Make Syd Polk principal maintainer.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32
33 #include <sys/types.h>
34 #include "gdb_stat.h"
35 #include <fcntl.h>
36 #include "obstack.h"
37 #include "gdb_string.h"
38
39 #include "breakpoint.h"
40
41 /* Prototypes for local functions */
42
43 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
45 static int
46 open_existing_mapped_file PARAMS ((char *, long, int));
47
48 static int
49 open_mapped_file PARAMS ((char *filename, long mtime, int flags));
50
51 static PTR
52 map_to_file PARAMS ((int));
53
54 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
55
56 static void
57 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
58
59 /* Externally visible variables that are owned by this module.
60 See declarations in objfile.h for more info. */
61
62 struct objfile *object_files; /* Linked list of all objfiles */
63 struct objfile *current_objfile; /* For symbol file being read in */
64 struct objfile *symfile_objfile; /* Main symbol table loaded from */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 int mapped_symbol_files; /* Try to use mapped symbol files */
68
69 /* Locate all mappable sections of a BFD file.
70 objfile_p_char is a char * to get it through
71 bfd_map_over_sections; we cast it back to its proper type. */
72
73 #ifndef TARGET_KEEP_SECTION
74 #define TARGET_KEEP_SECTION(ASECT) 0
75 #endif
76
77 /* Called via bfd_map_over_sections to build up the section table that
78 the objfile references. The objfile contains pointers to the start
79 of the table (objfile->sections) and to the first location after
80 the end of the table (objfile->sections_end). */
81
82 static void
83 add_to_objfile_sections (abfd, asect, objfile_p_char)
84 bfd *abfd;
85 sec_ptr asect;
86 PTR objfile_p_char;
87 {
88 struct objfile *objfile = (struct objfile *) objfile_p_char;
89 struct obj_section section;
90 flagword aflag;
91
92 aflag = bfd_get_section_flags (abfd, asect);
93
94 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
95 return;
96
97 if (0 == bfd_section_size (abfd, asect))
98 return;
99 section.offset = 0;
100 section.objfile = objfile;
101 section.the_bfd_section = asect;
102 section.ovly_mapped = 0;
103 section.addr = bfd_section_vma (abfd, asect);
104 section.endaddr = section.addr + bfd_section_size (abfd, asect);
105 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
106 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
107 }
108
109 /* Builds a section table for OBJFILE.
110 Returns 0 if OK, 1 on error (in which case bfd_error contains the
111 error).
112
113 Note that while we are building the table, which goes into the
114 psymbol obstack, we hijack the sections_end pointer to instead hold
115 a count of the number of sections. When bfd_map_over_sections
116 returns, this count is used to compute the pointer to the end of
117 the sections table, which then overwrites the count.
118
119 Also note that the OFFSET and OVLY_MAPPED in each table entry
120 are initialized to zero.
121
122 Also note that if anything else writes to the psymbol obstack while
123 we are building the table, we're pretty much hosed. */
124
125 int
126 build_objfile_section_table (objfile)
127 struct objfile *objfile;
128 {
129 /* objfile->sections can be already set when reading a mapped symbol
130 file. I believe that we do need to rebuild the section table in
131 this case (we rebuild other things derived from the bfd), but we
132 can't free the old one (it's in the psymbol_obstack). So we just
133 waste some memory. */
134
135 objfile->sections_end = 0;
136 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
137 objfile->sections = (struct obj_section *)
138 obstack_finish (&objfile->psymbol_obstack);
139 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
140 return (0);
141 }
142
143 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
144 allocate a new objfile struct, fill it in as best we can, link it
145 into the list of all known objfiles, and return a pointer to the
146 new objfile struct.
