* linux-thread-db.c (thread_db_mourn_inferior): Remove breakpoints
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36 #include "mdebugread.h"
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49
50 /* Prototypes for local functions */
51
52 static void objfile_alloc_data (struct objfile *objfile);
53 static void objfile_free_data (struct objfile *objfile);
54
55 /* Externally visible variables that are owned by this module.
56 See declarations in objfile.h for more info. */
57
58 struct objfile *object_files; /* Linked list of all objfiles */
59 struct objfile *current_objfile; /* For symbol file being read in */
60 struct objfile *symfile_objfile; /* Main symbol table loaded from */
61 struct objfile *rt_common_objfile; /* For runtime common symbols */
62
63 /* Locate all mappable sections of a BFD file.
64 objfile_p_char is a char * to get it through
65 bfd_map_over_sections; we cast it back to its proper type. */
66
67 #ifndef TARGET_KEEP_SECTION
68 #define TARGET_KEEP_SECTION(ASECT) 0
69 #endif
70
71 /* Called via bfd_map_over_sections to build up the section table that
72 the objfile references. The objfile contains pointers to the start
73 of the table (objfile->sections) and to the first location after
74 the end of the table (objfile->sections_end). */
75
76 static void
77 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
78 void *objfile_p_char)
79 {
80 struct objfile *objfile = (struct objfile *) objfile_p_char;
81 struct obj_section section;
82 flagword aflag;
83
84 aflag = bfd_get_section_flags (abfd, asect);
85
86 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
87 return;
88
89 if (0 == bfd_section_size (abfd, asect))
90 return;
91 section.offset = 0;
92 section.objfile = objfile;
93 section.the_bfd_section = asect;
94 section.ovly_mapped = 0;
95 section.addr = bfd_section_vma (abfd, asect);
96 section.endaddr = section.addr + bfd_section_size (abfd, asect);
97 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
98 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
99 }
100
101 /* Builds a section table for OBJFILE.
102 Returns 0 if OK, 1 on error (in which case bfd_error contains the
103 error).
104
105 Note that while we are building the table, which goes into the
106 psymbol obstack, we hijack the sections_end pointer to instead hold
107 a count of the number of sections. When bfd_map_over_sections
108 returns, this count is used to compute the pointer to the end of
109 the sections table, which then overwrites the count.
110
111 Also note that the OFFSET and OVLY_MAPPED in each table entry
112 are initialized to zero.
113
114 Also note that if anything else writes to the psymbol obstack while
115 we are building the table, we're pretty much hosed. */
116
117 int
118 build_objfile_section_table (struct objfile *objfile)
119 {
120 /* objfile->sections can be already set when reading a mapped symbol
121 file. I believe that we do need to rebuild the section table in
122 this case (we rebuild other things derived from the bfd), but we
123 can't free the old one (it's in the objfile_obstack). So we just
124 waste some memory. */
125
126 objfile->sections_end = 0;
127 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
128 objfile->sections = (struct obj_section *)
129 obstack_finish (&objfile->objfile_obstack);
130 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
131 return (0);
132 }
133
134 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
135 allocate a new objfile struct, fill it in as best we can, link it
136 into the list of all known objfiles, and return a pointer to the
137 new objfile struct.
