Document i386 XML target features.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile;
198
199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
202 objfile->filename_cache = bcache_xmalloc ();
203 /* We could use obstack_specify_allocation here instead, but
204 gdb_obstack.h specifies the alloc/dealloc functions. */
205 obstack_init (&objfile->objfile_obstack);
206 terminate_minimal_symbol_table (objfile);
207
208 objfile_alloc_data (objfile);
209
210 /* Update the per-objfile information that comes from the bfd, ensuring
211 that any data that is reference is saved in the per-objfile data
212 region. */
213
214 objfile->obfd = gdb_bfd_ref (abfd);
215 if (objfile->name != NULL)
216 {
217 xfree (objfile->name);
218 }
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
253
254 /* Add this file onto the tail of the linked list of other such files. */
255
256 objfile->next = NULL;
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
261 struct objfile *last_one;
262
263 for (last_one = object_files;
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
267 }
268
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
271
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
274
275 return objfile;
276 }
277
278 /* Retrieve the gdbarch associated with OBJFILE. */
279 struct gdbarch *
280 get_objfile_arch (struct objfile *objfile)
281 {
282 return objfile->gdbarch;
283 }
284
285 /* Initialize entry point information for this objfile. */
286
287 void
288 init_entry_point_info (struct objfile *objfile)
289 {
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
298 objfile->ei.entry_point_p = 1;
299 }
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
312 objfile->ei.entry_point_p = 0;
313 }
314 }
315
316 /* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
318
319 int
320 entry_point_address_query (CORE_ADDR *entry_p)
321 {
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
341 *entry_p = entry_point;
342 return 1;
343 }
344
345 /* Get current entry point address. Call error if it is not known. */
346
347 CORE_ADDR
348 entry_point_address (void)
349 {
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
356 }
357
358 /* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->objfile_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362 void
363 terminate_minimal_symbol_table (struct objfile *objfile)
364 {
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->objfile_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
377 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
378 }
379 }
380
381 /* Iterator on PARENT and every separate debug objfile of PARENT.
382 The usage pattern is:
383 for (objfile = parent;
384 objfile;
385 objfile = objfile_separate_debug_iterate (parent, objfile))
386 ...
387 */
388
389 struct objfile *
390 objfile_separate_debug_iterate (const struct objfile *parent,
391 const struct objfile *objfile)
392 {
393 struct objfile *res;
394
395 res = objfile->separate_debug_objfile;
396 if (res)
397 return res;
398
399 res = objfile->separate_debug_objfile_link;
400 if (res)
401 return res;
402
403 /* Common case where there is no separate debug objfile. */
404 if (objfile == parent)
405 return NULL;
406
407 for (res = objfile->separate_debug_objfile_backlink;
408 res != parent;
409 res = res->separate_debug_objfile_backlink)
410 {
411 gdb_assert (res != NULL);
412 if (res->separate_debug_objfile_link)
413 return res->separate_debug_objfile_link;
414 }
415 return NULL;
416 }
417
418 /* Put one object file before a specified on in the global list.
419 This can be used to make sure an object file is destroyed before
420 another when using ALL_OBJFILES_SAFE to free all objfiles. */
421 void
422 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
423 {
424 struct objfile **objp;
425
426 unlink_objfile (objfile);
427
428 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
429 {
430 if (*objp == before_this)
431 {
432 objfile->next = *objp;
433 *objp = objfile;
434 return;
435 }
436 }
437
438 internal_error (__FILE__, __LINE__,
439 _("put_objfile_before: before objfile not in list"));
440 }
441
442 /* Put OBJFILE at the front of the list. */
443
444 void
445 objfile_to_front (struct objfile *objfile)
446 {
447 struct objfile **objp;
448 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
449 {
450 if (*objp == objfile)
451 {
452 /* Unhook it from where it is. */
453 *objp = objfile->next;
454 /* Put it in the front. */
455 objfile->next = object_files;
456 object_files = objfile;
457 break;
458 }
459 }
460 }
461
462 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
463 list.
464
465 It is not a bug, or error, to call this function if OBJFILE is not known
466 to be in the current list. This is done in the case of mapped objfiles,
467 for example, just to ensure that the mapped objfile doesn't appear twice
468 in the list. Since the list is threaded, linking in a mapped objfile
469 twice would create a circular list.
