*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This file contains support routines for creating, manipulating, and
25 destroying objfile structures. */
26
27 #include "defs.h"
28 #include "bfd.h" /* Binary File Description */
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb-stabs.h"
33 #include "target.h"
34 #include "bcache.h"
35 #include "mdebugread.h"
36 #include "expression.h"
37 #include "parser-defs.h"
38
39 #include "gdb_assert.h"
40 #include <sys/types.h>
41 #include "gdb_stat.h"
42 #include <fcntl.h>
43 #include "gdb_obstack.h"
44 #include "gdb_string.h"
45 #include "hashtab.h"
46
47 #include "breakpoint.h"
48 #include "block.h"
49 #include "dictionary.h"
50 #include "source.h"
51 #include "addrmap.h"
52 #include "arch-utils.h"
53 #include "exec.h"
54 #include "observer.h"
55 #include "complaints.h"
56 #include "psymtab.h"
57 #include "solist.h"
58
59 /* Prototypes for local functions */
60
61 static void objfile_alloc_data (struct objfile *objfile);
62 static void objfile_free_data (struct objfile *objfile);
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile *current_objfile; /* For symbol file being read in */
68 struct objfile *rt_common_objfile; /* For runtime common symbols */
69
70 struct objfile_pspace_info
71 {
72 int objfiles_changed_p;
73 struct obj_section **sections;
74 int num_sections;
75 };
76
77 /* Per-program-space data key. */
78 static const struct program_space_data *objfiles_pspace_data;
79
80 static void
81 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
82 {
83 struct objfile_pspace_info *info;
84
85 info = program_space_data (pspace, objfiles_pspace_data);
86 if (info != NULL)
87 {
88 xfree (info->sections);
89 xfree (info);
90 }
91 }
92
93 /* Get the current svr4 data. If none is found yet, add it now. This
94 function always returns a valid object. */
95
96 static struct objfile_pspace_info *
97 get_objfile_pspace_data (struct program_space *pspace)
98 {
99 struct objfile_pspace_info *info;
100
101 info = program_space_data (pspace, objfiles_pspace_data);
102 if (info == NULL)
103 {
104 info = XZALLOC (struct objfile_pspace_info);
105 set_program_space_data (pspace, objfiles_pspace_data, info);
106 }
107
108 return info;
109 }
110
111 /* Records whether any objfiles appeared or disappeared since we last updated
112 address to obj section map. */
113
114 /* Locate all mappable sections of a BFD file.
115 objfile_p_char is a char * to get it through
116 bfd_map_over_sections; we cast it back to its proper type. */
117
118 /* Called via bfd_map_over_sections to build up the section table that
119 the objfile references. The objfile contains pointers to the start
120 of the table (objfile->sections) and to the first location after
121 the end of the table (objfile->sections_end). */
122
123 static void
124 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
125 void *objfile_p_char)
126 {
127 struct objfile *objfile = (struct objfile *) objfile_p_char;
128 struct obj_section section;
129 flagword aflag;
130
131 aflag = bfd_get_section_flags (abfd, asect);
132
133 if (!(aflag & SEC_ALLOC))
134 return;
135
136 if (0 == bfd_section_size (abfd, asect))
137 return;
138 section.objfile = objfile;
139 section.the_bfd_section = asect;
140 section.ovly_mapped = 0;
141 obstack_grow (&objfile->objfile_obstack,
142 (char *) &section, sizeof (section));
143 objfile->sections_end
144 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
145 }
146
147 /* Builds a section table for OBJFILE.
148 Returns 0 if OK, 1 on error (in which case bfd_error contains the
149 error).
150
151 Note that while we are building the table, which goes into the
152 psymbol obstack, we hijack the sections_end pointer to instead hold
153 a count of the number of sections. When bfd_map_over_sections
154 returns, this count is used to compute the pointer to the end of
155 the sections table, which then overwrites the count.
156
157 Also note that the OFFSET and OVLY_MAPPED in each table entry
158 are initialized to zero.
159
160 Also note that if anything else writes to the psymbol obstack while
161 we are building the table, we're pretty much hosed. */
162
163 int
164 build_objfile_section_table (struct objfile *objfile)
165 {
166 /* objfile->sections can be already set when reading a mapped symbol
167 file. I believe that we do need to rebuild the section table in
168 this case (we rebuild other things derived from the bfd), but we
169 can't free the old one (it's in the objfile_obstack). So we just
170 waste some memory. */
171
172 objfile->sections_end = 0;
173 bfd_map_over_sections (objfile->obfd,
174 add_to_objfile_sections, (void *) objfile);
175 objfile->sections = obstack_finish (&objfile->objfile_obstack);
176 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
177 return (0);
178 }
179
180 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
181 allocate a new objfile struct, fill it in as best we can, link it
182 into the list of all known objfiles, and return a pointer to the
183 new objfile struct.
