22c96ed27d78103379fdc5ce2096f2ff90cbe063
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Message to be printed before the error message, when an error occurs. */
53
54 extern char *error_pre_print;
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62
63 int mapped_symbol_files; /* Try to use mapped symbol files */
64
65 /* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69 static void
70 add_to_objfile_sections (abfd, asect, objfile_p_char)
71 bfd *abfd;
72 sec_ptr asect;
73 PTR objfile_p_char;
74 {
75 struct objfile *objfile = (struct objfile *) objfile_p_char;
76 struct obj_section section;
77 flagword aflag;
78
79 aflag = bfd_get_section_flags (abfd, asect);
80 if (!(aflag & SEC_ALLOC))
81 return;
82 if (0 == bfd_section_size (abfd, asect))
83 return;
84 section.offset = 0;
85 section.objfile = objfile;
86 section.the_bfd_section = asect;
87 section.addr = bfd_section_vma (abfd, asect);
88 section.endaddr = section.addr + bfd_section_size (abfd, asect);
89 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
90 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
91 }
92
93 /* Builds a section table for OBJFILE.
94 Returns 0 if OK, 1 on error (in which case bfd_error contains the
95 error). */
96
97 int
98 build_objfile_section_table (objfile)
99 struct objfile *objfile;
100 {
101 /* objfile->sections can be already set when reading a mapped symbol
102 file. I believe that we do need to rebuild the section table in
103 this case (we rebuild other things derived from the bfd), but we
104 can't free the old one (it's in the psymbol_obstack). So we just
105 waste some memory. */
106
107 objfile->sections_end = 0;
108 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
109 objfile->sections = (struct obj_section *)
110 obstack_finish (&objfile->psymbol_obstack);
111 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
112 return(0);
113 }
114
115 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
116 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
117 struct, fill it in as best we can, link it into the list of all known
118 objfiles, and return a pointer to the new objfile struct. */
119
120 struct objfile *
121 allocate_objfile (abfd, mapped)
122 bfd *abfd;
123 int mapped;
124 {
125 struct objfile *objfile = NULL;
126 struct objfile *last_one = NULL;
127
128 mapped |= mapped_symbol_files;
129
130 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
131 {
132
133 /* If we can support mapped symbol files, try to open/reopen the
134 mapped file that corresponds to the file from which we wish to
135 read symbols. If the objfile is to be mapped, we must malloc
136 the structure itself using the mmap version, and arrange that
137 all memory allocation for the objfile uses the mmap routines.
138 If we are reusing an existing mapped file, from which we get
139 our objfile pointer, we have to make sure that we update the
140 pointers to the alloc/free functions in the obstack, in case
141 these functions have moved within the current gdb. */
142
143 int fd;
144
145 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
146 mapped);
147 if (fd >= 0)
148 {
149 CORE_ADDR mapto;
150 PTR md;
151
152 if (((mapto = map_to_address ()) == 0) ||
153 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
154 {
155 close (fd);
156 }
157 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
158 {
159 /* Update memory corruption handler function addresses. */
160 init_malloc (md);
161 objfile -> md = md;
162 objfile -> mmfd = fd;
163 /* Update pointers to functions to *our* copies */
164 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
165 obstack_freefun (&objfile -> psymbol_obstack, mfree);
166 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
167 obstack_freefun (&objfile -> symbol_obstack, mfree);
168 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
169 obstack_freefun (&objfile -> type_obstack, mfree);
170 /* If already in objfile list, unlink it. */
171 unlink_objfile (objfile);
172 /* Forget things specific to a particular gdb, may have changed. */
173 objfile -> sf = NULL;
174 }
175 else
176 {
177
178 /* Set up to detect internal memory corruption. MUST be
179 done before the first malloc. See comments in
180 init_malloc() and mmcheck(). */
181
182 init_malloc (md);
183
184 objfile = (struct objfile *)
185 xmmalloc (md, sizeof (struct objfile));
186 memset (objfile, 0, sizeof (struct objfile));
187 objfile -> md = md;
188 objfile -> mmfd = fd;
189 objfile -> flags |= OBJF_MAPPED;
190 mmalloc_setkey (objfile -> md, 0, objfile);
191 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
192 0, 0, xmmalloc, mfree,
193 objfile -> md);
194 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
198 0, 0, xmmalloc, mfree,
199 objfile -> md);
200 }
201 }
202
203 if (mapped && (objfile == NULL))