470
471 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
472 unlinking it, just to ensure that we have completely severed any linkages
473 between the OBJFILE and the list. */
474
475 void
476 unlink_objfile (struct objfile *objfile)
477 {
478 struct objfile **objpp;
479
480 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
481 {
482 if (*objpp == objfile)
483 {
484 *objpp = (*objpp)->next;
485 objfile->next = NULL;
486 return;
487 }
488 }
489
490 internal_error (__FILE__, __LINE__,
491 _("unlink_objfile: objfile already unlinked"));
492 }
493
494 /* Add OBJFILE as a separate debug objfile of PARENT. */
495
496 void
497 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
498 {
499 gdb_assert (objfile && parent);
500
501 /* Must not be already in a list. */
502 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
503 gdb_assert (objfile->separate_debug_objfile_link == NULL);
504
505 objfile->separate_debug_objfile_backlink = parent;
506 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
507 parent->separate_debug_objfile = objfile;
508
509 /* Put the separate debug object before the normal one, this is so that
510 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
511 put_objfile_before (objfile, parent);
512 }
513
514 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
515 itself. */
516
517 void
518 free_objfile_separate_debug (struct objfile *objfile)
519 {
520 struct objfile *child;
521
522 for (child = objfile->separate_debug_objfile; child;)
523 {
524 struct objfile *next_child = child->separate_debug_objfile_link;
525 free_objfile (child);
526 child = next_child;
527 }
528 }
529
530 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
531 that as much as possible is allocated on the objfile_obstack
532 so that the memory can be efficiently freed.
533
534 Things which we do NOT free because they are not in malloc'd memory
535 or not in memory specific to the objfile include:
536
537 objfile -> sf
538
539 FIXME: If the objfile is using reusable symbol information (via mmalloc),
540 then we need to take into account the fact that more than one process
541 may be using the symbol information at the same time (when mmalloc is
542 extended to support cooperative locking). When more than one process
543 is using the mapped symbol info, we need to be more careful about when
544 we free objects in the reusable area. */
545
546 void
547 free_objfile (struct objfile *objfile)
548 {
549 /* Free all separate debug objfiles. */
550 free_objfile_separate_debug (objfile);
551
552 if (objfile->separate_debug_objfile_backlink)
553 {
554 /* We freed the separate debug file, make sure the base objfile
555 doesn't reference it. */
556 struct objfile *child;
557
558 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
559
560 if (child == objfile)
561 {
562 /* OBJFILE is the first child. */
563 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
564 objfile->separate_debug_objfile_link;
565 }
566 else
567 {
568 /* Find OBJFILE in the list. */
569 while (1)
570 {
571 if (child->separate_debug_objfile_link == objfile)
572 {
573 child->separate_debug_objfile_link =
574 objfile->separate_debug_objfile_link;
575 break;
576 }
577 child = child->separate_debug_objfile_link;
578 gdb_assert (child);
579 }
580 }
581 }
582
583 /* Remove any references to this objfile in the global value
584 lists. */
585 preserve_values (objfile);
586
587 /* First do any symbol file specific actions required when we are
588 finished with a particular symbol file. Note that if the objfile
589 is using reusable symbol information (via mmalloc) then each of
590 these routines is responsible for doing the correct thing, either
591 freeing things which are valid only during this particular gdb
592 execution, or leaving them to be reused during the next one. */
593
594 if (objfile->sf != NULL)
595 {
596 (*objfile->sf->sym_finish) (objfile);
597 }
598
599 /* Discard any data modules have associated with the objfile. */
600 objfile_free_data (objfile);
601
602 gdb_bfd_unref (objfile->obfd);
603
604 /* Remove it from the chain of all objfiles. */
605
606 unlink_objfile (objfile);
607
608 if (objfile == symfile_objfile)
609 symfile_objfile = NULL;
610
611 if (objfile == rt_common_objfile)
612 rt_common_objfile = NULL;
613
614 /* Before the symbol table code was redone to make it easier to
615 selectively load and remove information particular to a specific
616 linkage unit, gdb used to do these things whenever the monolithic
617 symbol table was blown away. How much still needs to be done
618 is unknown, but we play it safe for now and keep each action until
619 it is shown to be no longer needed. */
620
621 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
622 for example), so we need to call this here. */
623 clear_pc_function_cache ();
624
625 /* Clear globals which might have pointed into a removed objfile.