184
185 The FLAGS word contains various bits (OBJF_*) that can be taken as
186 requests for specific operations. Other bits like OBJF_SHARED are
187 simply copied through to the new objfile flags member. */
188
189 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
190 by jv-lang.c, to create an artificial objfile used to hold
191 information about dynamically-loaded Java classes. Unfortunately,
192 that branch of this function doesn't get tested very frequently, so
193 it's prone to breakage. (E.g. at one time the name was set to NULL
194 in that situation, which broke a loop over all names in the dynamic
195 library loader.) If you change this function, please try to leave
196 things in a consistent state even if abfd is NULL. */
197
198 struct objfile *
199 allocate_objfile (bfd *abfd, int flags)
200 {
201 struct objfile *objfile;
202
203 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
204 objfile->psymbol_cache = psymbol_bcache_init ();
205 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
206 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
207 /* We could use obstack_specify_allocation here instead, but
208 gdb_obstack.h specifies the alloc/dealloc functions. */
209 obstack_init (&objfile->objfile_obstack);
210 terminate_minimal_symbol_table (objfile);
211
212 objfile_alloc_data (objfile);
213
214 /* Update the per-objfile information that comes from the bfd, ensuring
215 that any data that is reference is saved in the per-objfile data
216 region. */
217
218 objfile->obfd = gdb_bfd_ref (abfd);
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* Add this file onto the tail of the linked list of other such files. */
251
252 objfile->next = NULL;
253 if (object_files == NULL)
254 object_files = objfile;
255 else
256 {
257 struct objfile *last_one;
258
259 for (last_one = object_files;
260 last_one->next;
261 last_one = last_one->next);
262 last_one->next = objfile;
263 }
264
265 /* Save passed in flag bits. */
266 objfile->flags |= flags;
267
268 /* Rebuild section map next time we need it. */
269 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
270
271 return objfile;
272 }
273
274 /* Retrieve the gdbarch associated with OBJFILE. */
275 struct gdbarch *
276 get_objfile_arch (struct objfile *objfile)
277 {
278 return objfile->gdbarch;
279 }
280
281 /* Initialize entry point information for this objfile. */
282
283 void
284 init_entry_point_info (struct objfile *objfile)
285 {
286 /* Save startup file's range of PC addresses to help blockframe.c
287 decide where the bottom of the stack is. */
288
289 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
290 {
291 /* Executable file -- record its entry point so we'll recognize
292 the startup file because it contains the entry point. */
293 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
294 objfile->ei.entry_point_p = 1;
295 }
296 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
297 && bfd_get_start_address (objfile->obfd) != 0)
298 {
299 /* Some shared libraries may have entry points set and be
300 runnable. There's no clear way to indicate this, so just check
301 for values other than zero. */
302 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
303 objfile->ei.entry_point_p = 1;
304 }
305 else
306 {
307 /* Examination of non-executable.o files. Short-circuit this stuff. */
308 objfile->ei.entry_point_p = 0;
309 }
310 }
311
312 /* If there is a valid and known entry point, function fills *ENTRY_P with it
313 and returns non-zero; otherwise it returns zero. */
314
315 int
316 entry_point_address_query (CORE_ADDR *entry_p)
317 {
318 struct gdbarch *gdbarch;
319 CORE_ADDR entry_point;
320
321 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
322 return 0;
323
324 gdbarch = get_objfile_arch (symfile_objfile);
325
326 entry_point = symfile_objfile->ei.entry_point;
327
328 /* Make certain that the address points at real code, and not a
329 function descriptor. */
330 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
331 &current_target);
332
333 /* Remove any ISA markers, so that this matches entries in the
334 symbol table. */
335 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
336
337 *entry_p = entry_point;
338 return 1;
339 }
340
341 /* Get current entry point address. Call error if it is not known. */
342
343 CORE_ADDR
344 entry_point_address (void)
345 {
346 CORE_ADDR retval;
347
348 if (!entry_point_address_query (&retval))
349 error (_("Entry point address is not known."));
350
351 return retval;
352 }
353
354 /* Create the terminating entry of OBJFILE's minimal symbol table.
355 If OBJFILE->msymbols is zero, allocate a single entry from
356 OBJFILE->objfile_obstack; otherwise, just initialize
357 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
358 void
359 terminate_minimal_symbol_table (struct objfile *objfile)
360 {
361 if (! objfile->msymbols)
362 objfile->msymbols = ((struct minimal_symbol *)
363 obstack_alloc (&objfile->objfile_obstack,
364 sizeof (objfile->msymbols[0])));
365
366 {
367 struct minimal_symbol *m
368 = &objfile->msymbols[objfile->minimal_symbol_count];
369
370 memset (m, 0, sizeof (*m));
371 /* Don't rely on these enumeration values being 0's. */
372 MSYMBOL_TYPE (m) = mst_unknown;
373 SYMBOL_SET_LANGUAGE (m, language_unknown);
374 }
375 }
376
377 /* Iterator on PARENT and every separate debug objfile of PARENT.
378 The usage pattern is:
379 for (objfile = parent;
380 objfile;
381 objfile = objfile_separate_debug_iterate (parent, objfile))
382 ...
383 */
384
385 struct objfile *
386 objfile_separate_debug_iterate (const struct objfile *parent,
387 const struct objfile *objfile)
388 {
389 struct objfile *res;
390
391 /* If any, return the first child. */
392 res = objfile->separate_debug_objfile;
393 if (res)
394 return res;
395
396 /* Common case where there is no separate debug objfile. */
397 if (objfile == parent)
398 return NULL;
399
400 /* Return the brother if any. Note that we don't iterate on brothers of
401 the parents. */
402 res = objfile->separate_debug_objfile_link;
403 if (res)
404 return res;
405
406 for (res = objfile->separate_debug_objfile_backlink;
407 res != parent;
408 res = res->separate_debug_objfile_backlink)
409 {
410 gdb_assert (res != NULL);
411 if (res->separate_debug_objfile_link)
412 return res->separate_debug_objfile_link;
413 }
414 return NULL;
415 }
416
417 /* Put one object file before a specified on in the global list.