147
148 The FLAGS word contains various bits (OBJF_*) that can be taken as
149 requests for specific operations, like trying to open a mapped
150 version of the objfile (OBJF_MAPPED). Other bits like
151 OBJF_SHARED are simply copied through to the new objfile flags
152 member. */
153
154 struct objfile *
155 allocate_objfile (abfd, flags)
156 bfd *abfd;
157 int flags;
158 {
159 struct objfile *objfile = NULL;
160 struct objfile *last_one = NULL;
161
162 if (mapped_symbol_files)
163 flags |= OBJF_MAPPED;
164
165 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
166 if (abfd != NULL)
167 {
168
169 /* If we can support mapped symbol files, try to open/reopen the
170 mapped file that corresponds to the file from which we wish to
171 read symbols. If the objfile is to be mapped, we must malloc
172 the structure itself using the mmap version, and arrange that
173 all memory allocation for the objfile uses the mmap routines.
174 If we are reusing an existing mapped file, from which we get
175 our objfile pointer, we have to make sure that we update the
176 pointers to the alloc/free functions in the obstack, in case
177 these functions have moved within the current gdb. */
178
179 int fd;
180
181 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
182 flags);
183 if (fd >= 0)
184 {
185 PTR md;
186
187 if ((md = map_to_file (fd)) == NULL)
188 {
189 close (fd);
190 }
191 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
192 {
193 /* Update memory corruption handler function addresses. */
194 init_malloc (md);
195 objfile->md = md;
196 objfile->mmfd = fd;
197 /* Update pointers to functions to *our* copies */
198 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
199 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
200 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
201 obstack_freefun (&objfile->psymbol_obstack, mfree);
202 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
203 obstack_freefun (&objfile->symbol_obstack, mfree);
204 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
205 obstack_freefun (&objfile->type_obstack, mfree);
206 /* If already in objfile list, unlink it. */
207 unlink_objfile (objfile);
208 /* Forget things specific to a particular gdb, may have changed. */
209 objfile->sf = NULL;
210 }
211 else
212 {
213
214 /* Set up to detect internal memory corruption. MUST be
215 done before the first malloc. See comments in
216 init_malloc() and mmcheck(). */
217
218 init_malloc (md);
219
220 objfile = (struct objfile *)
221 xmmalloc (md, sizeof (struct objfile));
222 memset (objfile, 0, sizeof (struct objfile));
223 objfile->md = md;
224 objfile->mmfd = fd;
225 objfile->flags |= OBJF_MAPPED;
226 mmalloc_setkey (objfile->md, 0, objfile);
227 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
228 0, 0, xmmalloc, mfree,
229 objfile->md);
230 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
231 0, 0, xmmalloc, mfree,
232 objfile->md);
233 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
234 0, 0, xmmalloc, mfree,
235 objfile->md);
236 obstack_specify_allocation_with_arg (&objfile->type_obstack,
237 0, 0, xmmalloc, mfree,
238 objfile->md);
239 }
240 }
241
242 if ((flags & OBJF_MAPPED) && (objfile == NULL))
243 {
244 warning ("symbol table for '%s' will not be mapped",
245 bfd_get_filename (abfd));
246 flags &= ~OBJF_MAPPED;
247 }
248 }
249 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
250
251 if (flags & OBJF_MAPPED)
252 {
253 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
254
255 /* Turn off the global flag so we don't try to do mapped symbol tables
256 any more, which shuts up gdb unless the user specifically gives the
257 "mapped" keyword again. */
258
259 mapped_symbol_files = 0;
260 flags &= ~OBJF_MAPPED;
261 }
262
263 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
264
265 /* If we don't support mapped symbol files, didn't ask for the file to be
266 mapped, or failed to open the mapped file for some reason, then revert
267 back to an unmapped objfile. */
268
269 if (objfile == NULL)
270 {
271 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
272 memset (objfile, 0, sizeof (struct objfile));
273 objfile->md = NULL;
274 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