626 FIXME: It's not clear which of these are supposed to persist
627 between expressions and which ought to be reset each time. */
628 expression_context_block = NULL;
629 innermost_block = NULL;
630
631 /* Check to see if the current_source_symtab belongs to this objfile,
632 and if so, call clear_current_source_symtab_and_line. */
633
634 {
635 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
636 struct symtab *s;
637
638 ALL_OBJFILE_SYMTABS (objfile, s)
639 {
640 if (s == cursal.symtab)
641 clear_current_source_symtab_and_line ();
642 }
643 }
644
645 /* The last thing we do is free the objfile struct itself. */
646
647 if (objfile->name != NULL)
648 {
649 xfree (objfile->name);
650 }
651 if (objfile->global_psymbols.list)
652 xfree (objfile->global_psymbols.list);
653 if (objfile->static_psymbols.list)
654 xfree (objfile->static_psymbols.list);
655 /* Free the obstacks for non-reusable objfiles */
656 bcache_xfree (objfile->psymbol_cache);
657 bcache_xfree (objfile->macro_cache);
658 bcache_xfree (objfile->filename_cache);
659 if (objfile->demangled_names_hash)
660 htab_delete (objfile->demangled_names_hash);
661 obstack_free (&objfile->objfile_obstack, 0);
662
663 /* Rebuild section map next time we need it. */
664 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
665
666 xfree (objfile);
667 }
668
669 static void
670 do_free_objfile_cleanup (void *obj)
671 {
672 free_objfile (obj);
673 }
674
675 struct cleanup *
676 make_cleanup_free_objfile (struct objfile *obj)
677 {
678 return make_cleanup (do_free_objfile_cleanup, obj);
679 }
680
681 /* Free all the object files at once and clean up their users. */
682
683 void
684 free_all_objfiles (void)
685 {
686 struct objfile *objfile, *temp;
687
688 ALL_OBJFILES_SAFE (objfile, temp)
689 {
690 free_objfile (objfile);
691 }
692 clear_symtab_users ();
693 }
694 \f
695 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
696 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
697 Return non-zero iff any change happened. */
698
699 static int
700 objfile_relocate1 (struct objfile *objfile, struct section_offsets *new_offsets)
701 {
702 struct obj_section *s;
703 struct section_offsets *delta =
704 ((struct section_offsets *)
705 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
706
707 {
708 int i;
709 int something_changed = 0;
710 for (i = 0; i < objfile->num_sections; ++i)
711 {
712 delta->offsets[i] =
713 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
714 if (ANOFFSET (delta, i) != 0)
715 something_changed = 1;
716 }
717 if (!something_changed)
718 return 0;
719 }
720
721 /* OK, get all the symtabs. */
722 {
723 struct symtab *s;
724
725 ALL_OBJFILE_SYMTABS (objfile, s)
726 {
727 struct linetable *l;
728 struct blockvector *bv;
729 int i;
730
731 /* First the line table. */
732 l = LINETABLE (s);
733 if (l)
734 {
735 for (i = 0; i < l->nitems; ++i)
736 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
737 }
738
739 /* Don't relocate a shared blockvector more than once. */
740 if (!s->primary)
741 continue;
742
743 bv = BLOCKVECTOR (s);
744 if (BLOCKVECTOR_MAP (bv))
745 addrmap_relocate (BLOCKVECTOR_MAP (bv),
746 ANOFFSET (delta, s->block_line_section));
747
748 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
749 {
750 struct block *b;
751 struct symbol *sym;
752 struct dict_iterator iter;
753
754 b = BLOCKVECTOR_BLOCK (bv, i);
755 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
756 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
757
758 ALL_BLOCK_SYMBOLS (b, iter, sym)
759 {
760 fixup_symbol_section (sym, objfile);
761
762 /* The RS6000 code from which this was taken skipped
763 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
764 But I'm leaving out that test, on the theory that
765 they can't possibly pass the tests below. */
766 if ((SYMBOL_CLASS (sym) == LOC_LABEL
767 || SYMBOL_CLASS (sym) == LOC_STATIC)
768 && SYMBOL_SECTION (sym) >= 0)
769 {
770 SYMBOL_VALUE_ADDRESS (sym) +=
771 ANOFFSET (delta, SYMBOL_SECTION (sym));
772 }
773 }
774 }
775 }
776 }
777
778 if (objfile->psymtabs_addrmap)
779 addrmap_relocate (objfile->psymtabs_addrmap,
780 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
781
782 {
783 struct partial_symtab *p;
784
785 ALL_OBJFILE_PSYMTABS (objfile, p)
786 {
787 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
788 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
789 }
790 }
791
792 {
793 struct partial_symbol **psym;
794
795 for (psym = objfile->global_psymbols.list;
796 psym < objfile->global_psymbols.next;
797 psym++)
798 {
799 fixup_psymbol_section (*psym, objfile);
800 if (SYMBOL_SECTION (*psym) >= 0)
801 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
802 SYMBOL_SECTION (*psym));
803 }
804 for (psym = objfile->static_psymbols.list;
805 psym < objfile->static_psymbols.next;
806 psym++)
807 {
808 fixup_psymbol_section (*psym, objfile);