418 This can be used to make sure an object file is destroyed before
419 another when using ALL_OBJFILES_SAFE to free all objfiles. */
420 void
421 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
422 {
423 struct objfile **objp;
424
425 unlink_objfile (objfile);
426
427 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
428 {
429 if (*objp == before_this)
430 {
431 objfile->next = *objp;
432 *objp = objfile;
433 return;
434 }
435 }
436
437 internal_error (__FILE__, __LINE__,
438 _("put_objfile_before: before objfile not in list"));
439 }
440
441 /* Put OBJFILE at the front of the list. */
442
443 void
444 objfile_to_front (struct objfile *objfile)
445 {
446 struct objfile **objp;
447 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
448 {
449 if (*objp == objfile)
450 {
451 /* Unhook it from where it is. */
452 *objp = objfile->next;
453 /* Put it in the front. */
454 objfile->next = object_files;
455 object_files = objfile;
456 break;
457 }
458 }
459 }
460
461 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
462 list.
463
464 It is not a bug, or error, to call this function if OBJFILE is not known
465 to be in the current list. This is done in the case of mapped objfiles,
466 for example, just to ensure that the mapped objfile doesn't appear twice
467 in the list. Since the list is threaded, linking in a mapped objfile
468 twice would create a circular list.
469
470 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
471 unlinking it, just to ensure that we have completely severed any linkages
472 between the OBJFILE and the list. */
473
474 void
475 unlink_objfile (struct objfile *objfile)
476 {
477 struct objfile **objpp;
478
479 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
480 {
481 if (*objpp == objfile)
482 {
483 *objpp = (*objpp)->next;
484 objfile->next = NULL;
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("unlink_objfile: objfile already unlinked"));
491 }
492
493 /* Add OBJFILE as a separate debug objfile of PARENT. */
494
495 void
496 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
497 {
498 gdb_assert (objfile && parent);
499
500 /* Must not be already in a list. */
501 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
502 gdb_assert (objfile->separate_debug_objfile_link == NULL);
503
504 objfile->separate_debug_objfile_backlink = parent;
505 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
506 parent->separate_debug_objfile = objfile;
507
508 /* Put the separate debug object before the normal one, this is so that
509 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
510 put_objfile_before (objfile, parent);
511 }
512
513 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
514 itself. */
515
516 void
517 free_objfile_separate_debug (struct objfile *objfile)
518 {
519 struct objfile *child;
520
521 for (child = objfile->separate_debug_objfile; child;)
522 {
523 struct objfile *next_child = child->separate_debug_objfile_link;
524 free_objfile (child);
525 child = next_child;
526 }
527 }
528
529 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
530 that as much as possible is allocated on the objfile_obstack
531 so that the memory can be efficiently freed.
532
533 Things which we do NOT free because they are not in malloc'd memory
534 or not in memory specific to the objfile include:
535
536 objfile -> sf
537
538 FIXME: If the objfile is using reusable symbol information (via mmalloc),
539 then we need to take into account the fact that more than one process
540 may be using the symbol information at the same time (when mmalloc is
541 extended to support cooperative locking). When more than one process
542 is using the mapped symbol info, we need to be more careful about when
543 we free objects in the reusable area. */
544
545 void
546 free_objfile (struct objfile *objfile)
547 {
548 /* Free all separate debug objfiles. */
549 free_objfile_separate_debug (objfile);
550
551 if (objfile->separate_debug_objfile_backlink)
552 {
553 /* We freed the separate debug file, make sure the base objfile
554 doesn't reference it. */
555 struct objfile *child;
556
557 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
558
559 if (child == objfile)
560 {
561 /* OBJFILE is the first child. */
562 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
563 objfile->separate_debug_objfile_link;
564 }
565 else
566 {
567 /* Find OBJFILE in the list. */
568 while (1)
569 {
570 if (child->separate_debug_objfile_link == objfile)
571 {
572 child->separate_debug_objfile_link =
573 objfile->separate_debug_objfile_link;
574 break;
575 }
576 child = child->separate_debug_objfile_link;
577 gdb_assert (child);
578 }
579 }
580 }
581
582 /* Remove any references to this objfile in the global value
583 lists. */
584 preserve_values (objfile);
585
586 /* First do any symbol file specific actions required when we are
587 finished with a particular symbol file. Note that if the objfile
588 is using reusable symbol information (via mmalloc) then each of
589 these routines is responsible for doing the correct thing, either
590 freeing things which are valid only during this particular gdb
591 execution, or leaving them to be reused during the next one. */
592
593 if (objfile->sf != NULL)
594 {
595 (*objfile->sf->sym_finish) (objfile);
596 }
597
598 /* Discard any data modules have associated with the objfile. */
599 objfile_free_data (objfile);
600
601 gdb_bfd_unref (objfile->obfd);
602
603 /* Remove it from the chain of all objfiles. */
604
605 unlink_objfile (objfile);
606
607 if (objfile == symfile_objfile)
608 symfile_objfile = NULL;
609
610 if (objfile == rt_common_objfile)
611 rt_common_objfile = NULL;
612
613 /* Before the symbol table code was redone to make it easier to
614 selectively load and remove information particular to a specific
615 linkage unit, gdb used to do these things whenever the monolithic
616 symbol table was blown away. How much still needs to be done
617 is unknown, but we play it safe for now and keep each action until
618 it is shown to be no longer needed. */
619
620 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
621 for example), so we need to call this here. */
622 clear_pc_function_cache ();
623
624 /* Clear globals which might have pointed into a removed objfile.