275 xmalloc, free);
276 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
277 free);
278 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
279 free);
280 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
281 free);
282 flags &= ~OBJF_MAPPED;
283 }
284
285 /* Update the per-objfile information that comes from the bfd, ensuring
286 that any data that is reference is saved in the per-objfile data
287 region. */
288
289 objfile->obfd = abfd;
290 if (objfile->name != NULL)
291 {
292 mfree (objfile->md, objfile->name);
293 }
294 if (abfd != NULL)
295 {
296 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
297 objfile->mtime = bfd_get_mtime (abfd);
298
299 /* Build section table. */
300
301 if (build_objfile_section_table (objfile))
302 {
303 error ("Can't find the file sections in `%s': %s",
304 objfile->name, bfd_errmsg (bfd_get_error ()));
305 }
306 }
307
308 /* Add this file onto the tail of the linked list of other such files. */
309
310 objfile->next = NULL;
311 if (object_files == NULL)
312 object_files = objfile;
313 else
314 {
315 for (last_one = object_files;
316 last_one->next;
317 last_one = last_one->next);
318 last_one->next = objfile;
319 }
320
321 /* Save passed in flag bits. */
322 objfile->flags |= flags;
323
324 return (objfile);
325 }
326
327 /* Put OBJFILE at the front of the list. */
328
329 void
330 objfile_to_front (objfile)
331 struct objfile *objfile;
332 {
333 struct objfile **objp;
334 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
335 {
336 if (*objp == objfile)
337 {
338 /* Unhook it from where it is. */
339 *objp = objfile->next;
340 /* Put it in the front. */
341 objfile->next = object_files;
342 object_files = objfile;
343 break;
344 }
345 }
346 }
347
348 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
349 list.
350
351 It is not a bug, or error, to call this function if OBJFILE is not known
352 to be in the current list. This is done in the case of mapped objfiles,
353 for example, just to ensure that the mapped objfile doesn't appear twice
354 in the list. Since the list is threaded, linking in a mapped objfile
355 twice would create a circular list.
356
357 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
358 unlinking it, just to ensure that we have completely severed any linkages
359 between the OBJFILE and the list. */
360
361 void
362 unlink_objfile (objfile)
363 struct objfile *objfile;
364 {
365 struct objfile **objpp;
366
367 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
368 {
369 if (*objpp == objfile)
370 {
371 *objpp = (*objpp)->next;
372 objfile->next = NULL;
373 return;
374 }
375 }
376
377 internal_error ("objfiles.c (unlink_objfile): objfile already unlinked");
378 }
379
380
381 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
382 that as much as possible is allocated on the symbol_obstack and
383 psymbol_obstack, so that the memory can be efficiently freed.
384
385 Things which we do NOT free because they are not in malloc'd memory
386 or not in memory specific to the objfile include:
387
388 objfile -> sf
389
390 FIXME: If the objfile is using reusable symbol information (via mmalloc),
391 then we need to take into account the fact that more than one process
392 may be using the symbol information at the same time (when mmalloc is
393 extended to support cooperative locking). When more than one process
394 is using the mapped symbol info, we need to be more careful about when
395 we free objects in the reusable area. */
396
397 void
398 free_objfile (objfile)
399 struct objfile *objfile;
400 {
401 /* First do any symbol file specific actions required when we are
402 finished with a particular symbol file. Note that if the objfile
403 is using reusable symbol information (via mmalloc) then each of
404 these routines is responsible for doing the correct thing, either
405 freeing things which are valid only during this particular gdb
406 execution, or leaving them to be reused during the next one. */
407
408 if (objfile->sf != NULL)
409 {
410 (*objfile->sf->sym_finish) (objfile);
411 }
412
413 /* We always close the bfd. */
414
415 if (objfile->obfd != NULL)
416 {
417 char *name = bfd_get_filename (objfile->obfd);
418 if (!bfd_close (objfile->obfd))
419 warning ("cannot close \"%s\": %s",