809 if (SYMBOL_SECTION (*psym) >= 0)
810 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
811 SYMBOL_SECTION (*psym));
812 }
813 }
814
815 {
816 struct minimal_symbol *msym;
817 ALL_OBJFILE_MSYMBOLS (objfile, msym)
818 if (SYMBOL_SECTION (msym) >= 0)
819 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
820 }
821 /* Relocating different sections by different amounts may cause the symbols
822 to be out of order. */
823 msymbols_sort (objfile);
824
825 if (objfile->ei.entry_point_p)
826 {
827 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
828 only as a fallback. */
829 struct obj_section *s;
830 s = find_pc_section (objfile->ei.entry_point);
831 if (s)
832 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
833 else
834 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
835 }
836
837 {
838 int i;
839 for (i = 0; i < objfile->num_sections; ++i)
840 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
841 }
842
843 /* Rebuild section map next time we need it. */
844 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
845
846 /* Update the table in exec_ops, used to read memory. */
847 ALL_OBJFILE_OSECTIONS (objfile, s)
848 {
849 int idx = s->the_bfd_section->index;
850
851 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
852 obj_section_addr (s));
853 }
854
855 /* Data changed. */
856 return 1;
857 }
858
859 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
860 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
861
862 The number and ordering of sections does differ between the two objfiles.
863 Only their names match. Also the file offsets will differ (objfile being
864 possibly prelinked but separate_debug_objfile is probably not prelinked) but
865 the in-memory absolute address as specified by NEW_OFFSETS must match both
866 files. */
867
868 void
869 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
870 {
871 struct objfile *debug_objfile;
872 int changed = 0;
873
874 changed |= objfile_relocate1 (objfile, new_offsets);
875
876 for (debug_objfile = objfile->separate_debug_objfile;
877 debug_objfile;
878 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
879 {
880 struct section_addr_info *objfile_addrs;
881 struct section_offsets *new_debug_offsets;
882 int new_debug_num_sections;
883 struct cleanup *my_cleanups;
884
885 objfile_addrs = build_section_addr_info_from_objfile (objfile);
886 my_cleanups = make_cleanup (xfree, objfile_addrs);
887
888 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
889 relative ones must be already created according to debug_objfile. */
890
891 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
892
893 gdb_assert (debug_objfile->num_sections
894 == bfd_count_sections (debug_objfile->obfd));
895 new_debug_offsets = xmalloc (SIZEOF_N_SECTION_OFFSETS
896 (debug_objfile->num_sections));
897 make_cleanup (xfree, new_debug_offsets);
898 relative_addr_info_to_section_offsets (new_debug_offsets,
899 debug_objfile->num_sections,
900 objfile_addrs);
901
902 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
903
904 do_cleanups (my_cleanups);
905 }
906
907 /* Relocate breakpoints as necessary, after things are relocated. */
908 if (changed)
909 breakpoint_re_set ();
910 }
911 \f
912 /* Return non-zero if OBJFILE has partial symbols. */
913
914 int
915 objfile_has_partial_symbols (struct objfile *objfile)
916 {
917 return objfile->psymtabs != NULL;
918 }
919
920 /* Return non-zero if OBJFILE has full symbols. */
921
922 int
923 objfile_has_full_symbols (struct objfile *objfile)
924 {
925 return objfile->symtabs != NULL;
926 }
927
928 /* Return non-zero if OBJFILE has full or partial symbols, either directly
929 or through a separate debug file. */
930
931 int
932 objfile_has_symbols (struct objfile *objfile)
933 {
934 struct objfile *o;
935
936 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
937 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
938 return 1;
939 return 0;
940 }
941
942
943 /* Many places in gdb want to test just to see if we have any partial
944 symbols available. This function returns zero if none are currently
945 available, nonzero otherwise. */
946
947 int
948 have_partial_symbols (void)
949 {
950 struct objfile *ofp;
951
952 ALL_OBJFILES (ofp)
953 {
954 if (objfile_has_partial_symbols (ofp))
955 return 1;
956 }
957 return 0;
958 }
959
960 /* Many places in gdb want to test just to see if we have any full
961 symbols available. This function returns zero if none are currently
962 available, nonzero otherwise. */
963
964 int
965 have_full_symbols (void)
966 {
967 struct objfile *ofp;
968
969 ALL_OBJFILES (ofp)
970 {
971 if (objfile_has_full_symbols (ofp))
972 return 1;
973 }
974 return 0;
975 }
976
977
978 /* This operations deletes all objfile entries that represent solibs that
979 weren't explicitly loaded by the user, via e.g., the add-symbol-file
980 command.