625 FIXME: It's not clear which of these are supposed to persist
626 between expressions and which ought to be reset each time. */
627 expression_context_block = NULL;
628 innermost_block = NULL;
629
630 /* Check to see if the current_source_symtab belongs to this objfile,
631 and if so, call clear_current_source_symtab_and_line. */
632
633 {
634 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
635
636 if (cursal.symtab && cursal.symtab->objfile == objfile)
637 clear_current_source_symtab_and_line ();
638 }
639
640 forget_cached_source_info_for_objfile (objfile);
641
642 /* The last thing we do is free the objfile struct itself. */
643
644 xfree (objfile->name);
645 if (objfile->global_psymbols.list)
646 xfree (objfile->global_psymbols.list);
647 if (objfile->static_psymbols.list)
648 xfree (objfile->static_psymbols.list);
649 /* Free the obstacks for non-reusable objfiles. */
650 psymbol_bcache_free (objfile->psymbol_cache);
651 bcache_xfree (objfile->macro_cache);
652 bcache_xfree (objfile->filename_cache);
653 if (objfile->demangled_names_hash)
654 htab_delete (objfile->demangled_names_hash);
655 obstack_free (&objfile->objfile_obstack, 0);
656
657 /* Rebuild section map next time we need it. */
658 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
659
660 xfree (objfile);
661 }
662
663 static void
664 do_free_objfile_cleanup (void *obj)
665 {
666 free_objfile (obj);
667 }
668
669 struct cleanup *
670 make_cleanup_free_objfile (struct objfile *obj)
671 {
672 return make_cleanup (do_free_objfile_cleanup, obj);
673 }
674
675 /* Free all the object files at once and clean up their users. */
676
677 void
678 free_all_objfiles (void)
679 {
680 struct objfile *objfile, *temp;
681 struct so_list *so;
682
683 /* Any objfile referencewould become stale. */
684 for (so = master_so_list (); so; so = so->next)
685 gdb_assert (so->objfile == NULL);
686
687 ALL_OBJFILES_SAFE (objfile, temp)
688 {
689 free_objfile (objfile);
690 }
691 clear_symtab_users (0);
692 }
693 \f
694 /* A helper function for objfile_relocate1 that relocates a single
695 symbol. */
696
697 static void
698 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
699 struct section_offsets *delta)
700 {
701 fixup_symbol_section (sym, objfile);
702
703 /* The RS6000 code from which this was taken skipped
704 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
705 But I'm leaving out that test, on the theory that
706 they can't possibly pass the tests below. */
707 if ((SYMBOL_CLASS (sym) == LOC_LABEL
708 || SYMBOL_CLASS (sym) == LOC_STATIC)
709 && SYMBOL_SECTION (sym) >= 0)
710 {
711 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
712 }
713 }
714
715 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
716 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
717 Return non-zero iff any change happened. */
718
719 static int
720 objfile_relocate1 (struct objfile *objfile,
721 struct section_offsets *new_offsets)
722 {
723 struct obj_section *s;
724 struct section_offsets *delta =
725 ((struct section_offsets *)
726 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
727
728 int i;
729 int something_changed = 0;
730
731 for (i = 0; i < objfile->num_sections; ++i)
732 {
733 delta->offsets[i] =
734 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
735 if (ANOFFSET (delta, i) != 0)
736 something_changed = 1;
737 }
738 if (!something_changed)
739 return 0;
740
741 /* OK, get all the symtabs. */
742 {
743 struct symtab *s;
744
745 ALL_OBJFILE_SYMTABS (objfile, s)
746 {
747 struct linetable *l;
748 struct blockvector *bv;
749 int i;
750
751 /* First the line table. */
752 l = LINETABLE (s);
753 if (l)
754 {
755 for (i = 0; i < l->nitems; ++i)
756 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
757 }
758
759 /* Don't relocate a shared blockvector more than once. */
760 if (!s->primary)
761 continue;
762
763 bv = BLOCKVECTOR (s);
764 if (BLOCKVECTOR_MAP (bv))
765 addrmap_relocate (BLOCKVECTOR_MAP (bv),
766 ANOFFSET (delta, s->block_line_section));
767
768 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
769 {
770 struct block *b;
771 struct symbol *sym;
772 struct dict_iterator iter;
773
774 b = BLOCKVECTOR_BLOCK (bv, i);
775 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
776 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
777
778 ALL_BLOCK_SYMBOLS (b, iter, sym)
779 {
780 relocate_one_symbol (sym, objfile, delta);
781 }
782 }
783 }
784 }
785
786 /* Relocate isolated symbols. */
787 {
788 struct symbol *iter;
789
790 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
791 relocate_one_symbol (iter, objfile, delta);
792 }
793
794 if (objfile->psymtabs_addrmap)
795 addrmap_relocate (objfile->psymtabs_addrmap,
796 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
797
798 if (objfile->sf)
799 objfile->sf->qf->relocate (objfile, new_offsets, delta);
800
801 {
802 struct minimal_symbol *msym;
803
804 ALL_OBJFILE_MSYMBOLS (objfile, msym)
805 if (SYMBOL_SECTION (msym) >= 0)
806 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
807 }
808 /* Relocating different sections by different amounts may cause the symbols
809 to be out of order. */
810 msymbols_sort (objfile);
811
812 if (objfile->ei.entry_point_p)
813 {
814 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
815 only as a fallback. */
816 struct obj_section *s;
817 s = find_pc_section (objfile->ei.entry_point);
818 if (s)
819 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
820 else
821 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
822 }
823
824 {
825 int i;
826
827 for (i = 0; i < objfile->num_sections; ++i)
828 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
829 }
830
831 /* Rebuild section map next time we need it. */
832 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
833
834 /* Update the table in exec_ops, used to read memory. */
835 ALL_OBJFILE_OSECTIONS (objfile, s)
836 {
837 int idx = s->the_bfd_section->index;
838
839 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
840 obj_section_addr (s));
841 }
842
843 /* Data changed. */
844 return 1;
