* i386.h: Correct opcode values for fsubp, fsubrp, fdivp, and
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37
38 /* Prototypes for local functions */
39
40 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
41
42 static int
43 open_existing_mapped_file PARAMS ((char *, long, int));
44
45 static int
46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
47
48 static PTR
49 map_to_file PARAMS ((int));
50
51 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
52
53 static void
54 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
63
64 int mapped_symbol_files; /* Try to use mapped symbol files */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 static void
71 add_to_objfile_sections (abfd, asect, objfile_p_char)
72 bfd *abfd;
73 sec_ptr asect;
74 PTR objfile_p_char;
75 {
76 struct objfile *objfile = (struct objfile *) objfile_p_char;
77 struct obj_section section;
78 flagword aflag;
79
80 aflag = bfd_get_section_flags (abfd, asect);
81 if (!(aflag & SEC_ALLOC))
82 return;
83 if (0 == bfd_section_size (abfd, asect))
84 return;
85 section.offset = 0;
86 section.objfile = objfile;
87 section.the_bfd_section = asect;
88 section.ovly_mapped = 0;
89 section.addr = bfd_section_vma (abfd, asect);
90 section.endaddr = section.addr + bfd_section_size (abfd, asect);
91 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
92 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
93 }
94
95 /* Builds a section table for OBJFILE.
96 Returns 0 if OK, 1 on error (in which case bfd_error contains the
97 error). */
98
99 int
100 build_objfile_section_table (objfile)
101 struct objfile *objfile;
102 {
103 /* objfile->sections can be already set when reading a mapped symbol
104 file. I believe that we do need to rebuild the section table in
105 this case (we rebuild other things derived from the bfd), but we
106 can't free the old one (it's in the psymbol_obstack). So we just
107 waste some memory. */
108
109 objfile->sections_end = 0;
110 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
111 objfile->sections = (struct obj_section *)
112 obstack_finish (&objfile->psymbol_obstack);
113 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
114 return(0);
115 }
116
117 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
118 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
119 struct, fill it in as best we can, link it into the list of all known
120 objfiles, and return a pointer to the new objfile struct. */
121
122 struct objfile *
123 allocate_objfile (abfd, mapped)
124 bfd *abfd;
125 int mapped;
126 {
127 struct objfile *objfile = NULL;
128 struct objfile *last_one = NULL;
129
130 mapped |= mapped_symbol_files;
131
132 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
133 {
134
135 /* If we can support mapped symbol files, try to open/reopen the
136 mapped file that corresponds to the file from which we wish to
137 read symbols. If the objfile is to be mapped, we must malloc
138 the structure itself using the mmap version, and arrange that
139 all memory allocation for the objfile uses the mmap routines.
140 If we are reusing an existing mapped file, from which we get
141 our objfile pointer, we have to make sure that we update the
142 pointers to the alloc/free functions in the obstack, in case
143 these functions have moved within the current gdb. */
144
145 int fd;
146
147 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
148 mapped);
149 if (fd >= 0)
150 {
151 PTR md;
152
153 if ((md = map_to_file (fd)) == NULL)
154 {
155 close (fd);
156 }
157 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
158 {
159 /* Update memory corruption handler function addresses. */
160 init_malloc (md);
161 objfile -> md = md;
162 objfile -> mmfd = fd;
163 /* Update pointers to functions to *our* copies */
164 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
165 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
166 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
167 obstack_freefun (&objfile -> psymbol_obstack, mfree);
168 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
169 obstack_freefun (&objfile -> symbol_obstack, mfree);
170 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
171 obstack_freefun (&objfile -> type_obstack, mfree);
172 /* If already in objfile list, unlink it. */
173 unlink_objfile (objfile);
174 /* Forget things specific to a particular gdb, may have changed. */
175 objfile -> sf = NULL;
176 }
177 else
178 {
179
180 /* Set up to detect internal memory corruption. MUST be