138
139 The FLAGS word contains various bits (OBJF_*) that can be taken as
140 requests for specific operations. Other bits like OBJF_SHARED are
141 simply copied through to the new objfile flags member. */
142
143 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
144 by jv-lang.c, to create an artificial objfile used to hold
145 information about dynamically-loaded Java classes. Unfortunately,
146 that branch of this function doesn't get tested very frequently, so
147 it's prone to breakage. (E.g. at one time the name was set to NULL
148 in that situation, which broke a loop over all names in the dynamic
149 library loader.) If you change this function, please try to leave
150 things in a consistent state even if abfd is NULL. */
151
152 struct objfile *
153 allocate_objfile (bfd *abfd, int flags)
154 {
155 struct objfile *objfile = NULL;
156 struct objfile *last_one = NULL;
157
158 /* If we don't support mapped symbol files, didn't ask for the file to be
159 mapped, or failed to open the mapped file for some reason, then revert
160 back to an unmapped objfile. */
161
162 if (objfile == NULL)
163 {
164 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
165 memset (objfile, 0, sizeof (struct objfile));
166 objfile->md = NULL;
167 objfile->psymbol_cache = bcache_xmalloc ();
168 objfile->macro_cache = bcache_xmalloc ();
169 /* We could use obstack_specify_allocation here instead, but
170 gdb_obstack.h specifies the alloc/dealloc functions. */
171 obstack_init (&objfile->objfile_obstack);
172 terminate_minimal_symbol_table (objfile);
173 }
174
175 objfile_alloc_data (objfile);
176
177 /* Update the per-objfile information that comes from the bfd, ensuring
178 that any data that is reference is saved in the per-objfile data
179 region. */
180
181 objfile->obfd = abfd;
182 if (objfile->name != NULL)
183 {
184 xfree (objfile->name);
185 }
186 if (abfd != NULL)
187 {
188 objfile->name = xstrdup (bfd_get_filename (abfd));
189 objfile->mtime = bfd_get_mtime (abfd);
190
191 /* Build section table. */
192
193 if (build_objfile_section_table (objfile))
194 {
195 error (_("Can't find the file sections in `%s': %s"),
196 objfile->name, bfd_errmsg (bfd_get_error ()));
197 }
198 }
199 else
200 {
201 objfile->name = xstrdup ("<<anonymous objfile>>");
202 }
203
204 /* Initialize the section indexes for this objfile, so that we can
205 later detect if they are used w/o being properly assigned to. */
206
207 objfile->sect_index_text = -1;
208 objfile->sect_index_data = -1;
209 objfile->sect_index_bss = -1;
210 objfile->sect_index_rodata = -1;
211
212 /* We don't yet have a C++-specific namespace symtab. */
213
214 objfile->cp_namespace_symtab = NULL;
215
216 /* Add this file onto the tail of the linked list of other such files. */
217
218 objfile->next = NULL;
219 if (object_files == NULL)
220 object_files = objfile;
221 else
222 {
223 for (last_one = object_files;
224 last_one->next;
225 last_one = last_one->next);
226 last_one->next = objfile;
227 }
228
229 /* Save passed in flag bits. */
230 objfile->flags |= flags;
231
232 return (objfile);
233 }
234
235 /* Initialize entry point information for this objfile. */
236
237 void
238 init_entry_point_info (struct objfile *objfile)
239 {
240 /* Save startup file's range of PC addresses to help blockframe.c
241 decide where the bottom of the stack is. */
242
243 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
244 {
245 /* Executable file -- record its entry point so we'll recognize
246 the startup file because it contains the entry point. */
247 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
248 }
249 else
250 {
251 /* Examination of non-executable.o files. Short-circuit this stuff. */
252 objfile->ei.entry_point = INVALID_ENTRY_POINT;
253 }
254 }
255
256 /* Get current entry point address. */
257
258 CORE_ADDR
259 entry_point_address (void)
260 {
261 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
262 }
263
264 /* Create the terminating entry of OBJFILE's minimal symbol table.
265 If OBJFILE->msymbols is zero, allocate a single entry from
266 OBJFILE->objfile_obstack; otherwise, just initialize
267 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
268 void
269 terminate_minimal_symbol_table (struct objfile *objfile)
270 {
271 if (! objfile->msymbols)
272 objfile->msymbols = ((struct minimal_symbol *)
273 obstack_alloc (&objfile->objfile_obstack,
274 sizeof (objfile->msymbols[0])));
275
276 {
277 struct minimal_symbol *m
278 = &objfile->msymbols[objfile->minimal_symbol_count];
279
280 memset (m, 0, sizeof (*m));
281 /* Don't rely on these enumeration values being 0's. */
282 MSYMBOL_TYPE (m) = mst_unknown;
283 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
284 }
285 }
286
287
288 /* Put one object file before a specified on in the global list.