845 }
846
847 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
848 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
849
850 The number and ordering of sections does differ between the two objfiles.
851 Only their names match. Also the file offsets will differ (objfile being
852 possibly prelinked but separate_debug_objfile is probably not prelinked) but
853 the in-memory absolute address as specified by NEW_OFFSETS must match both
854 files. */
855
856 void
857 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
858 {
859 struct objfile *debug_objfile;
860 int changed = 0;
861
862 changed |= objfile_relocate1 (objfile, new_offsets);
863
864 for (debug_objfile = objfile->separate_debug_objfile;
865 debug_objfile;
866 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
867 {
868 struct section_addr_info *objfile_addrs;
869 struct section_offsets *new_debug_offsets;
870 struct cleanup *my_cleanups;
871
872 objfile_addrs = build_section_addr_info_from_objfile (objfile);
873 my_cleanups = make_cleanup (xfree, objfile_addrs);
874
875 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
876 relative ones must be already created according to debug_objfile. */
877
878 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
879
880 gdb_assert (debug_objfile->num_sections
881 == bfd_count_sections (debug_objfile->obfd));
882 new_debug_offsets =
883 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
884 make_cleanup (xfree, new_debug_offsets);
885 relative_addr_info_to_section_offsets (new_debug_offsets,
886 debug_objfile->num_sections,
887 objfile_addrs);
888
889 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
890
891 do_cleanups (my_cleanups);
892 }
893
894 /* Relocate breakpoints as necessary, after things are relocated. */
895 if (changed)
896 breakpoint_re_set ();
897 }
898 \f
899 /* Return non-zero if OBJFILE has partial symbols. */
900
901 int
902 objfile_has_partial_symbols (struct objfile *objfile)
903 {
904 if (!objfile->sf)
905 return 0;
906 /* If we have not read psymbols, but we have a function capable of
907 reading them, then that is an indication that they are in fact
908 available. */
909 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0)
910 return objfile->sf->sym_read_psymbols != NULL;
911 return objfile->sf->qf->has_symbols (objfile);
912 }
913
914 /* Return non-zero if OBJFILE has full symbols. */
915
916 int
917 objfile_has_full_symbols (struct objfile *objfile)
918 {
919 return objfile->symtabs != NULL;
920 }
921
922 /* Return non-zero if OBJFILE has full or partial symbols, either directly
923 or through a separate debug file. */
924
925 int
926 objfile_has_symbols (struct objfile *objfile)
927 {
928 struct objfile *o;
929
930 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
931 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
932 return 1;
933 return 0;
934 }
935
936
937 /* Many places in gdb want to test just to see if we have any partial
938 symbols available. This function returns zero if none are currently
939 available, nonzero otherwise. */
940
941 int
942 have_partial_symbols (void)
943 {
944 struct objfile *ofp;
945
946 ALL_OBJFILES (ofp)
947 {
948 if (objfile_has_partial_symbols (ofp))
949 return 1;
950 }
951 return 0;
952 }
953
954 /* Many places in gdb want to test just to see if we have any full
955 symbols available. This function returns zero if none are currently
956 available, nonzero otherwise. */
957
958 int
959 have_full_symbols (void)
960 {
961 struct objfile *ofp;
962
963 ALL_OBJFILES (ofp)
964 {
965 if (objfile_has_full_symbols (ofp))
966 return 1;
967 }
968 return 0;
969 }
970
971
972 /* This operations deletes all objfile entries that represent solibs that
973 weren't explicitly loaded by the user, via e.g., the add-symbol-file
974 command. */
975
976 void
977 objfile_purge_solibs (void)
978 {
979 struct objfile *objf;
980 struct objfile *temp;
981
982 ALL_OBJFILES_SAFE (objf, temp)
983 {
984 /* We assume that the solib package has been purged already, or will
985 be soon. */
986
987 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
988 free_objfile (objf);
989 }
990 }
991
992
993 /* Many places in gdb want to test just to see if we have any minimal
994 symbols available. This function returns zero if none are currently
995 available, nonzero otherwise. */
996
997 int
998 have_minimal_symbols (void)
999 {
1000 struct objfile *ofp;
1001
1002 ALL_OBJFILES (ofp)
1003 {
1004 if (ofp->minimal_symbol_count > 0)
1005 {
1006 return 1;
1007 }
1008 }
1009 return 0;
1010 }
1011
1012 /* Qsort comparison function. */
1013
1014 static int
1015 qsort_cmp (const void *a, const void *b)
1016 {
1017 const struct obj_section *sect1 = *(const struct obj_section **) a;
1018 const struct obj_section *sect2 = *(const struct obj_section **) b;
1019 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1020 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1021
1022 if (sect1_addr < sect2_addr)
1023 return -1;
1024 else if (sect1_addr > sect2_addr)
1025 return 1;