420 name, bfd_errmsg (bfd_get_error ()));
421 free (name);
422 }
423
424 /* Remove it from the chain of all objfiles. */
425
426 unlink_objfile (objfile);
427
428 /* If we are going to free the runtime common objfile, mark it
429 as unallocated. */
430
431 if (objfile == rt_common_objfile)
432 rt_common_objfile = NULL;
433
434 /* Before the symbol table code was redone to make it easier to
435 selectively load and remove information particular to a specific
436 linkage unit, gdb used to do these things whenever the monolithic
437 symbol table was blown away. How much still needs to be done
438 is unknown, but we play it safe for now and keep each action until
439 it is shown to be no longer needed. */
440
441 /* I *think* all our callers call clear_symtab_users. If so, no need
442 to call this here. */
443 clear_pc_function_cache ();
444
445 /* The last thing we do is free the objfile struct itself for the
446 non-reusable case, or detach from the mapped file for the reusable
447 case. Note that the mmalloc_detach or the mfree is the last thing
448 we can do with this objfile. */
449
450 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
451
452 if (objfile->flags & OBJF_MAPPED)
453 {
454 /* Remember the fd so we can close it. We can't close it before
455 doing the detach, and after the detach the objfile is gone. */
456 int mmfd;
457
458 mmfd = objfile->mmfd;
459 mmalloc_detach (objfile->md);
460 objfile = NULL;
461 close (mmfd);
462 }
463
464 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
465
466 /* If we still have an objfile, then either we don't support reusable
467 objfiles or this one was not reusable. So free it normally. */
468
469 if (objfile != NULL)
470 {
471 if (objfile->name != NULL)
472 {
473 mfree (objfile->md, objfile->name);
474 }
475 if (objfile->global_psymbols.list)
476 mfree (objfile->md, objfile->global_psymbols.list);
477 if (objfile->static_psymbols.list)
478 mfree (objfile->md, objfile->static_psymbols.list);
479 /* Free the obstacks for non-reusable objfiles */
480 free_bcache (&objfile->psymbol_cache);
481 obstack_free (&objfile->psymbol_obstack, 0);
482 obstack_free (&objfile->symbol_obstack, 0);
483 obstack_free (&objfile->type_obstack, 0);
484 mfree (objfile->md, objfile);
485 objfile = NULL;
486 }
487 }
488
489
490 /* Free all the object files at once and clean up their users. */
491
492 void
493 free_all_objfiles ()
494 {
495 struct objfile *objfile, *temp;
496
497 ALL_OBJFILES_SAFE (objfile, temp)
498 {
499 free_objfile (objfile);
500 }
501 clear_symtab_users ();
502 }
503 \f
504 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
505 entries in new_offsets. */
506 void
507 objfile_relocate (objfile, new_offsets)
508 struct objfile *objfile;
509 struct section_offsets *new_offsets;
510 {
511 struct section_offsets *delta =
512 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
513
514 {
515 int i;
516 int something_changed = 0;
517 for (i = 0; i < objfile->num_sections; ++i)
518 {
519 ANOFFSET (delta, i) =
520 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
521 if (ANOFFSET (delta, i) != 0)
522 something_changed = 1;
523 }
524 if (!something_changed)
525 return;
526 }
527
528 /* OK, get all the symtabs. */
529 {
530 struct symtab *s;
531
532 ALL_OBJFILE_SYMTABS (objfile, s)
533 {
534 struct linetable *l;
535 struct blockvector *bv;
536 int i;
537
538 /* First the line table. */
539 l = LINETABLE (s);
540 if (l)
541 {
542 for (i = 0; i < l->nitems; ++i)
543 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
544 }
545
546 /* Don't relocate a shared blockvector more than once. */
547 if (!s->primary)
548 continue;
549
550 bv = BLOCKVECTOR (s);
551 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
552 {
553 struct block *b;
554 int j;
555
556 b = BLOCKVECTOR_BLOCK (bv, i);
557 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
558 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
559
560 for (j = 0; j < BLOCK_NSYMS (b); ++j)
561 {
562 struct symbol *sym = BLOCK_SYM (b, j);
563 /* The RS6000 code from which this was taken skipped
564 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
565 But I'm leaving out that test, on the theory that
566 they can't possibly pass the tests below. */