181 done before the first malloc. See comments in
182 init_malloc() and mmcheck(). */
183
184 init_malloc (md);
185
186 objfile = (struct objfile *)
187 xmmalloc (md, sizeof (struct objfile));
188 memset (objfile, 0, sizeof (struct objfile));
189 objfile -> md = md;
190 objfile -> mmfd = fd;
191 objfile -> flags |= OBJF_MAPPED;
192 mmalloc_setkey (objfile -> md, 0, objfile);
193 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
194 0, 0, xmmalloc, mfree,
195 objfile -> md);
196 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
197 0, 0, xmmalloc, mfree,
198 objfile -> md);
199 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
200 0, 0, xmmalloc, mfree,
201 objfile -> md);
202 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
203 0, 0, xmmalloc, mfree,
204 objfile -> md);
205 }
206 }
207
208 if (mapped && (objfile == NULL))
209 {
210 warning ("symbol table for '%s' will not be mapped",
211 bfd_get_filename (abfd));
212 }
213 }
214 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
215
216 if (mapped)
217 {
218 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
219
220 /* Turn off the global flag so we don't try to do mapped symbol tables
221 any more, which shuts up gdb unless the user specifically gives the
222 "mapped" keyword again. */
223
224 mapped_symbol_files = 0;
225 }
226
227 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
228
229 /* If we don't support mapped symbol files, didn't ask for the file to be
230 mapped, or failed to open the mapped file for some reason, then revert
231 back to an unmapped objfile. */
232
233 if (objfile == NULL)
234 {
235 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
236 memset (objfile, 0, sizeof (struct objfile));
237 objfile -> md = NULL;
238 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
239 xmalloc, free);
240 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
241 free);
242 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
243 free);
244 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
245 free);
246 }
247
248 /* Update the per-objfile information that comes from the bfd, ensuring
249 that any data that is reference is saved in the per-objfile data
250 region. */
251
252 objfile -> obfd = abfd;
253 if (objfile -> name != NULL)
254 {
255 mfree (objfile -> md, objfile -> name);
256 }
257 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
258 objfile -> mtime = bfd_get_mtime (abfd);
259
260 /* Build section table. */
261
262 if (build_objfile_section_table (objfile))
263 {
264 error ("Can't find the file sections in `%s': %s",
265 objfile -> name, bfd_errmsg (bfd_get_error ()));
266 }
267
268 /* Add this file onto the tail of the linked list of other such files. */
269
270 objfile -> next = NULL;
271 if (object_files == NULL)
272 object_files = objfile;
273 else
274 {
275 for (last_one = object_files;
276 last_one -> next;
277 last_one = last_one -> next);
278 last_one -> next = objfile;
279 }
280 return (objfile);
281 }
282
283 /* Put OBJFILE at the front of the list. */
284
285 void
286 objfile_to_front (objfile)
287 struct objfile *objfile;
288 {
289 struct objfile **objp;
290 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
291 {
292 if (*objp == objfile)
293 {
294 /* Unhook it from where it is. */
295 *objp = objfile->next;
296 /* Put it in the front. */
297 objfile->next = object_files;
298 object_files = objfile;
299 break;
300 }
301 }
302 }
303
304 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
305 list.
306
307 It is not a bug, or error, to call this function if OBJFILE is not known
308 to be in the current list. This is done in the case of mapped objfiles,
309 for example, just to ensure that the mapped objfile doesn't appear twice
310 in the list. Since the list is threaded, linking in a mapped objfile
311 twice would create a circular list.
312
313 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
314 unlinking it, just to ensure that we have completely severed any linkages
315 between the OBJFILE and the list. */
316
317 void
318 unlink_objfile (objfile)
319 struct objfile *objfile;
320 {
321 struct objfile** objpp;
322
323 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
324 {
325 if (*objpp == objfile)
326 {
327 *objpp = (*objpp) -> next;
328 objfile -> next = NULL;
329 break;
330 }
331 }
332 }
333
334
335 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
336 that as much as possible is allocated on the symbol_obstack and
337 psymbol_obstack, so that the memory can be efficiently freed.