1026 else
1027 {
1028 /* Sections are at the same address. This could happen if
1029 A) we have an objfile and a separate debuginfo.
1030 B) we are confused, and have added sections without proper relocation,
1031 or something like that. */
1032
1033 const struct objfile *const objfile1 = sect1->objfile;
1034 const struct objfile *const objfile2 = sect2->objfile;
1035
1036 if (objfile1->separate_debug_objfile == objfile2
1037 || objfile2->separate_debug_objfile == objfile1)
1038 {
1039 /* Case A. The ordering doesn't matter: separate debuginfo files
1040 will be filtered out later. */
1041
1042 return 0;
1043 }
1044
1045 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1046 triage. This section could be slow (since we iterate over all
1047 objfiles in each call to qsort_cmp), but this shouldn't happen
1048 very often (GDB is already in a confused state; one hopes this
1049 doesn't happen at all). If you discover that significant time is
1050 spent in the loops below, do 'set complaints 100' and examine the
1051 resulting complaints. */
1052
1053 if (objfile1 == objfile2)
1054 {
1055 /* Both sections came from the same objfile. We are really confused.
1056 Sort on sequence order of sections within the objfile. */
1057
1058 const struct obj_section *osect;
1059
1060 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1061 if (osect == sect1)
1062 return -1;
1063 else if (osect == sect2)
1064 return 1;
1065
1066 /* We should have found one of the sections before getting here. */
1067 gdb_assert_not_reached ("section not found");
1068 }
1069 else
1070 {
1071 /* Sort on sequence number of the objfile in the chain. */
1072
1073 const struct objfile *objfile;
1074
1075 ALL_OBJFILES (objfile)
1076 if (objfile == objfile1)
1077 return -1;
1078 else if (objfile == objfile2)
1079 return 1;
1080
1081 /* We should have found one of the objfiles before getting here. */
1082 gdb_assert_not_reached ("objfile not found");
1083 }
1084 }
1085
1086 /* Unreachable. */
1087 gdb_assert_not_reached ("unexpected code path");
1088 return 0;
1089 }
1090
1091 /* Select "better" obj_section to keep. We prefer the one that came from
1092 the real object, rather than the one from separate debuginfo.
1093 Most of the time the two sections are exactly identical, but with
1094 prelinking the .rel.dyn section in the real object may have different
1095 size. */
1096
1097 static struct obj_section *
1098 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1099 {
1100 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1101 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1102 || (b->objfile->separate_debug_objfile == a->objfile));
1103 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1104 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1105
1106 if (a->objfile->separate_debug_objfile != NULL)
1107 return a;
1108 return b;
1109 }
1110
1111 /* Return 1 if SECTION should be inserted into the section map.
1112 We want to insert only non-overlay and non-TLS section. */
1113
1114 static int
1115 insert_section_p (const struct bfd *abfd,
1116 const struct bfd_section *section)
1117 {
1118 const bfd_vma lma = bfd_section_lma (abfd, section);
1119
1120 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1121 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1122 /* This is an overlay section. IN_MEMORY check is needed to avoid
1123 discarding sections from the "system supplied DSO" (aka vdso)
1124 on some Linux systems (e.g. Fedora 11). */
1125 return 0;
1126 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1127 /* This is a TLS section. */
1128 return 0;
1129
1130 return 1;
1131 }
1132
1133 /* Filter out overlapping sections where one section came from the real
1134 objfile, and the other from a separate debuginfo file.
1135 Return the size of table after redundant sections have been eliminated. */
1136
1137 static int
1138 filter_debuginfo_sections (struct obj_section **map, int map_size)
1139 {
1140 int i, j;
1141
1142 for (i = 0, j = 0; i < map_size - 1; i++)
1143 {
1144 struct obj_section *const sect1 = map[i];
1145 struct obj_section *const sect2 = map[i + 1];
1146 const struct objfile *const objfile1 = sect1->objfile;
1147 const struct objfile *const objfile2 = sect2->objfile;
1148 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1149 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1150
1151 if (sect1_addr == sect2_addr
1152 && (objfile1->separate_debug_objfile == objfile2
1153 || objfile2->separate_debug_objfile == objfile1))
1154 {
1155 map[j++] = preferred_obj_section (sect1, sect2);
1156 ++i;
1157 }
1158 else
1159 map[j++] = sect1;
1160 }
1161
1162 if (i < map_size)
1163 {
1164 gdb_assert (i == map_size - 1);
1165 map[j++] = map[i];
1166 }
1167
1168 /* The map should not have shrunk to less than half the original size. */
1169 gdb_assert (map_size / 2 <= j);
1170
1171 return j;
1172 }
1173
1174 /* Filter out overlapping sections, issuing a warning if any are found.
