objfile);
664
665 /* The RS6000 code from which this was taken skipped
666 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
667 But I'm leaving out that test, on the theory that
668 they can't possibly pass the tests below. */
669 if ((SYMBOL_CLASS (sym) == LOC_LABEL
670 || SYMBOL_CLASS (sym) == LOC_STATIC)
671 && SYMBOL_SECTION (sym) >= 0)
672 {
673 SYMBOL_VALUE_ADDRESS (sym) +=
674 ANOFFSET (delta, SYMBOL_SECTION (sym));
675 }
676 }
677 }
678 }
679 }
680
681 {
682 struct partial_symtab *p;
683
684 ALL_OBJFILE_PSYMTABS (objfile, p)
685 {
686 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
687 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
688 }
689 }
690
691 {
692 struct partial_symbol **psym;
693
694 for (psym = objfile->global_psymbols.list;
695 psym < objfile->global_psymbols.next;
696 psym++)
697 {
698 fixup_psymbol_section (*psym, objfile);
699 if (SYMBOL_SECTION (*psym) >= 0)
700 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
701 SYMBOL_SECTION (*psym));
702 }
703 for (psym = objfile->static_psymbols.list;
704 psym < objfile->static_psymbols.next;
705 psym++)
706 {
707 fixup_psymbol_section (*psym, objfile);
708 if (SYMBOL_SECTION (*psym) >= 0)
709 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
710 SYMBOL_SECTION (*psym));
711 }
712 }
713
714 {
715 struct minimal_symbol *msym;
716 ALL_OBJFILE_MSYMBOLS (objfile, msym)
717 if (SYMBOL_SECTION (msym) >= 0)
718 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
719 }
720 /* Relocating different sections by different amounts may cause the symbols
721 to be out of order. */
722 msymbols_sort (objfile);
723
724 if (objfile->ei.entry_point_p)
725 {
726 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
727 only as a fallback. */
728 struct obj_section *s;
729 s = find_pc_section (objfile->ei.entry_point);
730 if (s)
731 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
732 else
733 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
734 }
735
736 {
737 int i;
738 for (i = 0; i < objfile->num_sections; ++i)
739 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
740 }
741
742 /* Rebuild section map next time we need it. */
743 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
744
745 /* Update the table in exec_ops, used to read memory. */
746 ALL_OBJFILE_OSECTIONS (objfile, s)
747 {
748 int idx = s->the_bfd_section->index;
749
750 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
751 obj_section_addr (s));
752 }
753
754 /* Relocate breakpoints as necessary, after things are relocated. */
755 breakpoint_re_set ();
756 }
757 \f
758 /* Return non-zero if OBJFILE has partial symbols. */
759
760 int
761 objfile_has_partial_symbols (struct objfile *objfile)
762 {
763 return objfile->psymtabs != NULL;
764 }
765
766 /* Return non-zero if OBJFILE has full symbols. */
767
768 int
769 objfile_has_full_symbols (struct objfile *objfile)
770 {
771 return objfile->symtabs != NULL;
772 }
773
774 /* Return non-zero if OBJFILE has full or partial symbols, either directly
775 or throught its separate debug file. */
776
777 int
778 objfile_has_symbols (struct objfile *objfile)
779 {
780 struct objfile *separate_objfile;
781
782 if (objfile_has_partial_symbols (objfile)
783 || objfile_has_full_symbols (objfile))
784 return 1;
785
786 separate_objfile = objfile->separate_debug_objfile;
787 if (separate_objfile == NULL)
788 return 0;
789
790 if (objfile_has_partial_symbols (separate_objfile)
791 || objfile_has_full_symbols (separate_objfile))
792 return 1;
793
794 return 0;
795 }
796
797
798 /* Many places in gdb want to test just to see if we have any partial
799 symbols available. This function returns zero if none are currently
800 available, nonzero otherwise. */
801
802 int
803 have_partial_symbols (void)
804 {
805 struct objfile *ofp;
806
807 ALL_OBJFILES (ofp)
808 {
809 if (objfile_has_partial_symbols (ofp))
810 return 1;
811 }
812 return 0;
813 }
814
815 /* Many places in gdb want to test just to see if we have any full
816 symbols available. This function returns zero if none are currently
817 available, nonzero otherwise. */
818
819 int
820 have_full_symbols (void)
821 {
822 struct objfile *ofp;
823
824 ALL_OBJFILES (ofp)
825 {
826 if (objfile_has_full_symbols (ofp))
827 return 1;
828 }
829 return 0;
830 }
831
832
833 /* This operations deletes all objfile entries that represent solibs that
834 weren't explicitly loaded by the user, via e.g., the add-symbol-file
835 command.