204 {
205 warning ("symbol table for '%s' will not be mapped",
206 bfd_get_filename (abfd));
207 }
208 }
209 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
210
211 if (mapped)
212 {
213 warning ("this version of gdb does not support mapped symbol tables.");
214
215 /* Turn off the global flag so we don't try to do mapped symbol tables
216 any more, which shuts up gdb unless the user specifically gives the
217 "mapped" keyword again. */
218
219 mapped_symbol_files = 0;
220 }
221
222 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
223
224 /* If we don't support mapped symbol files, didn't ask for the file to be
225 mapped, or failed to open the mapped file for some reason, then revert
226 back to an unmapped objfile. */
227
228 if (objfile == NULL)
229 {
230 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
231 memset (objfile, 0, sizeof (struct objfile));
232 objfile -> md = NULL;
233 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
234 free);
235 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
236 free);
237 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
238 free);
239 }
240
241 /* Update the per-objfile information that comes from the bfd, ensuring
242 that any data that is reference is saved in the per-objfile data
243 region. */
244
245 objfile -> obfd = abfd;
246 if (objfile -> name != NULL)
247 {
248 mfree (objfile -> md, objfile -> name);
249 }
250 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
251 objfile -> mtime = bfd_get_mtime (abfd);
252
253 /* Build section table. */
254
255 if (build_objfile_section_table (objfile))
256 {
257 error ("Can't find the file sections in `%s': %s",
258 objfile -> name, bfd_errmsg (bfd_get_error ()));
259 }
260
261 /* Add this file onto the tail of the linked list of other such files. */
262
263 objfile -> next = NULL;
264 if (object_files == NULL)
265 object_files = objfile;
266 else
267 {
268 for (last_one = object_files;
269 last_one -> next;
270 last_one = last_one -> next);
271 last_one -> next = objfile;
272 }
273 return (objfile);
274 }
275
276 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
277 list.
278
279 It is not a bug, or error, to call this function if OBJFILE is not known
280 to be in the current list. This is done in the case of mapped objfiles,
281 for example, just to ensure that the mapped objfile doesn't appear twice
282 in the list. Since the list is threaded, linking in a mapped objfile
283 twice would create a circular list.
284
285 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
286 unlinking it, just to ensure that we have completely severed any linkages
287 between the OBJFILE and the list. */
288
289 void
290 unlink_objfile (objfile)
291 struct objfile *objfile;
292 {
293 struct objfile** objpp;
294
295 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
296 {
297 if (*objpp == objfile)
298 {
299 *objpp = (*objpp) -> next;
300 objfile -> next = NULL;
301 break;
302 }
303 }
304 }
305
306
307 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
308 that as much as possible is allocated on the symbol_obstack and
309 psymbol_obstack, so that the memory can be efficiently freed.
310
311 Things which we do NOT free because they are not in malloc'd memory
312 or not in memory specific to the objfile include:
313
314 objfile -> sf
315
316 FIXME: If the objfile is using reusable symbol information (via mmalloc),
317 then we need to take into account the fact that more than one process
318 may be using the symbol information at the same time (when mmalloc is
319 extended to support cooperative locking). When more than one process
320 is using the mapped symbol info, we need to be more careful about when
321 we free objects in the reusable area. */
322
323 void
324 free_objfile (objfile)
325 struct objfile *objfile;
326 {
327 /* First do any symbol file specific actions required when we are
328 finished with a particular symbol file. Note that if the objfile
329 is using reusable symbol information (via mmalloc) then each of
330 these routines is responsible for doing the correct thing, either
331 freeing things which are valid only during this particular gdb
332 execution, or leaving them to be reused during the next one. */
333
334 if (objfile -> sf != NULL)
335 {
336 (*objfile -> sf -> sym_finish) (objfile);
337 }
338
339 /* We always close the bfd. */
340
341 if (objfile -> obfd != NULL)
342 {
343 char *name = bfd_get_filename (objfile->obfd);
344 bfd_close (objfile -> obfd);
345 free (name);
346 }
347
348 /* Remove it from the chain of all objfiles. */
349
350 unlink_objfile (objfile);
351
352 /* Before the symbol table code was redone to make it easier to
353 selectively load and remove information particular to a specific
354 linkage unit, gdb used to do these things whenever the monolithic