289 This can be used to make sure an object file is destroyed before
290 another when using ALL_OBJFILES_SAFE to free all objfiles. */
291 void
292 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
293 {
294 struct objfile **objp;
295
296 unlink_objfile (objfile);
297
298 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
299 {
300 if (*objp == before_this)
301 {
302 objfile->next = *objp;
303 *objp = objfile;
304 return;
305 }
306 }
307
308 internal_error (__FILE__, __LINE__,
309 _("put_objfile_before: before objfile not in list"));
310 }
311
312 /* Put OBJFILE at the front of the list. */
313
314 void
315 objfile_to_front (struct objfile *objfile)
316 {
317 struct objfile **objp;
318 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
319 {
320 if (*objp == objfile)
321 {
322 /* Unhook it from where it is. */
323 *objp = objfile->next;
324 /* Put it in the front. */
325 objfile->next = object_files;
326 object_files = objfile;
327 break;
328 }
329 }
330 }
331
332 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
333 list.
334
335 It is not a bug, or error, to call this function if OBJFILE is not known
336 to be in the current list. This is done in the case of mapped objfiles,
337 for example, just to ensure that the mapped objfile doesn't appear twice
338 in the list. Since the list is threaded, linking in a mapped objfile
339 twice would create a circular list.
340
341 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
342 unlinking it, just to ensure that we have completely severed any linkages
343 between the OBJFILE and the list. */
344
345 void
346 unlink_objfile (struct objfile *objfile)
347 {
348 struct objfile **objpp;
349
350 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
351 {
352 if (*objpp == objfile)
353 {
354 *objpp = (*objpp)->next;
355 objfile->next = NULL;
356 return;
357 }
358 }
359
360 internal_error (__FILE__, __LINE__,
361 _("unlink_objfile: objfile already unlinked"));
362 }
363
364
365 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
366 that as much as possible is allocated on the objfile_obstack
367 so that the memory can be efficiently freed.
368
369 Things which we do NOT free because they are not in malloc'd memory
370 or not in memory specific to the objfile include:
371
372 objfile -> sf
373
374 FIXME: If the objfile is using reusable symbol information (via mmalloc),
375 then we need to take into account the fact that more than one process
376 may be using the symbol information at the same time (when mmalloc is
377 extended to support cooperative locking). When more than one process
378 is using the mapped symbol info, we need to be more careful about when
379 we free objects in the reusable area. */
380
381 void
382 free_objfile (struct objfile *objfile)
383 {
384 if (objfile->separate_debug_objfile)
385 {
386 free_objfile (objfile->separate_debug_objfile);
387 }
388
389 if (objfile->separate_debug_objfile_backlink)
390 {
391 /* We freed the separate debug file, make sure the base objfile
392 doesn't reference it. */
393 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
394 }
395
396 /* First do any symbol file specific actions required when we are
397 finished with a particular symbol file. Note that if the objfile
398 is using reusable symbol information (via mmalloc) then each of
399 these routines is responsible for doing the correct thing, either
400 freeing things which are valid only during this particular gdb
401 execution, or leaving them to be reused during the next one. */
402
403 if (objfile->sf != NULL)
404 {
405 (*objfile->sf->sym_finish) (objfile);
406 }
407
408 /* We always close the bfd. */
409
410 if (objfile->obfd != NULL)
411 {
412 char *name = bfd_get_filename (objfile->obfd);
413 if (!bfd_close (objfile->obfd))
414 warning (_("cannot close \"%s\": %s"),