567 if ((SYMBOL_CLASS (sym) == LOC_LABEL
568 || SYMBOL_CLASS (sym) == LOC_STATIC
569 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
570 && SYMBOL_SECTION (sym) >= 0)
571 {
572 SYMBOL_VALUE_ADDRESS (sym) +=
573 ANOFFSET (delta, SYMBOL_SECTION (sym));
574 }
575 #ifdef MIPS_EFI_SYMBOL_NAME
576 /* Relocate Extra Function Info for ecoff. */
577
578 else if (SYMBOL_CLASS (sym) == LOC_CONST
579 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
580 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
581 ecoff_relocate_efi (sym, ANOFFSET (delta,
582 s->block_line_section));
583 #endif
584 }
585 }
586 }
587 }
588
589 {
590 struct partial_symtab *p;
591
592 ALL_OBJFILE_PSYMTABS (objfile, p)
593 {
594 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
595 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
596 }
597 }
598
599 {
600 struct partial_symbol **psym;
601
602 for (psym = objfile->global_psymbols.list;
603 psym < objfile->global_psymbols.next;
604 psym++)
605 if (SYMBOL_SECTION (*psym) >= 0)
606 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
607 SYMBOL_SECTION (*psym));
608 for (psym = objfile->static_psymbols.list;
609 psym < objfile->static_psymbols.next;
610 psym++)
611 if (SYMBOL_SECTION (*psym) >= 0)
612 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
613 SYMBOL_SECTION (*psym));
614 }
615
616 {
617 struct minimal_symbol *msym;
618 ALL_OBJFILE_MSYMBOLS (objfile, msym)
619 if (SYMBOL_SECTION (msym) >= 0)
620 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
621 }
622 /* Relocating different sections by different amounts may cause the symbols
623 to be out of order. */
624 msymbols_sort (objfile);
625
626 {
627 int i;
628 for (i = 0; i < objfile->num_sections; ++i)
629 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
630 }
631
632 {
633 struct obj_section *s;
634 bfd *abfd;
635
636 abfd = objfile->obfd;
637
638 ALL_OBJFILE_OSECTIONS (objfile, s)
639 {
640 flagword flags;
641
642 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
643
644 if (flags & SEC_CODE)
645 {
646 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
647 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
648 }
649 else if (flags & (SEC_DATA | SEC_LOAD))
650 {
651 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
652 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
653 }
654 else if (flags & SEC_ALLOC)
655 {
656 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
657 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
658 }
659 }
660 }
661
662 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
663 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
664
665 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
666 {
667 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
668 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
669 }
670
671 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
672 {
673 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
674 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
675 }
676
677 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
678 {
679 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
680 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
681 }
682
683 /* Relocate breakpoints as necessary, after things are relocated. */
684 breakpoint_re_set ();
685 }
686 \f
687 /* Many places in gdb want to test just to see if we have any partial
688 symbols available. This function returns zero if none are currently
689 available, nonzero otherwise. */
690
691 int
692 have_partial_symbols ()
693 {
694 struct objfile *ofp;
695
696 ALL_OBJFILES (ofp)
697 {
698 if (ofp->psymtabs != NULL)
699 {
700 return 1;
701 }
702 }
703 return 0;
704 }
705
706 /* Many places in gdb want to test just to see if we have any full
707 symbols available. This function returns zero if none are currently
708 available, nonzero otherwise. */
709
710 int
711 have_full_symbols ()
712 {
713 struct objfile *ofp;
714
715 ALL_OBJFILES (ofp)
716 {
717 if (ofp->symtabs != NULL)
718 {
719 return 1;
720 }
721 }
722 return 0;
723 }
724
725
726 /* This operations deletes all objfile entries that represent solibs that
727 weren't explicitly loaded by the user, via e.g., the add-symbol-file
728 command.