1175 Overlapping sections could really be overlay sections which we didn't
1176 classify as such in insert_section_p, or we could be dealing with a
1177 corrupt binary. */
1178
1179 static int
1180 filter_overlapping_sections (struct obj_section **map, int map_size)
1181 {
1182 int i, j;
1183
1184 for (i = 0, j = 0; i < map_size - 1; )
1185 {
1186 int k;
1187
1188 map[j++] = map[i];
1189 for (k = i + 1; k < map_size; k++)
1190 {
1191 struct obj_section *const sect1 = map[i];
1192 struct obj_section *const sect2 = map[k];
1193 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1194 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1195 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1196
1197 gdb_assert (sect1_addr <= sect2_addr);
1198
1199 if (sect1_endaddr <= sect2_addr)
1200 break;
1201 else
1202 {
1203 /* We have an overlap. Report it. */
1204
1205 struct objfile *const objf1 = sect1->objfile;
1206 struct objfile *const objf2 = sect2->objfile;
1207
1208 const struct bfd *const abfd1 = objf1->obfd;
1209 const struct bfd *const abfd2 = objf2->obfd;
1210
1211 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1212 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1213
1214 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1215
1216 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1217
1218 complaint (&symfile_complaints,
1219 _("unexpected overlap between:\n"
1220 " (A) section `%s' from `%s' [%s, %s)\n"
1221 " (B) section `%s' from `%s' [%s, %s).\n"
1222 "Will ignore section B"),
1223 bfd_section_name (abfd1, bfds1), objf1->name,
1224 paddress (gdbarch, sect1_addr),
1225 paddress (gdbarch, sect1_endaddr),
1226 bfd_section_name (abfd2, bfds2), objf2->name,
1227 paddress (gdbarch, sect2_addr),
1228 paddress (gdbarch, sect2_endaddr));
1229 }
1230 }
1231 i = k;
1232 }
1233
1234 if (i < map_size)
1235 {
1236 gdb_assert (i == map_size - 1);
1237 map[j++] = map[i];
1238 }
1239
1240 return j;
1241 }
1242
1243
1244 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1245 TLS, overlay and overlapping sections. */
1246
1247 static void
1248 update_section_map (struct program_space *pspace,
1249 struct obj_section ***pmap, int *pmap_size)
1250 {
1251 int alloc_size, map_size, i;
1252 struct obj_section *s, **map;
1253 struct objfile *objfile;
1254
1255 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1256
1257 map = *pmap;
1258 xfree (map);
1259
1260 alloc_size = 0;
1261 ALL_PSPACE_OBJFILES (pspace, objfile)
1262 ALL_OBJFILE_OSECTIONS (objfile, s)
1263 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1264 alloc_size += 1;
1265
1266 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1267 if (alloc_size == 0)
1268 {
1269 *pmap = NULL;
1270 *pmap_size = 0;
1271 return;
1272 }
1273
1274 map = xmalloc (alloc_size * sizeof (*map));
1275
1276 i = 0;
1277 ALL_PSPACE_OBJFILES (pspace, objfile)
1278 ALL_OBJFILE_OSECTIONS (objfile, s)
1279 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1280 map[i++] = s;
1281
1282 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1283 map_size = filter_debuginfo_sections(map, alloc_size);
1284 map_size = filter_overlapping_sections(map, map_size);
1285
1286 if (map_size < alloc_size)
1287 /* Some sections were eliminated. Trim excess space. */
1288 map = xrealloc (map, map_size * sizeof (*map));
1289 else
1290 gdb_assert (alloc_size == map_size);
1291
1292 *pmap = map;
1293 *pmap_size = map_size;
1294 }
1295
1296 /* Bsearch comparison function. */
1297
1298 static int
1299 bsearch_cmp (const void *key, const void *elt)
1300 {
1301 const CORE_ADDR pc = *(CORE_ADDR *) key;
1302 const struct obj_section *section = *(const struct obj_section **) elt;
1303
1304 if (pc < obj_section_addr (section))
1305 return -1;
1306 if (pc < obj_section_endaddr (section))
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Returns a section whose range includes PC or NULL if none found. */
1312
1313 struct obj_section *
1314 find_pc_section (CORE_ADDR pc)
1315 {
1316 struct objfile_pspace_info *pspace_info;
1317 struct obj_section *s, **sp;
1318
1319 /* Check for mapped overlay section first. */
1320 s = find_pc_mapped_section (pc);
1321 if (s)
1322 return s;
1323
1324 pspace_info = get_objfile_pspace_data (current_program_space);
1325 if (pspace_info->objfiles_changed_p != 0)
1326 {
1327 update_section_map (current_program_space,
1328 &pspace_info->sections,
1329 &pspace_info->num_sections);
1330
1331 /* Don't need updates to section map until objfiles are added,
1332 removed or relocated. */
1333 pspace_info->objfiles_changed_p = 0;
1334 }
1335
1336 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1337 bsearch be non-NULL. */
1338 if (pspace_info->sections == NULL)
1339 {
1340 gdb_assert (pspace_info->num_sections == 0);
1341 return NULL;
1342 }
1343
1344 sp = (struct obj_section **) bsearch (&pc,
1345 pspace_info->sections,
1346 pspace_info->num_sections,
1347 sizeof (*pspace_info->sections),
1348 bsearch_cmp);
1349 if (sp != NULL)
1350 return *sp;
1351 return NULL;
1352 }
1353
1354
1355 /* In SVR4, we recognize a trampoline by it's section name.
