* symfile.c (reread_symbols): Include bfd_errmsg string in error
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Message to be printed before the error message, when an error occurs. */
53
54 extern char *error_pre_print;
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62
63 int mapped_symbol_files; /* Try to use mapped symbol files */
64
65 /* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69 static void
70 add_to_objfile_sections (abfd, asect, objfile_p_char)
71 bfd *abfd;
72 sec_ptr asect;
73 PTR objfile_p_char;
74 {
75 struct objfile *objfile = (struct objfile *) objfile_p_char;
76 struct obj_section section;
77 flagword aflag;
78
79 aflag = bfd_get_section_flags (abfd, asect);
80 if (!(aflag & SEC_ALLOC))
81 return;
82 if (0 == bfd_section_size (abfd, asect))
83 return;
84 section.offset = 0;
85 section.objfile = objfile;
86 section.the_bfd_section = asect;
87 section.addr = bfd_section_vma (abfd, asect);
88 section.endaddr = section.addr + bfd_section_size (abfd, asect);
89 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
90 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
91 }
92
93 /* Builds a section table for OBJFILE.
94 Returns 0 if OK, 1 on error (in which case bfd_error contains the
95 error). */
96
97 int
98 build_objfile_section_table (objfile)
99 struct objfile *objfile;
100 {
101 /* objfile->sections can be already set when reading a mapped symbol
102 file. I believe that we do need to rebuild the section table in
103 this case (we rebuild other things derived from the bfd), but we
104 can't free the old one (it's in the psymbol_obstack). So we just
105 waste some memory. */
106
107 objfile->sections_end = 0;
108 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
109 objfile->sections = (struct obj_section *)
110 obstack_finish (&objfile->psymbol_obstack);
111 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
112 return(0);
113 }
114
115 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
116 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
117 struct, fill it in as best we can, link it into the list of all known
118 objfiles, and return a pointer to the new objfile struct. */
119
120 struct objfile *
121 allocate_objfile (abfd, mapped)
122 bfd *abfd;
123 int mapped;
124 {
125 struct objfile *objfile = NULL;
126 struct objfile *last_one = NULL;
127
128 mapped |= mapped_symbol_files;
129
130 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
131 {
132
133 /* If we can support mapped symbol files, try to open/reopen the
134 mapped file that corresponds to the file from which we wish to
135 read symbols. If the objfile is to be mapped, we must malloc
136 the structure itself using the mmap version, and arrange that
137 all memory allocation for the objfile uses the mmap routines.
138 If we are reusing an existing mapped file, from which we get
139 our objfile pointer, we have to make sure that we update the
140 pointers to the alloc/free functions in the obstack, in case
141 these functions have moved within the current gdb. */
142
143 int fd;
144
145 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
146 mapped);
147 if (fd >= 0)
148 {
149 CORE_ADDR mapto;
150 PTR md;
151
152 if (((mapto = map_to_address ()) == 0) ||
153 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
154 {
155 close (fd);
156 }
157 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
158 {
159 /* Update memory corruption handler function addresses. */
160 init_malloc (md);
161 objfile -> md = md;
162 objfile -> mmfd = fd;
163 /* Update pointers to functions to *our* copies */
164 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
165 obstack_freefun (&objfile -> psymbol_obstack, mfree);
166 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
167 obstack_freefun (&objfile -> symbol_obstack, mfree);
168 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
169 obstack_freefun (&objfile -> type_obstack, mfree);
170 /* If already in objfile list, unlink it. */
171 unlink_objfile (objfile);
172 /* Forget things specific to a particular gdb, may have changed. */
173 objfile -> sf = NULL;
174 }
175 else
176 {
177
178 /* Set up to detect internal memory corruption. MUST be
179 done before the first malloc. See comments in
180 init_malloc() and mmcheck(). */
181
182 init_malloc (md);
183
184 objfile = (struct objfile *)
185 xmmalloc (md, sizeof (struct objfile));
186 memset (objfile, 0, sizeof (struct objfile));
187 objfile -> md = md;
188 objfile -> mmfd = fd;
189 objfile -> flags |= OBJF_MAPPED;
190 mmalloc_setkey (objfile -> md, 0, objfile);
191 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
192 0, 0, xmmalloc, mfree,
193 objfile -> md);
194 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
198 0, 0, xmmalloc, mfree,
199 objfile -> md);
200 }
201 }
202
203 if (mapped && (objfile == NULL))
204 {