981 */
982 void
983 objfile_purge_solibs (void)
984 {
985 struct objfile *objf;
986 struct objfile *temp;
987
988 ALL_OBJFILES_SAFE (objf, temp)
989 {
990 /* We assume that the solib package has been purged already, or will
991 be soon.
992 */
993 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
994 free_objfile (objf);
995 }
996 }
997
998
999 /* Many places in gdb want to test just to see if we have any minimal
1000 symbols available. This function returns zero if none are currently
1001 available, nonzero otherwise. */
1002
1003 int
1004 have_minimal_symbols (void)
1005 {
1006 struct objfile *ofp;
1007
1008 ALL_OBJFILES (ofp)
1009 {
1010 if (ofp->minimal_symbol_count > 0)
1011 {
1012 return 1;
1013 }
1014 }
1015 return 0;
1016 }
1017
1018 /* Qsort comparison function. */
1019
1020 static int
1021 qsort_cmp (const void *a, const void *b)
1022 {
1023 const struct obj_section *sect1 = *(const struct obj_section **) a;
1024 const struct obj_section *sect2 = *(const struct obj_section **) b;
1025 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1026 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1027
1028 if (sect1_addr < sect2_addr)
1029 return -1;
1030 else if (sect1_addr > sect2_addr)
1031 return 1;
1032 else
1033 {
1034 /* Sections are at the same address. This could happen if
1035 A) we have an objfile and a separate debuginfo.
1036 B) we are confused, and have added sections without proper relocation,
1037 or something like that. */
1038
1039 const struct objfile *const objfile1 = sect1->objfile;
1040 const struct objfile *const objfile2 = sect2->objfile;
1041
1042 if (objfile1->separate_debug_objfile == objfile2
1043 || objfile2->separate_debug_objfile == objfile1)
1044 {
1045 /* Case A. The ordering doesn't matter: separate debuginfo files
1046 will be filtered out later. */
1047
1048 return 0;
1049 }
1050
1051 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1052 triage. This section could be slow (since we iterate over all
1053 objfiles in each call to qsort_cmp), but this shouldn't happen
1054 very often (GDB is already in a confused state; one hopes this
1055 doesn't happen at all). If you discover that significant time is
1056 spent in the loops below, do 'set complaints 100' and examine the
1057 resulting complaints. */
1058
1059 if (objfile1 == objfile2)
1060 {
1061 /* Both sections came from the same objfile. We are really confused.
1062 Sort on sequence order of sections within the objfile. */
1063
1064 const struct obj_section *osect;
1065
1066 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1067 if (osect == sect1)
1068 return -1;
1069 else if (osect == sect2)
1070 return 1;
1071
1072 /* We should have found one of the sections before getting here. */
1073 gdb_assert (0);
1074 }
1075 else
1076 {
1077 /* Sort on sequence number of the objfile in the chain. */
1078
1079 const struct objfile *objfile;
1080
1081 ALL_OBJFILES (objfile)
1082 if (objfile == objfile1)
1083 return -1;
1084 else if (objfile == objfile2)
1085 return 1;
1086
1087 /* We should have found one of the objfiles before getting here. */
1088 gdb_assert (0);
1089 }
1090
1091 }
1092
1093 /* Unreachable. */
1094 gdb_assert (0);
1095 return 0;
1096 }
1097
1098 /* Select "better" obj_section to keep. We prefer the one that came from
1099 the real object, rather than the one from separate debuginfo.
1100 Most of the time the two sections are exactly identical, but with
1101 prelinking the .rel.dyn section in the real object may have different
1102 size. */
1103
1104 static struct obj_section *
1105 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1106 {
1107 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1108 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1109 || (b->objfile->separate_debug_objfile == a->objfile));
1110 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1111 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1112
1113 if (a->objfile->separate_debug_objfile != NULL)
1114 return a;
1115 return b;
1116 }
1117
1118 /* Return 1 if SECTION should be inserted into the section map.