415 name, bfd_errmsg (bfd_get_error ()));
416 xfree (name);
417 }
418
419 /* Remove it from the chain of all objfiles. */
420
421 unlink_objfile (objfile);
422
423 /* If we are going to free the runtime common objfile, mark it
424 as unallocated. */
425
426 if (objfile == rt_common_objfile)
427 rt_common_objfile = NULL;
428
429 /* Before the symbol table code was redone to make it easier to
430 selectively load and remove information particular to a specific
431 linkage unit, gdb used to do these things whenever the monolithic
432 symbol table was blown away. How much still needs to be done
433 is unknown, but we play it safe for now and keep each action until
434 it is shown to be no longer needed. */
435
436 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
437 for example), so we need to call this here. */
438 clear_pc_function_cache ();
439
440 /* Check to see if the current_source_symtab belongs to this objfile,
441 and if so, call clear_current_source_symtab_and_line. */
442
443 {
444 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
445 struct symtab *s;
446
447 ALL_OBJFILE_SYMTABS (objfile, s)
448 {
449 if (s == cursal.symtab)
450 clear_current_source_symtab_and_line ();
451 }
452 }
453
454 /* The last thing we do is free the objfile struct itself. */
455
456 objfile_free_data (objfile);
457 if (objfile->name != NULL)
458 {
459 xfree (objfile->name);
460 }
461 if (objfile->global_psymbols.list)
462 xfree (objfile->global_psymbols.list);
463 if (objfile->static_psymbols.list)
464 xfree (objfile->static_psymbols.list);
465 /* Free the obstacks for non-reusable objfiles */
466 bcache_xfree (objfile->psymbol_cache);
467 bcache_xfree (objfile->macro_cache);
468 if (objfile->demangled_names_hash)
469 htab_delete (objfile->demangled_names_hash);
470 obstack_free (&objfile->objfile_obstack, 0);
471 xfree (objfile);
472 objfile = NULL;
473 }
474
475 static void
476 do_free_objfile_cleanup (void *obj)
477 {
478 free_objfile (obj);
479 }
480
481 struct cleanup *
482 make_cleanup_free_objfile (struct objfile *obj)
483 {
484 return make_cleanup (do_free_objfile_cleanup, obj);
485 }
486
487 /* Free all the object files at once and clean up their users. */
488
489 void
490 free_all_objfiles (void)
491 {
492 struct objfile *objfile, *temp;
493
494 ALL_OBJFILES_SAFE (objfile, temp)
495 {
496 free_objfile (objfile);
497 }
498 clear_symtab_users ();
499 }
500 \f
501 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
502 entries in new_offsets. */
503 void
504 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
505 {
506 struct section_offsets *delta =
507 ((struct section_offsets *)
508 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
509
510 {
511 int i;
512 int something_changed = 0;
513 for (i = 0; i < objfile->num_sections; ++i)
514 {
515 delta->offsets[i] =
516 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
517 if (ANOFFSET (delta, i) != 0)
518 something_changed = 1;
519 }
520 if (!something_changed)
521 return;
522 }
523
524 /* OK, get all the symtabs. */
525 {
526 struct symtab *s;
527
528 ALL_OBJFILE_SYMTABS (objfile, s)
529 {
530 struct linetable *l;
531 struct blockvector *bv;
532 int i;
533
534 /* First the line table. */
535 l = LINETABLE (s);
536 if (l)
537 {
538 for (i = 0; i < l->nitems; ++i)
539 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
540 }
541
542 /* Don't relocate a shared blockvector more than once. */
543 if (!s->primary)
544 continue;
545
546 bv = BLOCKVECTOR (s);
547 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
548 {
549 struct block *b;
550 struct symbol *sym;
551 struct dict_iterator iter;
552
553 b = BLOCKVECTOR_BLOCK (bv, i);
554 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
555 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