205 warning ("symbol table for '%s' will not be mapped",
206 bfd_get_filename (abfd));
207 }
208 }
209 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
210
211 if (mapped)
212 {
213 warning ("this version of gdb does not support mapped symbol tables.");
214
215 /* Turn off the global flag so we don't try to do mapped symbol tables
216 any more, which shuts up gdb unless the user specifically gives the
217 "mapped" keyword again. */
218
219 mapped_symbol_files = 0;
220 }
221
222 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
223
224 /* If we don't support mapped symbol files, didn't ask for the file to be
225 mapped, or failed to open the mapped file for some reason, then revert
226 back to an unmapped objfile. */
227
228 if (objfile == NULL)
229 {
230 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
231 memset (objfile, 0, sizeof (struct objfile));
232 objfile -> md = NULL;
233 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
234 free);
235 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
236 free);
237 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
238 free);
239 }
240
241 /* Update the per-objfile information that comes from the bfd, ensuring
242 that any data that is reference is saved in the per-objfile data
243 region. */
244
245 objfile -> obfd = abfd;
246 if (objfile -> name != NULL)
247 {
248 mfree (objfile -> md, objfile -> name);
249 }
250 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
251 objfile -> mtime = bfd_get_mtime (abfd);
252
253 /* Build section table. */
254
255 if (build_objfile_section_table (objfile))
256 {
257 error ("Can't find the file sections in `%s': %s",
258 objfile -> name, bfd_errmsg (bfd_get_error ()));
259 }
260
261 /* Add this file onto the tail of the linked list of other such files. */
262
263 objfile -> next = NULL;
264 if (object_files == NULL)
265 object_files = objfile;
266 else
267 {
268 for (last_one = object_files;
269 last_one -> next;
270 last_one = last_one -> next);
271 last_one -> next = objfile;
272 }
273 return (objfile);
274 }
275
276 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
277 list.
278
279 It is not a bug, or error, to call this function if OBJFILE is not known
280 to be in the current list. This is done in the case of mapped objfiles,
281 for example, just to ensure that the mapped objfile doesn't appear twice
282 in the list. Since the list is threaded, linking in a mapped objfile
283 twice would create a circular list.
284
285 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
286 unlinking it, just to ensure that we have completely severed any linkages
287 between the OBJFILE and the list. */
288
289 void
290 unlink_objfile (objfile)
291 struct objfile *objfile;
292 {
293 struct objfile** objpp;
294
295 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
296 {
297 if (*objpp == objfile)
298 {
299 *objpp = (*objpp) -> next;
300 objfile -> next = NULL;
301 break;
302 }
303 }
304 }
305
306
307 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
308 that as much as possible is allocated on the symbol_obstack and
309 psymbol_obstack, so that the memory can be efficiently freed.
310
311 Things which we do NOT free because they are not in malloc'd memory
312 or not in memory specific to the objfile include:
313
314 objfile -> sf
315
316 FIXME: If the objfile is using reusable symbol information (via mmalloc),
317 then we need to take into account the fact that more than one process
318 may be using the symbol information at the same time (when mmalloc is
319 extended to support cooperative locking). When more than one process
320 is using the mapped symbol info, we need to be more careful about when
321 we free objects in the reusable area. */
322
323 void
324 free_objfile (objfile)
325 struct objfile *objfile;
326 {
327 /* First do any symbol file specific actions required when we are
328 finished with a particular symbol file. Note that if the objfile
329 is using reusable symbol information (via mmalloc) then each of
330 these routines is responsible for doing the correct thing, either
331 freeing things which are valid only during this particular gdb
332 execution, or leaving them to be reused during the next one. */
333
334 if (objfile -> sf != NULL)
335 {
336 (*objfile -> sf -> sym_finish) (objfile);
337 }
338
339 /* We always close the bfd. */
340
341 if (objfile -> obfd != NULL)
342 {
343 char *name = bfd_get_filename (objfile->obfd);
344 if (!bfd_close (objfile -> obfd))
345 warning ("cannot close \"%s\": %s",
346 name, bfd_errmsg (bfd_get_error ()));
347 free (name);
348 }
349
350 /* Remove it from the chain of all objfiles. */
351
352 unlink_objfile (objfile);
353
354 /* Before the symbol table code was redone to make it easier to
355 selectively load and remove information particular to a specific