1119 We want to insert only non-overlay and non-TLS section. */
1120
1121 static int
1122 insert_section_p (const struct bfd *abfd,
1123 const struct bfd_section *section)
1124 {
1125 const bfd_vma lma = bfd_section_lma (abfd, section);
1126
1127 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1128 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1129 /* This is an overlay section. IN_MEMORY check is needed to avoid
1130 discarding sections from the "system supplied DSO" (aka vdso)
1131 on some Linux systems (e.g. Fedora 11). */
1132 return 0;
1133 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1134 /* This is a TLS section. */
1135 return 0;
1136
1137 return 1;
1138 }
1139
1140 /* Filter out overlapping sections where one section came from the real
1141 objfile, and the other from a separate debuginfo file.
1142 Return the size of table after redundant sections have been eliminated. */
1143
1144 static int
1145 filter_debuginfo_sections (struct obj_section **map, int map_size)
1146 {
1147 int i, j;
1148
1149 for (i = 0, j = 0; i < map_size - 1; i++)
1150 {
1151 struct obj_section *const sect1 = map[i];
1152 struct obj_section *const sect2 = map[i + 1];
1153 const struct objfile *const objfile1 = sect1->objfile;
1154 const struct objfile *const objfile2 = sect2->objfile;
1155 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1156 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1157
1158 if (sect1_addr == sect2_addr
1159 && (objfile1->separate_debug_objfile == objfile2
1160 || objfile2->separate_debug_objfile == objfile1))
1161 {
1162 map[j++] = preferred_obj_section (sect1, sect2);
1163 ++i;
1164 }
1165 else
1166 map[j++] = sect1;
1167 }
1168
1169 if (i < map_size)
1170 {
1171 gdb_assert (i == map_size - 1);
1172 map[j++] = map[i];
1173 }
1174
1175 /* The map should not have shrunk to less than half the original size. */
1176 gdb_assert (map_size / 2 <= j);
1177
1178 return j;
1179 }
1180
1181 /* Filter out overlapping sections, issuing a warning if any are found.
1182 Overlapping sections could really be overlay sections which we didn't
1183 classify as such in insert_section_p, or we could be dealing with a
1184 corrupt binary. */
1185
1186 static int
1187 filter_overlapping_sections (struct obj_section **map, int map_size)
1188 {
1189 int i, j;
1190
1191 for (i = 0, j = 0; i < map_size - 1; )
1192 {
1193 int k;
1194
1195 map[j++] = map[i];
1196 for (k = i + 1; k < map_size; k++)
1197 {
1198 struct obj_section *const sect1 = map[i];
1199 struct obj_section *const sect2 = map[k];
1200 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1201 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1202 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1203
1204 gdb_assert (sect1_addr <= sect2_addr);
1205
1206 if (sect1_endaddr <= sect2_addr)
1207 break;
1208 else
1209 {
1210 /* We have an overlap. Report it. */
1211
1212 struct objfile *const objf1 = sect1->objfile;
1213 struct objfile *const objf2 = sect2->objfile;
1214
1215 const struct bfd *const abfd1 = objf1->obfd;
1216 const struct bfd *const abfd2 = objf2->obfd;
1217
1218 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1219 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1220
1221 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1222
1223 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1224
1225 complaint (&symfile_complaints,
1226 _("unexpected overlap between:\n"
1227 " (A) section `%s' from `%s' [%s, %s)\n"
1228 " (B) section `%s' from `%s' [%s, %s).\n"
1229 "Will ignore section B"),