729 */
730 void
731 objfile_purge_solibs ()
732 {
733 struct objfile *objf;
734 struct objfile *temp;
735
736 ALL_OBJFILES_SAFE (objf, temp)
737 {
738 /* We assume that the solib package has been purged already, or will
739 be soon.
740 */
741 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
742 free_objfile (objf);
743 }
744 }
745
746
747 /* Many places in gdb want to test just to see if we have any minimal
748 symbols available. This function returns zero if none are currently
749 available, nonzero otherwise. */
750
751 int
752 have_minimal_symbols ()
753 {
754 struct objfile *ofp;
755
756 ALL_OBJFILES (ofp)
757 {
758 if (ofp->msymbols != NULL)
759 {
760 return 1;
761 }
762 }
763 return 0;
764 }
765
766 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
767
768 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
769 of the corresponding symbol file in MTIME, try to open an existing file
770 with the name SYMSFILENAME and verify it is more recent than the base
771 file by checking it's timestamp against MTIME.
772
773 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
774
775 If SYMSFILENAME does exist, but is out of date, we check to see if the
776 user has specified creation of a mapped file. If so, we don't issue
777 any warning message because we will be creating a new mapped file anyway,
778 overwriting the old one. If not, then we issue a warning message so that
779 the user will know why we aren't using this existing mapped symbol file.
780 In either case, we return -1.
781
782 If SYMSFILENAME does exist and is not out of date, but can't be opened for
783 some reason, then prints an appropriate system error message and returns -1.
784
785 Otherwise, returns the open file descriptor. */
786
787 static int
788 open_existing_mapped_file (symsfilename, mtime, flags)
789 char *symsfilename;
790 long mtime;
791 int flags;
792 {
793 int fd = -1;
794 struct stat sbuf;
795
796 if (stat (symsfilename, &sbuf) == 0)
797 {
798 if (sbuf.st_mtime < mtime)
799 {
800 if (!(flags & OBJF_MAPPED))
801 {
802 warning ("mapped symbol file `%s' is out of date, ignored it",
803 symsfilename);
804 }
805 }
806 else if ((fd = open (symsfilename, O_RDWR)) < 0)
807 {
808 if (error_pre_print)
809 {
810 printf_unfiltered (error_pre_print);
811 }
812 print_sys_errmsg (symsfilename, errno);
813 }
814 }
815 return (fd);
816 }
817
818 /* Look for a mapped symbol file that corresponds to FILENAME and is more
819 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
820 use a mapped symbol file for this file, so create a new one if one does
821 not currently exist.
822
823 If found, then return an open file descriptor for the file, otherwise
824 return -1.
825
826 This routine is responsible for implementing the policy that generates
827 the name of the mapped symbol file from the name of a file containing
828 symbols that gdb would like to read. Currently this policy is to append
829 ".syms" to the name of the file.
830
831 This routine is also responsible for implementing the policy that
832 determines where the mapped symbol file is found (the search path).
833 This policy is that when reading an existing mapped file, a file of
834 the correct name in the current directory takes precedence over a
835 file of the correct name in the same directory as the symbol file.
836 When creating a new mapped file, it is always created in the current
837 directory. This helps to minimize the chances of a user unknowingly
838 creating big mapped files in places like /bin and /usr/local/bin, and
839 allows a local copy to override a manually installed global copy (in
840 /bin for example). */
841
842 static int
843 open_mapped_file (filename, mtime, flags)
844 char *filename;
845 long mtime;
846 int flags;
847 {
848 int fd;
849 char *symsfilename;
850
851 /* First try to open an existing file in the current directory, and
852 then try the directory where the symbol file is located. */
853
854 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
855 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
856 {
857 free (symsfilename);
858 symsfilename = concat (filename, ".syms", (char *) NULL);
859 fd = open_existing_mapped_file (symsfilename, mtime, flags);
860 }
861
862 /* If we don't have an open file by now, then either the file does not
863 already exist, or the base file has changed since it was created. In
864 either case, if the user has specified use of a mapped file, then
865 create a new mapped file, truncating any existing one. If we can't
866 create one, print a system error message saying why we can't.