356 linkage unit, gdb used to do these things whenever the monolithic
357 symbol table was blown away. How much still needs to be done
358 is unknown, but we play it safe for now and keep each action until
359 it is shown to be no longer needed. */
360
361 #if defined (CLEAR_SOLIB)
362 CLEAR_SOLIB ();
363 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
364 the to_sections for a core file might refer to those bfd's. So
365 detach any core file. */
366 {
367 struct target_ops *t = find_core_target ();
368 if (t != NULL)
369 (t->to_detach) (NULL, 0);
370 }
371 #endif
372 /* I *think* all our callers call clear_symtab_users. If so, no need
373 to call this here. */
374 clear_pc_function_cache ();
375
376 /* The last thing we do is free the objfile struct itself for the
377 non-reusable case, or detach from the mapped file for the reusable
378 case. Note that the mmalloc_detach or the mfree is the last thing
379 we can do with this objfile. */
380
381 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
382
383 if (objfile -> flags & OBJF_MAPPED)
384 {
385 /* Remember the fd so we can close it. We can't close it before
386 doing the detach, and after the detach the objfile is gone. */
387 int mmfd;
388
389 mmfd = objfile -> mmfd;
390 mmalloc_detach (objfile -> md);
391 objfile = NULL;
392 close (mmfd);
393 }
394
395 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
396
397 /* If we still have an objfile, then either we don't support reusable
398 objfiles or this one was not reusable. So free it normally. */
399
400 if (objfile != NULL)
401 {
402 if (objfile -> name != NULL)
403 {
404 mfree (objfile -> md, objfile -> name);
405 }
406 if (objfile->global_psymbols.list)
407 mfree (objfile->md, objfile->global_psymbols.list);
408 if (objfile->static_psymbols.list)
409 mfree (objfile->md, objfile->static_psymbols.list);
410 /* Free the obstacks for non-reusable objfiles */
411 obstack_free (&objfile -> psymbol_obstack, 0);
412 obstack_free (&objfile -> symbol_obstack, 0);
413 obstack_free (&objfile -> type_obstack, 0);
414 mfree (objfile -> md, objfile);
415 objfile = NULL;
416 }
417 }
418
419
420 /* Free all the object files at once and clean up their users. */
421
422 void
423 free_all_objfiles ()
424 {
425 struct objfile *objfile, *temp;
426
427 ALL_OBJFILES_SAFE (objfile, temp)
428 {
429 free_objfile (objfile);
430 }
431 clear_symtab_users ();
432 }
433 \f
434 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
435 entries in new_offsets. */
436 void
437 objfile_relocate (objfile, new_offsets)
438 struct objfile *objfile;
439 struct section_offsets *new_offsets;
440 {
441 struct section_offsets *delta = (struct section_offsets *) alloca
442 (sizeof (struct section_offsets)
443 + objfile->num_sections * sizeof (delta->offsets));
444
445 {
446 int i;
447 int something_changed = 0;
448 for (i = 0; i < objfile->num_sections; ++i)
449 {
450 ANOFFSET (delta, i) =
451 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
452 if (ANOFFSET (delta, i) != 0)
453 something_changed = 1;
454 }
455 if (!something_changed)
456 return;
457 }
458
459 /* OK, get all the symtabs. */
460 {
461 struct symtab *s;
462
463 ALL_OBJFILE_SYMTABS (objfile, s)
464 {
465 struct linetable *l;
466 struct blockvector *bv;
467 int i;
468
469 /* First the line table. */
470 l = LINETABLE (s);
471 if (l)
472 {
473 for (i = 0; i < l->nitems; ++i)
474 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
475 }
476
477 /* Don't relocate a shared blockvector more than once. */
478 if (!s->primary)
479 continue;
480
481 bv = BLOCKVECTOR (s);
482 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
483 {
484 struct block *b;
485 int j;
486
487 b = BLOCKVECTOR_BLOCK (bv, i);
488 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
489 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
490
491 for (j = 0; j < BLOCK_NSYMS (b); ++j)
492 {
493 struct symbol *sym = BLOCK_SYM (b, j);
494 /* The RS6000 code from which this was taken skipped
495 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
496 But I'm leaving out that test, on the theory that
497 they can't possibly pass the tests below. */
498 if ((SYMBOL_CLASS (sym) == LOC_LABEL
499 || SYMBOL_CLASS (sym) == LOC_STATIC)
500 && SYMBOL_SECTION (sym) >= 0)
501 {
502 SYMBOL_VALUE_ADDRESS (sym) +=
503 ANOFFSET (delta, SYMBOL_SECTION (sym));
504 }
505 #ifdef MIPS_EFI_SYMBOL_NAME
506 /* Relocate Extra Function Info for ecoff. */
507
508 else
509 if (SYMBOL_CLASS (sym) == LOC_CONST
510 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
511 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
512 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
513 #endif
514 }
515 }
516 }
517 }
518
519 {
520 struct partial_symtab *p;
521
522 ALL_OBJFILE_PSYMTABS (objfile, p)
523 {
524 /* FIXME: specific to symbol readers which use gdb-stabs.h.