836 */
837 void
838 objfile_purge_solibs (void)
839 {
840 struct objfile *objf;
841 struct objfile *temp;
842
843 ALL_OBJFILES_SAFE (objf, temp)
844 {
845 /* We assume that the solib package has been purged already, or will
846 be soon.
847 */
848 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
849 free_objfile (objf);
850 }
851 }
852
853
854 /* Many places in gdb want to test just to see if we have any minimal
855 symbols available. This function returns zero if none are currently
856 available, nonzero otherwise. */
857
858 int
859 have_minimal_symbols (void)
860 {
861 struct objfile *ofp;
862
863 ALL_OBJFILES (ofp)
864 {
865 if (ofp->minimal_symbol_count > 0)
866 {
867 return 1;
868 }
869 }
870 return 0;
871 }
872
873 /* Qsort comparison function. */
874
875 static int
876 qsort_cmp (const void *a, const void *b)
877 {
878 const struct obj_section *sect1 = *(const struct obj_section **) a;
879 const struct obj_section *sect2 = *(const struct obj_section **) b;
880 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
881 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
882
883 if (sect1_addr < sect2_addr)
884 return -1;
885 else if (sect1_addr > sect2_addr)
886 return 1;
887 else
888 {
889 /* Sections are at the same address. This could happen if
890 A) we have an objfile and a separate debuginfo.
891 B) we are confused, and have added sections without proper relocation,
892 or something like that. */
893
894 const struct objfile *const objfile1 = sect1->objfile;
895 const struct objfile *const objfile2 = sect2->objfile;
896
897 if (objfile1->separate_debug_objfile == objfile2
898 || objfile2->separate_debug_objfile == objfile1)
899 {
900 /* Case A. The ordering doesn't matter: separate debuginfo files
901 will be filtered out later. */
902
903 return 0;
904 }
905
906 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
907 triage. This section could be slow (since we iterate over all
908 objfiles in each call to qsort_cmp), but this shouldn't happen
909 very often (GDB is already in a confused state; one hopes this
910 doesn't happen at all). If you discover that significant time is
911 spent in the loops below, do 'set complaints 100' and examine the
912 resulting complaints. */
913
914 if (objfile1 == objfile2)
915 {
916 /* Both sections came from the same objfile. We are really confused.
917 Sort on sequence order of sections within the objfile. */
918
919 const struct obj_section *osect;
920
921 ALL_OBJFILE_OSECTIONS (objfile1, osect)
922 if (osect == sect1)
923 return -1;
924 else if (osect == sect2)
925 return 1;
926
927 /* We should have found one of the sections before getting here. */
928 gdb_assert (0);
929 }
930 else
931 {
932 /* Sort on sequence number of the objfile in the chain. */
933
934 const struct objfile *objfile;
935
936 ALL_OBJFILES (objfile)
937 if (objfile == objfile1)
938 return -1;
939 else if (objfile == objfile2)
940 return 1;
941
942 /* We should have found one of the objfiles before getting here. */
943 gdb_assert (0);
944 }
945
946 }
947
948 /* Unreachable. */
949 gdb_assert (0);
950 return 0;
951 }
952
953 /* Select "better" obj_section to keep. We prefer the one that came from
954 the real object, rather than the one from separate debuginfo.
955 Most of the time the two sections are exactly identical, but with
956 prelinking the .rel.dyn section in the real object may have different
957 size. */
958
959 static struct obj_section *
960 preferred_obj_section (struct obj_section *a, struct obj_section *b)
961 {
962 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
963 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
964 || (b->objfile->separate_debug_objfile == a->objfile));
965 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
966 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
967
968 if (a->objfile->separate_debug_objfile != NULL)
969 return a;
970 return b;
971 }
972
973 /* Return 1 if SECTION should be inserted into the section map.