1356 That is, if the pc is in a section named ".plt" then we are in
1357 a trampoline. */
1358
1359 int
1360 in_plt_section (CORE_ADDR pc, char *name)
1361 {
1362 struct obj_section *s;
1363 int retval = 0;
1364
1365 s = find_pc_section (pc);
1366
1367 retval = (s != NULL
1368 && s->the_bfd_section->name != NULL
1369 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1370 return (retval);
1371 }
1372 \f
1373
1374 /* Keep a registry of per-objfile data-pointers required by other GDB
1375 modules. */
1376
1377 struct objfile_data
1378 {
1379 unsigned index;
1380 void (*save) (struct objfile *, void *);
1381 void (*free) (struct objfile *, void *);
1382 };
1383
1384 struct objfile_data_registration
1385 {
1386 struct objfile_data *data;
1387 struct objfile_data_registration *next;
1388 };
1389
1390 struct objfile_data_registry
1391 {
1392 struct objfile_data_registration *registrations;
1393 unsigned num_registrations;
1394 };
1395
1396 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1397
1398 const struct objfile_data *
1399 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1400 void (*free) (struct objfile *, void *))
1401 {
1402 struct objfile_data_registration **curr;
1403
1404 /* Append new registration. */
1405 for (curr = &objfile_data_registry.registrations;
1406 *curr != NULL; curr = &(*curr)->next);
1407
1408 *curr = XMALLOC (struct objfile_data_registration);
1409 (*curr)->next = NULL;
1410 (*curr)->data = XMALLOC (struct objfile_data);
1411 (*curr)->data->index = objfile_data_registry.num_registrations++;
1412 (*curr)->data->save = save;
1413 (*curr)->data->free = free;
1414
1415 return (*curr)->data;
1416 }
1417
1418 const struct objfile_data *
1419 register_objfile_data (void)
1420 {
1421 return register_objfile_data_with_cleanup (NULL, NULL);
1422 }
1423
1424 static void
1425 objfile_alloc_data (struct objfile *objfile)
1426 {
1427 gdb_assert (objfile->data == NULL);
1428 objfile->num_data = objfile_data_registry.num_registrations;
1429 objfile->data = XCALLOC (objfile->num_data, void *);
1430 }
1431
1432 static void
1433 objfile_free_data (struct objfile *objfile)
1434 {
1435 gdb_assert (objfile->data != NULL);
1436 clear_objfile_data (objfile);
1437 xfree (objfile->data);
1438 objfile->data = NULL;
1439 }
1440
1441 void
1442 clear_objfile_data (struct objfile *objfile)
1443 {
1444 struct objfile_data_registration *registration;
1445 int i;
1446
1447 gdb_assert (objfile->data != NULL);
1448
1449 /* Process all the save handlers. */
1450
1451 for (registration = objfile_data_registry.registrations, i = 0;
1452 i < objfile->num_data;
1453 registration = registration->next, i++)
1454 if (objfile->data[i] != NULL && registration->data->save != NULL)
1455 registration->data->save (objfile, objfile->data[i]);
1456
1457 /* Now process all the free handlers. */
1458
1459 for (registration = objfile_data_registry.registrations, i = 0;
1460 i < objfile->num_data;
1461 registration = registration->next, i++)
1462 if (objfile->data[i] != NULL && registration->data->free != NULL)
1463 registration->data->free (objfile, objfile->data[i]);
1464
1465 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1466 }
1467
1468 void
1469 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1470 void *value)
1471 {
1472 gdb_assert (data->index < objfile->num_data);
1473 objfile->data[data->index] = value;
1474 }
1475
1476 void *
1477 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1478 {
1479 gdb_assert (data->index < objfile->num_data);
1480 return objfile->data[data->index];
1481 }
1482
1483 /* Set objfiles_changed_p so section map will be rebuilt next time it
1484 is used. Called by reread_symbols. */
1485
1486 void
1487 objfiles_changed (void)
1488 {
1489 /* Rebuild section map next time we need it. */
1490 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1491 }
1492
1493 /* Close ABFD, and warn if that fails. */
1494
1495 int
1496 gdb_bfd_close_or_warn (struct bfd *abfd)
1497 {
1498 int ret;
1499 char *name = bfd_get_filename (abfd);
1500
1501 ret = bfd_close (abfd);
1502
1503 if (!ret)
1504 warning (_("cannot close \"%s\": %s"),
1505 name, bfd_errmsg (bfd_get_error ()));
1506
1507 return ret;
1508 }
1509
1510 /* Add reference to ABFD. Returns ABFD. */
1511 struct bfd *
1512 gdb_bfd_ref (struct bfd *abfd)
1513 {
1514 int *p_refcount;
1515
1516 if (abfd == NULL)
1517 return NULL;
1518
1519 p_refcount = bfd_usrdata (abfd);
1520
1521 if (p_refcount != NULL)
1522 {
1523 *p_refcount += 1;
1524 return abfd;
1525 }
1526
1527 p_refcount = xmalloc (sizeof (*p_refcount));
1528 *p_refcount = 1;
1529 bfd_usrdata (abfd) = p_refcount;
1530
1531 return abfd;
1532 }
1533
1534 /* Unreference and possibly close ABFD. */
1535 void
1536 gdb_bfd_unref (struct bfd *abfd)
1537 {
1538 int *p_refcount;
1539 char *name;
1540
1541 if (abfd == NULL)
1542 return;
1543
1544 p_refcount = bfd_usrdata (abfd);
1545
1546 /* Valid range for p_refcount: a pointer to int counter, which has a
1547 value of 1 (single owner) or 2 (shared). */
1548 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1549
1550 *p_refcount -= 1;
1551 if (*p_refcount > 0)
1552 return;
1553
1554 xfree (p_refcount);
1555 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1556
1557 name = bfd_get_filename (abfd);
1558 gdb_bfd_close_or_warn (abfd);
1559 xfree (name);
1560 }
1561
1562 /* Provide a prototype to silence -Wmissing-prototypes. */
1563 extern initialize_file_ftype _initialize_objfiles;
1564
1565 void
1566 _initialize_objfiles (void)
1567 {
1568 objfiles_pspace_data
1569 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1570 }
This page took 0.065211 seconds and 4 git commands to generate.