355 symbol table was blown away. How much still needs to be done
356 is unknown, but we play it safe for now and keep each action until
357 it is shown to be no longer needed. */
358
359 #if defined (CLEAR_SOLIB)
360 CLEAR_SOLIB ();
361 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
362 the to_sections for a core file might refer to those bfd's. So
363 detach any core file. */
364 {
365 struct target_ops *t = find_core_target ();
366 if (t != NULL)
367 (t->to_detach) (NULL, 0);
368 }
369 #endif
370 /* I *think* all our callers call clear_symtab_users. If so, no need
371 to call this here. */
372 clear_pc_function_cache ();
373
374 /* The last thing we do is free the objfile struct itself for the
375 non-reusable case, or detach from the mapped file for the reusable
376 case. Note that the mmalloc_detach or the mfree is the last thing
377 we can do with this objfile. */
378
379 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
380
381 if (objfile -> flags & OBJF_MAPPED)
382 {
383 /* Remember the fd so we can close it. We can't close it before
384 doing the detach, and after the detach the objfile is gone. */
385 int mmfd;
386
387 mmfd = objfile -> mmfd;
388 mmalloc_detach (objfile -> md);
389 objfile = NULL;
390 close (mmfd);
391 }
392
393 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
394
395 /* If we still have an objfile, then either we don't support reusable
396 objfiles or this one was not reusable. So free it normally. */
397
398 if (objfile != NULL)
399 {
400 if (objfile -> name != NULL)
401 {
402 mfree (objfile -> md, objfile -> name);
403 }
404 if (objfile->global_psymbols.list)
405 mfree (objfile->md, objfile->global_psymbols.list);
406 if (objfile->static_psymbols.list)
407 mfree (objfile->md, objfile->static_psymbols.list);
408 /* Free the obstacks for non-reusable objfiles */
409 obstack_free (&objfile -> psymbol_obstack, 0);
410 obstack_free (&objfile -> symbol_obstack, 0);
411 obstack_free (&objfile -> type_obstack, 0);
412 mfree (objfile -> md, objfile);
413 objfile = NULL;
414 }
415 }
416
417
418 /* Free all the object files at once and clean up their users. */
419
420 void
421 free_all_objfiles ()
422 {
423 struct objfile *objfile, *temp;
424
425 ALL_OBJFILES_SAFE (objfile, temp)
426 {
427 free_objfile (objfile);
428 }
429 clear_symtab_users ();
430 }
431 \f
432 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
433 entries in new_offsets. */
434 void
435 objfile_relocate (objfile, new_offsets)
436 struct objfile *objfile;
437 struct section_offsets *new_offsets;
438 {
439 struct section_offsets *delta = (struct section_offsets *) alloca
440 (sizeof (struct section_offsets)
441 + objfile->num_sections * sizeof (delta->offsets));
442
443 {
444 int i;
445 int something_changed = 0;
446 for (i = 0; i < objfile->num_sections; ++i)
447 {
448 ANOFFSET (delta, i) =
449 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
450 if (ANOFFSET (delta, i) != 0)
451 something_changed = 1;
452 }
453 if (!something_changed)
454 return;
455 }
456
457 /* OK, get all the symtabs. */
458 {
459 struct symtab *s;
460
461 ALL_OBJFILE_SYMTABS (objfile, s)
462 {
463 struct linetable *l;
464 struct blockvector *bv;
465 int i;
466
467 /* First the line table. */
468 l = LINETABLE (s);
469 if (l)
470 {
471 for (i = 0; i < l->nitems; ++i)
472 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
473 }
474
475 /* Don't relocate a shared blockvector more than once. */
476 if (!s->primary)
477 continue;
478
479 bv = BLOCKVECTOR (s);
480 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
481 {
482 struct block *b;
483 int j;
484
485 b = BLOCKVECTOR_BLOCK (bv, i);
486 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
487 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
488
489 for (j = 0; j < BLOCK_NSYMS (b); ++j)
490 {
491 struct symbol *sym = BLOCK_SYM (b, j);
492 /* The RS6000 code from which this was taken skipped
493 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
494 But I'm leaving out that test, on the theory that
495 they can't possibly pass the tests below. */
496 if ((SYMBOL_CLASS (sym) == LOC_LABEL
497 || SYMBOL_CLASS (sym) == LOC_STATIC)
498 && SYMBOL_SECTION (sym) >= 0)
499 {
500 SYMBOL_VALUE_ADDRESS (sym) +=
501 ANOFFSET (delta, SYMBOL_SECTION (sym));
502 }
503 #ifdef MIPS_EFI_SYMBOL_NAME
504 /* Relocate Extra Function Info for ecoff. */
505
506 else
507 if (SYMBOL_CLASS (sym) == LOC_CONST
508 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
509 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
510 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
511 #endif
512 }
513 }
514 }
515 }
516
517 {
518 struct partial_symtab *p;
519
520 ALL_OBJFILE_PSYMTABS (objfile, p)
521 {
522 /* FIXME: specific to symbol readers which use gdb-stabs.h.