974 We want to insert only non-overlay and non-TLS section. */
975
976 static int
977 insert_section_p (const struct bfd *abfd,
978 const struct bfd_section *section)
979 {
980 const bfd_vma lma = bfd_section_lma (abfd, section);
981
982 if (lma != 0 && lma != bfd_section_vma (abfd, section)
983 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
984 /* This is an overlay section. IN_MEMORY check is needed to avoid
985 discarding sections from the "system supplied DSO" (aka vdso)
986 on some Linux systems (e.g. Fedora 11). */
987 return 0;
988 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
989 /* This is a TLS section. */
990 return 0;
991
992 return 1;
993 }
994
995 /* Filter out overlapping sections where one section came from the real
996 objfile, and the other from a separate debuginfo file.
997 Return the size of table after redundant sections have been eliminated. */
998
999 static int
1000 filter_debuginfo_sections (struct obj_section **map, int map_size)
1001 {
1002 int i, j;
1003
1004 for (i = 0, j = 0; i < map_size - 1; i++)
1005 {
1006 struct obj_section *const sect1 = map[i];
1007 struct obj_section *const sect2 = map[i + 1];
1008 const struct objfile *const objfile1 = sect1->objfile;
1009 const struct objfile *const objfile2 = sect2->objfile;
1010 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1011 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1012
1013 if (sect1_addr == sect2_addr
1014 && (objfile1->separate_debug_objfile == objfile2
1015 || objfile2->separate_debug_objfile == objfile1))
1016 {
1017 map[j++] = preferred_obj_section (sect1, sect2);
1018 ++i;
1019 }
1020 else
1021 map[j++] = sect1;
1022 }
1023
1024 if (i < map_size)
1025 {
1026 gdb_assert (i == map_size - 1);
1027 map[j++] = map[i];
1028 }
1029
1030 /* The map should not have shrunk to less than half the original size. */
1031 gdb_assert (map_size / 2 <= j);
1032
1033 return j;
1034 }
1035
1036 /* Filter out overlapping sections, issuing a warning if any are found.
1037 Overlapping sections could really be overlay sections which we didn't
1038 classify as such in insert_section_p, or we could be dealing with a
1039 corrupt binary. */
1040
1041 static int
1042 filter_overlapping_sections (struct obj_section **map, int map_size)
1043 {
1044 int i, j;
1045
1046 for (i = 0, j = 0; i < map_size - 1; )
1047 {
1048 int k;
1049
1050 map[j++] = map[i];
1051 for (k = i + 1; k < map_size; k++)
1052 {
1053 struct obj_section *const sect1 = map[i];
1054 struct obj_section *const sect2 = map[k];
1055 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1056 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1057 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1058
1059 gdb_assert (sect1_addr <= sect2_addr);
1060
1061 if (sect1_endaddr <= sect2_addr)
1062 break;
1063 else
1064 {
1065 /* We have an overlap. Report it. */
1066
1067 struct objfile *const objf1 = sect1->objfile;
1068 struct objfile *const objf2 = sect2->objfile;
1069
1070 const struct bfd *const abfd1 = objf1->obfd;
1071 const struct bfd *const abfd2 = objf2->obfd;
1072
1073 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1074 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1075
1076 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1077
1078 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1079
1080 complaint (&symfile_complaints,
1081 _("unexpected overlap between:\n"
1082 " (A) section `%s' from `%s' [%s, %s)\n"
1083 " (B) section `%s' from `%s' [%s, %s).\n"
1084 "Will ignore section B"),
1085 bfd_section_name (abfd1, bfds1), objf1->name,
1086 paddress (gdbarch, sect1_addr),
1087 paddress (gdbarch, sect1_endaddr),
1088 bfd_section_name (abfd2, bfds2), objf2->name,
1089 paddress (gdbarch, sect2_addr),
1090 paddress (gdbarch, sect2_endaddr));
1091 }
1092 }
1093 i = k;
1094 }
1095
1096 if (i < map_size)
1097 {
1098 gdb_assert (i == map_size - 1);
1099 map[j++] = map[i];
1100 }
1101
1102 return j;
1103 }
1104
1105
1106 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1107 TLS, overlay and overlapping sections. */
1108
1109 static void
1110 update_section_map (struct program_space *pspace,