338
339 Things which we do NOT free because they are not in malloc'd memory
340 or not in memory specific to the objfile include:
341
342 objfile -> sf
343
344 FIXME: If the objfile is using reusable symbol information (via mmalloc),
345 then we need to take into account the fact that more than one process
346 may be using the symbol information at the same time (when mmalloc is
347 extended to support cooperative locking). When more than one process
348 is using the mapped symbol info, we need to be more careful about when
349 we free objects in the reusable area. */
350
351 void
352 free_objfile (objfile)
353 struct objfile *objfile;
354 {
355 /* First do any symbol file specific actions required when we are
356 finished with a particular symbol file. Note that if the objfile
357 is using reusable symbol information (via mmalloc) then each of
358 these routines is responsible for doing the correct thing, either
359 freeing things which are valid only during this particular gdb
360 execution, or leaving them to be reused during the next one. */
361
362 if (objfile -> sf != NULL)
363 {
364 (*objfile -> sf -> sym_finish) (objfile);
365 }
366
367 /* We always close the bfd. */
368
369 if (objfile -> obfd != NULL)
370 {
371 char *name = bfd_get_filename (objfile->obfd);
372 if (!bfd_close (objfile -> obfd))
373 warning ("cannot close \"%s\": %s",
374 name, bfd_errmsg (bfd_get_error ()));
375 free (name);
376 }
377
378 /* Remove it from the chain of all objfiles. */
379
380 unlink_objfile (objfile);
381
382 /* If we are going to free the runtime common objfile, mark it
383 as unallocated. */
384
385 if (objfile == rt_common_objfile)
386 rt_common_objfile = NULL;
387
388 /* Before the symbol table code was redone to make it easier to
389 selectively load and remove information particular to a specific
390 linkage unit, gdb used to do these things whenever the monolithic
391 symbol table was blown away. How much still needs to be done
392 is unknown, but we play it safe for now and keep each action until
393 it is shown to be no longer needed. */
394
395 #if defined (CLEAR_SOLIB)
396 CLEAR_SOLIB ();
397 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
398 the to_sections for a core file might refer to those bfd's. So
399 detach any core file. */
400 {
401 struct target_ops *t = find_core_target ();
402 if (t != NULL)
403 (t->to_detach) (NULL, 0);
404 }
405 #endif
406 /* I *think* all our callers call clear_symtab_users. If so, no need
407 to call this here. */
408 clear_pc_function_cache ();
409
410 /* The last thing we do is free the objfile struct itself for the
411 non-reusable case, or detach from the mapped file for the reusable
412 case. Note that the mmalloc_detach or the mfree is the last thing
413 we can do with this objfile. */
414
415 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
416
417 if (objfile -> flags & OBJF_MAPPED)
418 {
419 /* Remember the fd so we can close it. We can't close it before
420 doing the detach, and after the detach the objfile is gone. */
421 int mmfd;
422
423 mmfd = objfile -> mmfd;
424 mmalloc_detach (objfile -> md);
425 objfile = NULL;
426 close (mmfd);
427 }
428
429 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
430
431 /* If we still have an objfile, then either we don't support reusable
432 objfiles or this one was not reusable. So free it normally. */
433
434 if (objfile != NULL)
435 {
436 if (objfile -> name != NULL)
437 {
438 mfree (objfile -> md, objfile -> name);
439 }
440 if (objfile->global_psymbols.list)
441 mfree (objfile->md, objfile->global_psymbols.list);
442 if (objfile->static_psymbols.list)
443 mfree (objfile->md, objfile->static_psymbols.list);
444 /* Free the obstacks for non-reusable objfiles */
445 obstack_free (&objfile -> psymbol_cache.cache, 0);
446 obstack_free (&objfile -> psymbol_obstack, 0);
447 obstack_free (&objfile -> symbol_obstack, 0);
448 obstack_free (&objfile -> type_obstack, 0);
449 mfree (objfile -> md, objfile);
450 objfile = NULL;
451 }
452 }
453
454
455 /* Free all the object files at once and clean up their users. */
456
457 void
458 free_all_objfiles ()
459 {
460 struct objfile *objfile, *temp;
461
462 ALL_OBJFILES_SAFE (objfile, temp)
463 {
464 free_objfile (objfile);
465 }
466 clear_symtab_users ();
467 }
468 \f
469 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
470 entries in new_offsets. */
471 void
472 objfile_relocate (objfile, new_offsets)
473 struct objfile *objfile;
474 struct section_offsets *new_offsets;
475 {
476 struct section_offsets *delta = (struct section_offsets *)
477 alloca (sizeof (struct section_offsets)
478 + objfile->num_sections * sizeof (delta->offsets));
479
480 {
481 int i;
482 int something_changed = 0;
483 for (i = 0; i < objfile->num_sections; ++i)
484 {
485 ANOFFSET (delta, i) =
486 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
487 if (ANOFFSET (delta, i) != 0)
488 something_changed = 1;
489 }
490 if (!something_changed)
491 return;
492 }
493
494 /* OK, get all the symtabs. */
495 {
496 struct symtab *s;
497
498 ALL_OBJFILE_SYMTABS (objfile, s)
499 {
500 struct linetable *l;
501 struct blockvector *bv;
502 int i;
503
504 /* First the line table. */
505 l = LINETABLE (s);
506 if (l)
507 {
508 for (i = 0; i < l->nitems; ++i)
509 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