523 We can only get away with it since objfile_relocate is only
524 used on XCOFF, which lacks psymtabs, and for gdb-stabs.h
525 targets. */
526 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
527 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
528 }
529 }
530
531 {
532 struct partial_symbol *psym;
533
534 for (psym = objfile->global_psymbols.list;
535 psym < objfile->global_psymbols.next;
536 psym++)
537 if (SYMBOL_SECTION (psym) >= 0)
538 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
539 for (psym = objfile->static_psymbols.list;
540 psym < objfile->static_psymbols.next;
541 psym++)
542 if (SYMBOL_SECTION (psym) >= 0)
543 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
544 }
545
546 {
547 struct minimal_symbol *msym;
548 ALL_OBJFILE_MSYMBOLS (objfile, msym)
549 if (SYMBOL_SECTION (msym) >= 0)
550 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
551 }
552
553 {
554 int i;
555 for (i = 0; i < objfile->num_sections; ++i)
556 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
557 }
558
559 {
560 struct obj_section *s;
561 bfd *abfd;
562
563 abfd = symfile_objfile->obfd;
564
565 for (s = symfile_objfile->sections;
566 s < symfile_objfile->sections_end; ++s)
567 {
568 flagword flags;
569
570 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
571
572 if (flags & SEC_CODE)
573 {
574 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
575 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
576 }
577 else if (flags & (SEC_DATA | SEC_LOAD))
578 {
579 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
580 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
581 }
582 else if (flags & SEC_ALLOC)
583 {
584 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
585 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
586 }
587 }
588 }
589
590 if (objfile->ei.entry_point != ~0)
591 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
592
593 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
594 {
595 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
596 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
597 }
598
599 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
600 {
601 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
602 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
603 }
604
605 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
606 {
607 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
608 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
609 }
610 }
611 \f
612 /* Many places in gdb want to test just to see if we have any partial
613 symbols available. This function returns zero if none are currently
614 available, nonzero otherwise. */
615
616 int
617 have_partial_symbols ()
618 {
619 struct objfile *ofp;
620
621 ALL_OBJFILES (ofp)
622 {
623 if (ofp -> psymtabs != NULL)
624 {
625 return 1;
626 }
627 }
628 return 0;
629 }
630
631 /* Many places in gdb want to test just to see if we have any full
632 symbols available. This function returns zero if none are currently
633 available, nonzero otherwise. */
634
635 int
636 have_full_symbols ()
637 {
638 struct objfile *ofp;
639
640 ALL_OBJFILES (ofp)
641 {
642 if (ofp -> symtabs != NULL)
643 {
644 return 1;
645 }
646 }
647 return 0;
648 }
649
650 /* Many places in gdb want to test just to see if we have any minimal
651 symbols available. This function returns zero if none are currently
652 available, nonzero otherwise. */
653
654 int
655 have_minimal_symbols ()
656 {
657 struct objfile *ofp;
658
659 ALL_OBJFILES (ofp)
660 {
661 if (ofp -> msymbols != NULL)
662 {
663 return 1;
664 }
665 }
666 return 0;
667 }
668
669 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
670
671 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
672 of the corresponding symbol file in MTIME, try to open an existing file
673 with the name SYMSFILENAME and verify it is more recent than the base
674 file by checking it's timestamp against MTIME.
675
676 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
677
678 If SYMSFILENAME does exist, but is out of date, we check to see if the
679 user has specified creation of a mapped file. If so, we don't issue
680 any warning message because we will be creating a new mapped file anyway,
681 overwriting the old one. If not, then we issue a warning message so that
682 the user will know why we aren't using this existing mapped symbol file.
683 In either case, we return -1.
684
685 If SYMSFILENAME does exist and is not out of date, but can't be opened for
686 some reason, then prints an appropriate system error message and returns -1.
687
688 Otherwise, returns the open file descriptor. */
689
690 static int
691 open_existing_mapped_file (symsfilename, mtime, mapped)
692 char *symsfilename;
693 long mtime;
694 int mapped;
695 {
696 int fd = -1;
697 struct stat sbuf;
698
699 if (stat (symsfilename, &sbuf) == 0)
700 {
701 if (sbuf.st_mtime < mtime)
702 {
703 if (!mapped)
704 {
705 warning ("mapped symbol file `%s' is out of date, ignored it",
706 symsfilename);
707 }
708 }
709 else if ((fd = open (symsfilename, O_RDWR)) < 0)
710 {
711 if (error_pre_print)
712 {
713 printf_unfiltered (error_pre_print);
714 }
715 print_sys_errmsg (symsfilename, errno);
716 }
717 }
718 return (fd);
719 }
720
721 /* Look for a mapped symbol file that corresponds to FILENAME and is more
722 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
723 use a mapped symbol file for this file, so create a new one if one does
724 not currently exist.