1111 struct obj_section ***pmap, int *pmap_size)
1112 {
1113 int alloc_size, map_size, i;
1114 struct obj_section *s, **map;
1115 struct objfile *objfile;
1116
1117 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1118
1119 map = *pmap;
1120 xfree (map);
1121
1122 alloc_size = 0;
1123 ALL_PSPACE_OBJFILES (pspace, objfile)
1124 ALL_OBJFILE_OSECTIONS (objfile, s)
1125 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1126 alloc_size += 1;
1127
1128 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1129 if (alloc_size == 0)
1130 {
1131 *pmap = NULL;
1132 *pmap_size = 0;
1133 return;
1134 }
1135
1136 map = xmalloc (alloc_size * sizeof (*map));
1137
1138 i = 0;
1139 ALL_PSPACE_OBJFILES (pspace, objfile)
1140 ALL_OBJFILE_OSECTIONS (objfile, s)
1141 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1142 map[i++] = s;
1143
1144 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1145 map_size = filter_debuginfo_sections(map, alloc_size);
1146 map_size = filter_overlapping_sections(map, map_size);
1147
1148 if (map_size < alloc_size)
1149 /* Some sections were eliminated. Trim excess space. */
1150 map = xrealloc (map, map_size * sizeof (*map));
1151 else
1152 gdb_assert (alloc_size == map_size);
1153
1154 *pmap = map;
1155 *pmap_size = map_size;
1156 }
1157
1158 /* Bsearch comparison function. */
1159
1160 static int
1161 bsearch_cmp (const void *key, const void *elt)
1162 {
1163 const CORE_ADDR pc = *(CORE_ADDR *) key;
1164 const struct obj_section *section = *(const struct obj_section **) elt;
1165
1166 if (pc < obj_section_addr (section))
1167 return -1;
1168 if (pc < obj_section_endaddr (section))
1169 return 0;
1170 return 1;
1171 }
1172
1173 /* Returns a section whose range includes PC or NULL if none found. */
1174
1175 struct obj_section *
1176 find_pc_section (CORE_ADDR pc)
1177 {
1178 struct objfile_pspace_info *pspace_info;
1179 struct obj_section *s, **sp;
1180
1181 /* Check for mapped overlay section first. */
1182 s = find_pc_mapped_section (pc);
1183 if (s)
1184 return s;
1185
1186 pspace_info = get_objfile_pspace_data (current_program_space);
1187 if (pspace_info->objfiles_changed_p != 0)
1188 {
1189 update_section_map (current_program_space,
1190 &pspace_info->sections,
1191 &pspace_info->num_sections);
1192
1193 /* Don't need updates to section map until objfiles are added,
1194 removed or relocated. */
1195 pspace_info->objfiles_changed_p = 0;
1196 }
1197
1198 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1199 bsearch be non-NULL. */
1200 if (pspace_info->sections == NULL)
1201 {
1202 gdb_assert (pspace_info->num_sections == 0);
1203 return NULL;
1204 }
1205
1206 sp = (struct obj_section **) bsearch (&pc,
1207 pspace_info->sections,
1208 pspace_info->num_sections,
1209 sizeof (*pspace_info->sections),
1210 bsearch_cmp);
1211 if (sp != NULL)
1212 return *sp;
1213 return NULL;
1214 }
1215
1216
1217 /* In SVR4, we recognize a trampoline by it's section name.
1218 That is, if the pc is in a section named ".plt" then we are in
1219 a trampoline. */
1220
1221 int
1222 in_plt_section (CORE_ADDR pc, char *name)
1223 {
1224 struct obj_section *s;
1225 int retval = 0;
1226
1227 s = find_pc_section (pc);
1228
1229 retval = (s != NULL
1230 && s->the_bfd_section->name != NULL
1231 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1232 return (retval);
1233 }
1234 \f
1235
1236 /* Keep a registry of per-objfile data-pointers required by other GDB
1237 modules. */
1238
1239 struct objfile_data
1240 {
1241 unsigned index;
1242 void (*save) (struct objfile *, void *);
1243 void (*free) (struct objfile *, void *);
1244 };
1245
1246 struct objfile_data_registration
1247 {
1248 struct objfile_data *data;
1249 struct objfile_data_registration *next;
1250 };
1251
1252 struct objfile_data_registry
1253 {
1254 struct objfile_data_registration *registrations;
1255 unsigned num_registrations;
1256 };
1257
1258 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1259
1260 const struct objfile_data *
1261 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1262 void (*free) (struct objfile *, void *))
1263 {
1264 struct objfile_data_registration **curr;