525 We can only get away with it since objfile_relocate is only
526 used on XCOFF, which lacks psymtabs, and for gdb-stabs.h
527 targets. */
528 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
529 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
530 }
531 }
532
533 {
534 struct partial_symbol *psym;
535
536 for (psym = objfile->global_psymbols.list;
537 psym < objfile->global_psymbols.next;
538 psym++)
539 if (SYMBOL_SECTION (psym) >= 0)
540 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
541 for (psym = objfile->static_psymbols.list;
542 psym < objfile->static_psymbols.next;
543 psym++)
544 if (SYMBOL_SECTION (psym) >= 0)
545 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
546 }
547
548 {
549 struct minimal_symbol *msym;
550 ALL_OBJFILE_MSYMBOLS (objfile, msym)
551 if (SYMBOL_SECTION (msym) >= 0)
552 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
553 }
554
555 {
556 int i;
557 for (i = 0; i < objfile->num_sections; ++i)
558 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
559 }
560
561 {
562 struct obj_section *s;
563 bfd *abfd;
564
565 abfd = symfile_objfile->obfd;
566
567 for (s = symfile_objfile->sections;
568 s < symfile_objfile->sections_end; ++s)
569 {
570 flagword flags;
571
572 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
573
574 if (flags & SEC_CODE)
575 {
576 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
577 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
578 }
579 else if (flags & (SEC_DATA | SEC_LOAD))
580 {
581 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
582 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
583 }
584 else if (flags & SEC_ALLOC)
585 {
586 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
587 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
588 }
589 }
590 }
591
592 if (objfile->ei.entry_point != ~0)
593 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
594
595 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
596 {
597 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
598 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
599 }
600
601 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
602 {
603 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
604 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
605 }
606
607 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
608 {
609 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
610 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
611 }
612 }
613 \f
614 /* Many places in gdb want to test just to see if we have any partial
615 symbols available. This function returns zero if none are currently
616 available, nonzero otherwise. */
617
618 int
619 have_partial_symbols ()
620 {
621 struct objfile *ofp;
622
623 ALL_OBJFILES (ofp)
624 {
625 if (ofp -> psymtabs != NULL)
626 {
627 return 1;
628 }
629 }
630 return 0;
631 }
632
633 /* Many places in gdb want to test just to see if we have any full
634 symbols available. This function returns zero if none are currently
635 available, nonzero otherwise. */
636
637 int
638 have_full_symbols ()
639 {
640 struct objfile *ofp;
641
642 ALL_OBJFILES (ofp)
643 {
644 if (ofp -> symtabs != NULL)
645 {
646 return 1;
647 }
648 }
649 return 0;
650 }
651
652 /* Many places in gdb want to test just to see if we have any minimal
653 symbols available. This function returns zero if none are currently
654 available, nonzero otherwise. */
655
656 int
657 have_minimal_symbols ()
658 {
659 struct objfile *ofp;
660
661 ALL_OBJFILES (ofp)
662 {
663 if (ofp -> msymbols != NULL)
664 {
665 return 1;
666 }
667 }
668 return 0;
669 }
670
671 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
672
673 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
674 of the corresponding symbol file in MTIME, try to open an existing file
675 with the name SYMSFILENAME and verify it is more recent than the base
676 file by checking it's timestamp against MTIME.
677
678 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
679
680 If SYMSFILENAME does exist, but is out of date, we check to see if the
681 user has specified creation of a mapped file. If so, we don't issue
682 any warning message because we will be creating a new mapped file anyway,
683 overwriting the old one. If not, then we issue a warning message so that
684 the user will know why we aren't using this existing mapped symbol file.
685 In either case, we return -1.
686
687 If SYMSFILENAME does exist and is not out of date, but can't be opened for
688 some reason, then prints an appropriate system error message and returns -1.
689
690 Otherwise, returns the open file descriptor. */
691
692 static int
693 open_existing_mapped_file (symsfilename, mtime, mapped)
694 char *symsfilename;
695 long mtime;
696 int mapped;
697 {
698 int fd = -1;
699 struct stat sbuf;
700
701 if (stat (symsfilename, &sbuf) == 0)
702 {
703 if (sbuf.st_mtime < mtime)
704 {
705 if (!mapped)
706 {
707 warning ("mapped symbol file `%s' is out of date, ignored it",
708 symsfilename);
709 }
710 }
711 else if ((fd = open (symsfilename, O_RDWR)) < 0)
712 {
713 if (error_pre_print)
714 {
715 printf_unfiltered (error_pre_print);
716 }
717 print_sys_errmsg (symsfilename, errno);
718 }
719 }
720 return (fd);
721 }
722
723 /* Look for a mapped symbol file that corresponds to FILENAME and is more
724 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
725 use a mapped symbol file for this file, so create a new one if one does
726 not currently exist.