1230 bfd_section_name (abfd1, bfds1), objf1->name,
1231 paddress (gdbarch, sect1_addr),
1232 paddress (gdbarch, sect1_endaddr),
1233 bfd_section_name (abfd2, bfds2), objf2->name,
1234 paddress (gdbarch, sect2_addr),
1235 paddress (gdbarch, sect2_endaddr));
1236 }
1237 }
1238 i = k;
1239 }
1240
1241 if (i < map_size)
1242 {
1243 gdb_assert (i == map_size - 1);
1244 map[j++] = map[i];
1245 }
1246
1247 return j;
1248 }
1249
1250
1251 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1252 TLS, overlay and overlapping sections. */
1253
1254 static void
1255 update_section_map (struct program_space *pspace,
1256 struct obj_section ***pmap, int *pmap_size)
1257 {
1258 int alloc_size, map_size, i;
1259 struct obj_section *s, **map;
1260 struct objfile *objfile;
1261
1262 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1263
1264 map = *pmap;
1265 xfree (map);
1266
1267 alloc_size = 0;
1268 ALL_PSPACE_OBJFILES (pspace, objfile)
1269 ALL_OBJFILE_OSECTIONS (objfile, s)
1270 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1271 alloc_size += 1;
1272
1273 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1274 if (alloc_size == 0)
1275 {
1276 *pmap = NULL;
1277 *pmap_size = 0;
1278 return;
1279 }
1280
1281 map = xmalloc (alloc_size * sizeof (*map));
1282
1283 i = 0;
1284 ALL_PSPACE_OBJFILES (pspace, objfile)
1285 ALL_OBJFILE_OSECTIONS (objfile, s)
1286 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1287 map[i++] = s;
1288
1289 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1290 map_size = filter_debuginfo_sections(map, alloc_size);
1291 map_size = filter_overlapping_sections(map, map_size);
1292
1293 if (map_size < alloc_size)
1294 /* Some sections were eliminated. Trim excess space. */
1295 map = xrealloc (map, map_size * sizeof (*map));
1296 else
1297 gdb_assert (alloc_size == map_size);
1298
1299 *pmap = map;
1300 *pmap_size = map_size;
1301 }
1302
1303 /* Bsearch comparison function. */
1304
1305 static int
1306 bsearch_cmp (const void *key, const void *elt)
1307 {
1308 const CORE_ADDR pc = *(CORE_ADDR *) key;
1309 const struct obj_section *section = *(const struct obj_section **) elt;
1310
1311 if (pc < obj_section_addr (section))
1312 return -1;
1313 if (pc < obj_section_endaddr (section))
1314 return 0;
1315 return 1;
1316 }
1317
1318 /* Returns a section whose range includes PC or NULL if none found. */
1319
1320 struct obj_section *
1321 find_pc_section (CORE_ADDR pc)
1322 {
1323 struct objfile_pspace_info *pspace_info;
1324 struct obj_section *s, **sp;
1325
1326 /* Check for mapped overlay section first. */
1327 s = find_pc_mapped_section (pc);
1328 if (s)
1329 return s;
1330
1331 pspace_info = get_objfile_pspace_data (current_program_space);
1332 if (pspace_info->objfiles_changed_p != 0)
1333 {
1334 update_section_map (current_program_space,
1335 &pspace_info->sections,
1336 &pspace_info->num_sections);
1337
1338 /* Don't need updates to section map until objfiles are added,
1339 removed or relocated. */
1340 pspace_info->objfiles_changed_p = 0;
1341 }
1342
1343 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1344 bsearch be non-NULL. */
1345 if (pspace_info->sections == NULL)
1346 {
1347 gdb_assert (pspace_info->num_sections == 0);
1348 return NULL;
1349 }
1350
1351 sp = (struct obj_section **) bsearch (&pc,
1352 pspace_info->sections,
1353 pspace_info->num_sections,
1354 sizeof (*pspace_info->sections),
1355 bsearch_cmp);
1356 if (sp != NULL)
1357 return *sp;
1358 return NULL;
1359 }
1360
1361
1362 /* In SVR4, we recognize a trampoline by it's section name.