556
557 ALL_BLOCK_SYMBOLS (b, iter, sym)
558 {
559 fixup_symbol_section (sym, objfile);
560
561 /* The RS6000 code from which this was taken skipped
562 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
563 But I'm leaving out that test, on the theory that
564 they can't possibly pass the tests below. */
565 if ((SYMBOL_CLASS (sym) == LOC_LABEL
566 || SYMBOL_CLASS (sym) == LOC_STATIC
567 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
568 && SYMBOL_SECTION (sym) >= 0)
569 {
570 SYMBOL_VALUE_ADDRESS (sym) +=
571 ANOFFSET (delta, SYMBOL_SECTION (sym));
572 }
573 }
574 }
575 }
576 }
577
578 {
579 struct partial_symtab *p;
580
581 ALL_OBJFILE_PSYMTABS (objfile, p)
582 {
583 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
584 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
585 }
586 }
587
588 {
589 struct partial_symbol **psym;
590
591 for (psym = objfile->global_psymbols.list;
592 psym < objfile->global_psymbols.next;
593 psym++)
594 {
595 fixup_psymbol_section (*psym, objfile);
596 if (SYMBOL_SECTION (*psym) >= 0)
597 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
598 SYMBOL_SECTION (*psym));
599 }
600 for (psym = objfile->static_psymbols.list;
601 psym < objfile->static_psymbols.next;
602 psym++)
603 {
604 fixup_psymbol_section (*psym, objfile);
605 if (SYMBOL_SECTION (*psym) >= 0)
606 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
607 SYMBOL_SECTION (*psym));
608 }
609 }
610
611 {
612 struct minimal_symbol *msym;
613 ALL_OBJFILE_MSYMBOLS (objfile, msym)
614 if (SYMBOL_SECTION (msym) >= 0)
615 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
616 }
617 /* Relocating different sections by different amounts may cause the symbols
618 to be out of order. */
619 msymbols_sort (objfile);
620
621 {
622 int i;
623 for (i = 0; i < objfile->num_sections; ++i)
624 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
625 }
626
627 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
628 {
629 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
630 only as a fallback. */
631 struct obj_section *s;
632 s = find_pc_section (objfile->ei.entry_point);
633 if (s)
634 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
635 else
636 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
637 }
638
639 {
640 struct obj_section *s;
641 bfd *abfd;
642
643 abfd = objfile->obfd;
644
645 ALL_OBJFILE_OSECTIONS (objfile, s)
646 {
647 int idx = s->the_bfd_section->index;
648
649 s->addr += ANOFFSET (delta, idx);
650 s->endaddr += ANOFFSET (delta, idx);
651 }
652 }
653
654 /* Relocate breakpoints as necessary, after things are relocated. */
655 breakpoint_re_set ();
656 }
657 \f
658 /* Many places in gdb want to test just to see if we have any partial
659 symbols available. This function returns zero if none are currently
660 available, nonzero otherwise. */
661
662 int
663 have_partial_symbols (void)
664 {
665 struct objfile *ofp;
666
667 ALL_OBJFILES (ofp)
668 {
669 if (ofp->psymtabs != NULL)
670 {
671 return 1;
672 }
673 }
674 return 0;
675 }
676
677 /* Many places in gdb want to test just to see if we have any full
678 symbols available. This function returns zero if none are currently
679 available, nonzero otherwise. */
680
681 int
682 have_full_symbols (void)
683 {
684 struct objfile *ofp;
685
686 ALL_OBJFILES (ofp)
687 {
688 if (ofp->symtabs != NULL)
689 {
690 return 1;
691 }
692 }
693 return 0;
694 }
695
696
697 /* This operations deletes all objfile entries that represent solibs that
698 weren't explicitly loaded by the user, via e.g., the add-symbol-file
699 command.
700 */
701 void
702 objfile_purge_solibs (void)
703 {
704 struct objfile *objf;
705 struct objfile *temp;
706
707 ALL_OBJFILES_SAFE (objf, temp)
708 {
709 /* We assume that the solib package has been purged already, or will
710 be soon.