727
728 If found, then return an open file descriptor for the file, otherwise
729 return -1.
730
731 This routine is responsible for implementing the policy that generates
732 the name of the mapped symbol file from the name of a file containing
733 symbols that gdb would like to read. Currently this policy is to append
734 ".syms" to the name of the file.
735
736 This routine is also responsible for implementing the policy that
737 determines where the mapped symbol file is found (the search path).
738 This policy is that when reading an existing mapped file, a file of
739 the correct name in the current directory takes precedence over a
740 file of the correct name in the same directory as the symbol file.
741 When creating a new mapped file, it is always created in the current
742 directory. This helps to minimize the chances of a user unknowingly
743 creating big mapped files in places like /bin and /usr/local/bin, and
744 allows a local copy to override a manually installed global copy (in
745 /bin for example). */
746
747 static int
748 open_mapped_file (filename, mtime, mapped)
749 char *filename;
750 long mtime;
751 int mapped;
752 {
753 int fd;
754 char *symsfilename;
755
756 /* First try to open an existing file in the current directory, and
757 then try the directory where the symbol file is located. */
758
759 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
760 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
761 {
762 free (symsfilename);
763 symsfilename = concat (filename, ".syms", (char *) NULL);
764 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
765 }
766
767 /* If we don't have an open file by now, then either the file does not
768 already exist, or the base file has changed since it was created. In
769 either case, if the user has specified use of a mapped file, then
770 create a new mapped file, truncating any existing one. If we can't
771 create one, print a system error message saying why we can't.
772
773 By default the file is rw for everyone, with the user's umask taking
774 care of turning off the permissions the user wants off. */
775
776 if ((fd < 0) && mapped)
777 {
778 free (symsfilename);
779 symsfilename = concat ("./", basename (filename), ".syms",
780 (char *) NULL);
781 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
782 {
783 if (error_pre_print)
784 {
785 printf_unfiltered (error_pre_print);
786 }
787 print_sys_errmsg (symsfilename, errno);
788 }
789 }
790
791 free (symsfilename);
792 return (fd);
793 }
794
795 /* Return the base address at which we would like the next objfile's
796 mapped data to start.
797
798 For now, we use the kludge that the configuration specifies a base
799 address to which it is safe to map the first mmalloc heap, and an
800 increment to add to this address for each successive heap. There are
801 a lot of issues to deal with here to make this work reasonably, including:
802
803 Avoid memory collisions with existing mapped address spaces
804
805 Reclaim address spaces when their mmalloc heaps are unmapped
806
807 When mmalloc heaps are shared between processes they have to be
808 mapped at the same addresses in each
809
810 Once created, a mmalloc heap that is to be mapped back in must be
811 mapped at the original address. I.E. each objfile will expect to
812 be remapped at it's original address. This becomes a problem if
813 the desired address is already in use.
814
815 etc, etc, etc.
816
817 */
818
819
820 static CORE_ADDR
821 map_to_address ()
822 {
823
824 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
825
826 static CORE_ADDR next = MMAP_BASE_ADDRESS;
827 CORE_ADDR mapto = next;
828
829 next += MMAP_INCREMENT;
830 return (mapto);
831
832 #else
833
834 return (0);
835
836 #endif
837
838 }
839
840 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
841
842 /* Returns a section whose range includes PC or NULL if none found. */
843
844 struct obj_section *
845 find_pc_section(pc)
846 CORE_ADDR pc;
847 {
848 struct obj_section *s;
849 struct objfile *objfile;
850
851 ALL_OBJFILES (objfile)
852 for (s = objfile->sections; s < objfile->sections_end; ++s)
853 if (s->addr <= pc
854 && pc < s->endaddr)
855 return(s);
856
857 return(NULL);
858 }
859
860 /* In SVR4, we recognize a trampoline by it's section name.
861 That is, if the pc is in a section named ".plt" then we are in
862 a trampoline. */
863
864 int
865 in_plt_section(pc, name)
866 CORE_ADDR pc;
867 char *name;
868 {
869 struct obj_section *s;
870 int retval = 0;
871
872 s = find_pc_section(pc);
873
874 retval = (s != NULL
875 && s->the_bfd_section->name != NULL
876 && STREQ (s->the_bfd_section->name, ".plt"));
877 return(retval);
878 }
This page took 0.053172 seconds and 4 git commands to generate.