1363 That is, if the pc is in a section named ".plt" then we are in
1364 a trampoline. */
1365
1366 int
1367 in_plt_section (CORE_ADDR pc, char *name)
1368 {
1369 struct obj_section *s;
1370 int retval = 0;
1371
1372 s = find_pc_section (pc);
1373
1374 retval = (s != NULL
1375 && s->the_bfd_section->name != NULL
1376 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1377 return (retval);
1378 }
1379 \f
1380
1381 /* Keep a registry of per-objfile data-pointers required by other GDB
1382 modules. */
1383
1384 struct objfile_data
1385 {
1386 unsigned index;
1387 void (*save) (struct objfile *, void *);
1388 void (*free) (struct objfile *, void *);
1389 };
1390
1391 struct objfile_data_registration
1392 {
1393 struct objfile_data *data;
1394 struct objfile_data_registration *next;
1395 };
1396
1397 struct objfile_data_registry
1398 {
1399 struct objfile_data_registration *registrations;
1400 unsigned num_registrations;
1401 };
1402
1403 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1404
1405 const struct objfile_data *
1406 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1407 void (*free) (struct objfile *, void *))
1408 {
1409 struct objfile_data_registration **curr;
1410
1411 /* Append new registration. */
1412 for (curr = &objfile_data_registry.registrations;
1413 *curr != NULL; curr = &(*curr)->next);
1414
1415 *curr = XMALLOC (struct objfile_data_registration);
1416 (*curr)->next = NULL;
1417 (*curr)->data = XMALLOC (struct objfile_data);
1418 (*curr)->data->index = objfile_data_registry.num_registrations++;
1419 (*curr)->data->save = save;
1420 (*curr)->data->free = free;
1421
1422 return (*curr)->data;
1423 }
1424
1425 const struct objfile_data *
1426 register_objfile_data (void)
1427 {
1428 return register_objfile_data_with_cleanup (NULL, NULL);
1429 }
1430
1431 static void
1432 objfile_alloc_data (struct objfile *objfile)
1433 {
1434 gdb_assert (objfile->data == NULL);
1435 objfile->num_data = objfile_data_registry.num_registrations;
1436 objfile->data = XCALLOC (objfile->num_data, void *);
1437 }
1438
1439 static void
1440 objfile_free_data (struct objfile *objfile)
1441 {
1442 gdb_assert (objfile->data != NULL);
1443 clear_objfile_data (objfile);
1444 xfree (objfile->data);
1445 objfile->data = NULL;
1446 }
1447
1448 void
1449 clear_objfile_data (struct objfile *objfile)
1450 {
1451 struct objfile_data_registration *registration;
1452 int i;
1453
1454 gdb_assert (objfile->data != NULL);
1455
1456 /* Process all the save handlers. */
1457
1458 for (registration = objfile_data_registry.registrations, i = 0;
1459 i < objfile->num_data;
1460 registration = registration->next, i++)
1461 if (objfile->data[i] != NULL && registration->data->save != NULL)
1462 registration->data->save (objfile, objfile->data[i]);
1463
1464 /* Now process all the free handlers. */
1465
1466 for (registration = objfile_data_registry.registrations, i = 0;
1467 i < objfile->num_data;
1468 registration = registration->next, i++)
1469 if (objfile->data[i] != NULL && registration->data->free != NULL)
1470 registration->data->free (objfile, objfile->data[i]);
1471
1472 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1473 }
1474
1475 void
1476 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1477 void *value)
1478 {
1479 gdb_assert (data->index < objfile->num_data);
1480 objfile->data[data->index] = value;
1481 }
1482
1483 void *
1484 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1485 {
1486 gdb_assert (data->index < objfile->num_data);
1487 return objfile->data[data->index];
1488 }
1489
1490 /* Set objfiles_changed_p so section map will be rebuilt next time it
1491 is used. Called by reread_symbols. */
1492
1493 void
1494 objfiles_changed (void)
1495 {
1496 /* Rebuild section map next time we need it. */
1497 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1498 }
1499
1500 /* Add reference to ABFD. Returns ABFD. */
1501 struct bfd *
1502 gdb_bfd_ref (struct bfd *abfd)
1503 {
1504 int *p_refcount = bfd_usrdata (abfd);
1505
1506 if (p_refcount != NULL)
1507 {
1508 *p_refcount += 1;
1509 return abfd;
1510 }
1511
1512 p_refcount = xmalloc (sizeof (*p_refcount));
1513 *p_refcount = 1;
1514 bfd_usrdata (abfd) = p_refcount;
1515
1516 return abfd;
1517 }
1518
1519 /* Unreference and possibly close ABFD. */
1520 void
1521 gdb_bfd_unref (struct bfd *abfd)
1522 {
1523 int *p_refcount;
1524 char *name;
1525
1526 if (abfd == NULL)
1527 return;
1528
1529 p_refcount = bfd_usrdata (abfd);
1530
1531 /* Valid range for p_refcount: a pointer to int counter, which has a
1532 value of 1 (single owner) or 2 (shared). */
1533 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1534
1535 *p_refcount -= 1;
1536 if (*p_refcount > 0)
1537 return;
1538
1539 xfree (p_refcount);
1540 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1541
1542 name = bfd_get_filename (abfd);
1543 if (!bfd_close (abfd))
1544 warning (_("cannot close \"%s\": %s"),
1545 name, bfd_errmsg (bfd_get_error ()));
1546 xfree (name);
1547 }
1548
1549 /* Provide a prototype to silence -Wmissing-prototypes. */
1550 extern initialize_file_ftype _initialize_objfiles;
1551
1552 void
1553 _initialize_objfiles (void)
1554 {
1555 objfiles_pspace_data
1556 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1557 }
This page took 0.080858 seconds and 4 git commands to generate.