711 */
712 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
713 free_objfile (objf);
714 }
715 }
716
717
718 /* Many places in gdb want to test just to see if we have any minimal
719 symbols available. This function returns zero if none are currently
720 available, nonzero otherwise. */
721
722 int
723 have_minimal_symbols (void)
724 {
725 struct objfile *ofp;
726
727 ALL_OBJFILES (ofp)
728 {
729 if (ofp->minimal_symbol_count > 0)
730 {
731 return 1;
732 }
733 }
734 return 0;
735 }
736
737 /* Returns a section whose range includes PC and SECTION, or NULL if
738 none found. Note the distinction between the return type, struct
739 obj_section (which is defined in gdb), and the input type "struct
740 bfd_section" (which is a bfd-defined data type). The obj_section
741 contains a pointer to the "struct bfd_section". */
742
743 struct obj_section *
744 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
745 {
746 struct obj_section *s;
747 struct objfile *objfile;
748
749 ALL_OBJSECTIONS (objfile, s)
750 if ((section == 0 || section == s->the_bfd_section) &&
751 s->addr <= pc && pc < s->endaddr)
752 return (s);
753
754 return (NULL);
755 }
756
757 /* Returns a section whose range includes PC or NULL if none found.
758 Backward compatibility, no section. */
759
760 struct obj_section *
761 find_pc_section (CORE_ADDR pc)
762 {
763 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
764 }
765
766
767 /* In SVR4, we recognize a trampoline by it's section name.
768 That is, if the pc is in a section named ".plt" then we are in
769 a trampoline. */
770
771 int
772 in_plt_section (CORE_ADDR pc, char *name)
773 {
774 struct obj_section *s;
775 int retval = 0;
776
777 s = find_pc_section (pc);
778
779 retval = (s != NULL
780 && s->the_bfd_section->name != NULL
781 && strcmp (s->the_bfd_section->name, ".plt") == 0);
782 return (retval);
783 }
784
785 /* Return nonzero if NAME is in the import list of OBJFILE. Else
786 return zero. */
787
788 int
789 is_in_import_list (char *name, struct objfile *objfile)
790 {
791 int i;
792
793 if (!objfile || !name || !*name)
794 return 0;
795
796 for (i = 0; i < objfile->import_list_size; i++)
797 if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i]))
798 return 1;
799 return 0;
800 }
801 \f
802
803 /* Keep a registry of per-objfile data-pointers required by other GDB
804 modules. */
805
806 struct objfile_data
807 {
808 unsigned index;
809 };
810
811 struct objfile_data_registration
812 {
813 struct objfile_data *data;
814 struct objfile_data_registration *next;
815 };
816
817 struct objfile_data_registry
818 {
819 struct objfile_data_registration *registrations;
820 unsigned num_registrations;
821 };
822
823 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
824
825 const struct objfile_data *
826 register_objfile_data (void)
827 {
828 struct objfile_data_registration **curr;
829
830 /* Append new registration. */
831 for (curr = &objfile_data_registry.registrations;
832 *curr != NULL; curr = &(*curr)->next);
833
834 *curr = XMALLOC (struct objfile_data_registration);
835 (*curr)->next = NULL;
836 (*curr)->data = XMALLOC (struct objfile_data);
837 (*curr)->data->index = objfile_data_registry.num_registrations++;
838
839 return (*curr)->data;
840 }
841
842 static void
843 objfile_alloc_data (struct objfile *objfile)
844 {
845 gdb_assert (objfile->data == NULL);
846 objfile->num_data = objfile_data_registry.num_registrations;
847 objfile->data = XCALLOC (objfile->num_data, void *);
848 }
849
850 static void
851 objfile_free_data (struct objfile *objfile)
852 {
853 gdb_assert (objfile->data != NULL);
854 xfree (objfile->data);
855 objfile->data = NULL;
856 }
857
858 void
859 clear_objfile_data (struct objfile *objfile)
860 {
861 gdb_assert (objfile->data != NULL);
862 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
863 }
864
865 void
866 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
867 void *value)
868 {
869 gdb_assert (data->index < objfile->num_data);
870 objfile->data[data->index] = value;
871 }
872
873 void *
874 objfile_data (struct objfile *objfile, const struct objfile_data *data)
875 {
876 gdb_assert (data->index < objfile->num_data);
877 return objfile->data[data->index];
878 }
This page took 0.056082 seconds and 4 git commands to generate.