1265
1266 /* Append new registration. */
1267 for (curr = &objfile_data_registry.registrations;
1268 *curr != NULL; curr = &(*curr)->next);
1269
1270 *curr = XMALLOC (struct objfile_data_registration);
1271 (*curr)->next = NULL;
1272 (*curr)->data = XMALLOC (struct objfile_data);
1273 (*curr)->data->index = objfile_data_registry.num_registrations++;
1274 (*curr)->data->save = save;
1275 (*curr)->data->free = free;
1276
1277 return (*curr)->data;
1278 }
1279
1280 const struct objfile_data *
1281 register_objfile_data (void)
1282 {
1283 return register_objfile_data_with_cleanup (NULL, NULL);
1284 }
1285
1286 static void
1287 objfile_alloc_data (struct objfile *objfile)
1288 {
1289 gdb_assert (objfile->data == NULL);
1290 objfile->num_data = objfile_data_registry.num_registrations;
1291 objfile->data = XCALLOC (objfile->num_data, void *);
1292 }
1293
1294 static void
1295 objfile_free_data (struct objfile *objfile)
1296 {
1297 gdb_assert (objfile->data != NULL);
1298 clear_objfile_data (objfile);
1299 xfree (objfile->data);
1300 objfile->data = NULL;
1301 }
1302
1303 void
1304 clear_objfile_data (struct objfile *objfile)
1305 {
1306 struct objfile_data_registration *registration;
1307 int i;
1308
1309 gdb_assert (objfile->data != NULL);
1310
1311 /* Process all the save handlers. */
1312
1313 for (registration = objfile_data_registry.registrations, i = 0;
1314 i < objfile->num_data;
1315 registration = registration->next, i++)
1316 if (objfile->data[i] != NULL && registration->data->save != NULL)
1317 registration->data->save (objfile, objfile->data[i]);
1318
1319 /* Now process all the free handlers. */
1320
1321 for (registration = objfile_data_registry.registrations, i = 0;
1322 i < objfile->num_data;
1323 registration = registration->next, i++)
1324 if (objfile->data[i] != NULL && registration->data->free != NULL)
1325 registration->data->free (objfile, objfile->data[i]);
1326
1327 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1328 }
1329
1330 void
1331 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1332 void *value)
1333 {
1334 gdb_assert (data->index < objfile->num_data);
1335 objfile->data[data->index] = value;
1336 }
1337
1338 void *
1339 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1340 {
1341 gdb_assert (data->index < objfile->num_data);
1342 return objfile->data[data->index];
1343 }
1344
1345 /* Set objfiles_changed_p so section map will be rebuilt next time it
1346 is used. Called by reread_symbols. */
1347
1348 void
1349 objfiles_changed (void)
1350 {
1351 /* Rebuild section map next time we need it. */
1352 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1353 }
1354
1355 /* Add reference to ABFD. Returns ABFD. */
1356 struct bfd *
1357 gdb_bfd_ref (struct bfd *abfd)
1358 {
1359 int *p_refcount = bfd_usrdata (abfd);
1360
1361 if (p_refcount != NULL)
1362 {
1363 *p_refcount += 1;
1364 return abfd;
1365 }
1366
1367 p_refcount = xmalloc (sizeof (*p_refcount));
1368 *p_refcount = 1;
1369 bfd_usrdata (abfd) = p_refcount;
1370
1371 return abfd;
1372 }
1373
1374 /* Unreference and possibly close ABFD. */
1375 void
1376 gdb_bfd_unref (struct bfd *abfd)
1377 {
1378 int *p_refcount;
1379 char *name;
1380
1381 if (abfd == NULL)
1382 return;
1383
1384 p_refcount = bfd_usrdata (abfd);
1385
1386 /* Valid range for p_refcount: a pointer to int counter, which has a
1387 value of 1 (single owner) or 2 (shared). */
1388 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1389
1390 *p_refcount -= 1;
1391 if (*p_refcount > 0)
1392 return;
1393
1394 xfree (p_refcount);
1395 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1396
1397 name = bfd_get_filename (abfd);
1398 if (!bfd_close (abfd))
1399 warning (_("cannot close \"%s\": %s"),
1400 name, bfd_errmsg (bfd_get_error ()));
1401 xfree (name);
1402 }
1403
1404 /* Provide a prototype to silence -Wmissing-prototypes. */
1405 extern initialize_file_ftype _initialize_objfiles;
1406
1407 void
1408 _initialize_objfiles (void)
1409 {
1410 objfiles_pspace_data
1411 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1412 }
This page took 0.05938 seconds and 4 git commands to generate.