867
868 By default the file is rw for everyone, with the user's umask taking
869 care of turning off the permissions the user wants off. */
870
871 if ((fd < 0) && (flags & OBJF_MAPPED))
872 {
873 free (symsfilename);
874 symsfilename = concat ("./", basename (filename), ".syms",
875 (char *) NULL);
876 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
877 {
878 if (error_pre_print)
879 {
880 printf_unfiltered (error_pre_print);
881 }
882 print_sys_errmsg (symsfilename, errno);
883 }
884 }
885
886 free (symsfilename);
887 return (fd);
888 }
889
890 static PTR
891 map_to_file (fd)
892 int fd;
893 {
894 PTR md;
895 CORE_ADDR mapto;
896
897 md = mmalloc_attach (fd, (PTR) 0);
898 if (md != NULL)
899 {
900 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
901 md = mmalloc_detach (md);
902 if (md != NULL)
903 {
904 /* FIXME: should figure out why detach failed */
905 md = NULL;
906 }
907 else if (mapto != (CORE_ADDR) NULL)
908 {
909 /* This mapping file needs to be remapped at "mapto" */
910 md = mmalloc_attach (fd, (PTR) mapto);
911 }
912 else
913 {
914 /* This is a freshly created mapping file. */
915 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
916 if (mapto != 0)
917 {
918 /* To avoid reusing the freshly created mapping file, at the
919 address selected by mmap, we must truncate it before trying
920 to do an attach at the address we want. */
921 ftruncate (fd, 0);
922 md = mmalloc_attach (fd, (PTR) mapto);
923 if (md != NULL)
924 {
925 mmalloc_setkey (md, 1, (PTR) mapto);
926 }
927 }
928 }
929 }
930 return (md);
931 }
932
933 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
934
935 /* Returns a section whose range includes PC and SECTION,
936 or NULL if none found. Note the distinction between the return type,
937 struct obj_section (which is defined in gdb), and the input type
938 struct sec (which is a bfd-defined data type). The obj_section
939 contains a pointer to the bfd struct sec section. */
940
941 struct obj_section *
942 find_pc_sect_section (pc, section)
943 CORE_ADDR pc;
944 struct sec *section;
945 {
946 struct obj_section *s;
947 struct objfile *objfile;
948
949 ALL_OBJSECTIONS (objfile, s)
950 if ((section == 0 || section == s->the_bfd_section) &&
951 s->addr <= pc && pc < s->endaddr)
952 return (s);
953
954 return (NULL);
955 }
956
957 /* Returns a section whose range includes PC or NULL if none found.
958 Backward compatibility, no section. */
959
960 struct obj_section *
961 find_pc_section (pc)
962 CORE_ADDR pc;
963 {
964 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
965 }
966
967
968 /* In SVR4, we recognize a trampoline by it's section name.
969 That is, if the pc is in a section named ".plt" then we are in
970 a trampoline. */
971
972 int
973 in_plt_section (pc, name)
974 CORE_ADDR pc;
975 char *name;
976 {
977 struct obj_section *s;
978 int retval = 0;
979
980 s = find_pc_section (pc);
981
982 retval = (s != NULL
983 && s->the_bfd_section->name != NULL
984 && STREQ (s->the_bfd_section->name, ".plt"));
985 return (retval);
986 }
987
988 /* Return nonzero if NAME is in the import list of OBJFILE. Else
989 return zero. */
990
991 int
992 is_in_import_list (name, objfile)
993 char *name;
994 struct objfile *objfile;
995 {
996 register int i;
997
998 if (!objfile || !name || !*name)
999 return 0;
1000
1001 for (i = 0; i < objfile->import_list_size; i++)
1002 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1003 return 1;
1004 return 0;
1005 }
1006
This page took 0.050866 seconds and 4 git commands to generate.