725
726 If found, then return an open file descriptor for the file, otherwise
727 return -1.
728
729 This routine is responsible for implementing the policy that generates
730 the name of the mapped symbol file from the name of a file containing
731 symbols that gdb would like to read. Currently this policy is to append
732 ".syms" to the name of the file.
733
734 This routine is also responsible for implementing the policy that
735 determines where the mapped symbol file is found (the search path).
736 This policy is that when reading an existing mapped file, a file of
737 the correct name in the current directory takes precedence over a
738 file of the correct name in the same directory as the symbol file.
739 When creating a new mapped file, it is always created in the current
740 directory. This helps to minimize the chances of a user unknowingly
741 creating big mapped files in places like /bin and /usr/local/bin, and
742 allows a local copy to override a manually installed global copy (in
743 /bin for example). */
744
745 static int
746 open_mapped_file (filename, mtime, mapped)
747 char *filename;
748 long mtime;
749 int mapped;
750 {
751 int fd;
752 char *symsfilename;
753
754 /* First try to open an existing file in the current directory, and
755 then try the directory where the symbol file is located. */
756
757 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
758 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
759 {
760 free (symsfilename);
761 symsfilename = concat (filename, ".syms", (char *) NULL);
762 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
763 }
764
765 /* If we don't have an open file by now, then either the file does not
766 already exist, or the base file has changed since it was created. In
767 either case, if the user has specified use of a mapped file, then
768 create a new mapped file, truncating any existing one. If we can't
769 create one, print a system error message saying why we can't.
770
771 By default the file is rw for everyone, with the user's umask taking
772 care of turning off the permissions the user wants off. */
773
774 if ((fd < 0) && mapped)
775 {
776 free (symsfilename);
777 symsfilename = concat ("./", basename (filename), ".syms",
778 (char *) NULL);
779 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
780 {
781 if (error_pre_print)
782 {
783 printf_unfiltered (error_pre_print);
784 }
785 print_sys_errmsg (symsfilename, errno);
786 }
787 }
788
789 free (symsfilename);
790 return (fd);
791 }
792
793 /* Return the base address at which we would like the next objfile's
794 mapped data to start.
795
796 For now, we use the kludge that the configuration specifies a base
797 address to which it is safe to map the first mmalloc heap, and an
798 increment to add to this address for each successive heap. There are
799 a lot of issues to deal with here to make this work reasonably, including:
800
801 Avoid memory collisions with existing mapped address spaces
802
803 Reclaim address spaces when their mmalloc heaps are unmapped
804
805 When mmalloc heaps are shared between processes they have to be
806 mapped at the same addresses in each
807
808 Once created, a mmalloc heap that is to be mapped back in must be
809 mapped at the original address. I.E. each objfile will expect to
810 be remapped at it's original address. This becomes a problem if
811 the desired address is already in use.
812
813 etc, etc, etc.
814
815 */
816
817
818 static CORE_ADDR
819 map_to_address ()
820 {
821
822 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
823
824 static CORE_ADDR next = MMAP_BASE_ADDRESS;
825 CORE_ADDR mapto = next;
826
827 next += MMAP_INCREMENT;
828 return (mapto);
829
830 #else
831
832 return (0);
833
834 #endif
835
836 }
837
838 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
839
840 /* Returns a section whose range includes PC or NULL if none found. */
841
842 struct obj_section *
843 find_pc_section(pc)
844 CORE_ADDR pc;
845 {
846 struct obj_section *s;
847 struct objfile *objfile;
848
849 ALL_OBJFILES (objfile)
850 for (s = objfile->sections; s < objfile->sections_end; ++s)
851 if (s->addr <= pc
852 && pc < s->endaddr)
853 return(s);
854
855 return(NULL);
856 }
857
858 /* In SVR4, we recognize a trampoline by it's section name.
859 That is, if the pc is in a section named ".plt" then we are in
860 a trampoline. */
861
862 int
863 in_plt_section(pc, name)
864 CORE_ADDR pc;
865 char *name;
866 {
867 struct obj_section *s;
868 int retval = 0;
869
870 s = find_pc_section(pc);
871
872 retval = (s != NULL
873 && s->the_bfd_section->name != NULL
874 && STREQ (s->the_bfd_section->name, ".plt"));
875 return(retval);
876 }
This page took 0.047401 seconds and 4 git commands to generate.