510 }
511
512 /* Don't relocate a shared blockvector more than once. */
513 if (!s->primary)
514 continue;
515
516 bv = BLOCKVECTOR (s);
517 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
518 {
519 struct block *b;
520 int j;
521
522 b = BLOCKVECTOR_BLOCK (bv, i);
523 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
524 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
525
526 for (j = 0; j < BLOCK_NSYMS (b); ++j)
527 {
528 struct symbol *sym = BLOCK_SYM (b, j);
529 /* The RS6000 code from which this was taken skipped
530 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
531 But I'm leaving out that test, on the theory that
532 they can't possibly pass the tests below. */
533 if ((SYMBOL_CLASS (sym) == LOC_LABEL
534 || SYMBOL_CLASS (sym) == LOC_STATIC)
535 && SYMBOL_SECTION (sym) >= 0)
536 {
537 SYMBOL_VALUE_ADDRESS (sym) +=
538 ANOFFSET (delta, SYMBOL_SECTION (sym));
539 }
540 #ifdef MIPS_EFI_SYMBOL_NAME
541 /* Relocate Extra Function Info for ecoff. */
542
543 else
544 if (SYMBOL_CLASS (sym) == LOC_CONST
545 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
546 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
547 ecoff_relocate_efi (sym, ANOFFSET (delta,
548 s->block_line_section));
549 #endif
550 }
551 }
552 }
553 }
554
555 {
556 struct partial_symtab *p;
557
558 ALL_OBJFILE_PSYMTABS (objfile, p)
559 {
560 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
561 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
562 }
563 }
564
565 {
566 struct partial_symbol **psym;
567
568 for (psym = objfile->global_psymbols.list;
569 psym < objfile->global_psymbols.next;
570 psym++)
571 if (SYMBOL_SECTION (*psym) >= 0)
572 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
573 SYMBOL_SECTION (*psym));
574 for (psym = objfile->static_psymbols.list;
575 psym < objfile->static_psymbols.next;
576 psym++)
577 if (SYMBOL_SECTION (*psym) >= 0)
578 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
579 SYMBOL_SECTION (*psym));
580 }
581
582 {
583 struct minimal_symbol *msym;
584 ALL_OBJFILE_MSYMBOLS (objfile, msym)
585 if (SYMBOL_SECTION (msym) >= 0)
586 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
587 }
588 /* Relocating different sections by different amounts may cause the symbols
589 to be out of order. */
590 msymbols_sort (objfile);
591
592 {
593 int i;
594 for (i = 0; i < objfile->num_sections; ++i)
595 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
596 }
597
598 {
599 struct obj_section *s;
600 bfd *abfd;
601
602 abfd = objfile->obfd;
603
604 for (s = objfile->sections;
605 s < objfile->sections_end; ++s)
606 {
607 flagword flags;
608
609 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
610
611 if (flags & SEC_CODE)
612 {
613 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
614 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
615 }
616 else if (flags & (SEC_DATA | SEC_LOAD))
617 {
618 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
619 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
620 }
621 else if (flags & SEC_ALLOC)
622 {
623 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
624 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
625 }
626 }
627 }
628
629 if (objfile->ei.entry_point != ~0)
630 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
631
632 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
633 {
634 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
635 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
636 }
637
638 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
639 {
640 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
641 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
642 }
643
644 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
645 {
646 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
647 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
648 }
649 }
650 \f
651 /* Many places in gdb want to test just to see if we have any partial
652 symbols available. This function returns zero if none are currently
653 available, nonzero otherwise. */
654
655 int
656 have_partial_symbols ()
657 {
658 struct objfile *ofp;
659
660 ALL_OBJFILES (ofp)
661 {
662 if (ofp -> psymtabs != NULL)
663 {
664 return 1;
665 }
666 }
667 return 0;
668 }
669
670 /* Many places in gdb want to test just to see if we have any full
671 symbols available. This function returns zero if none are currently
672 available, nonzero otherwise. */
673
674 int
675 have_full_symbols ()
676 {
677 struct objfile *ofp;
678
679 ALL_OBJFILES (ofp)
680 {
681 if (ofp -> symtabs != NULL)
682 {
683 return 1;
684 }
685 }
686 return 0;
687 }
688
689 /* Many places in gdb want to test just to see if we have any minimal
690 symbols available. This function returns zero if none are currently
691 available, nonzero otherwise. */
692
693 int
694 have_minimal_symbols ()
695 {
696 struct objfile *ofp;
697
698 ALL_OBJFILES (ofp)
699 {
700 if (ofp -> msymbols != NULL)
701 {
702 return 1;
703 }
704 }
705 return 0;
706 }
707
708 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
709
710 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
711 of the corresponding symbol file in MTIME, try to open an existing file
712 with the name SYMSFILENAME and verify it is more recent than the base
713 file by checking it's timestamp against MTIME.
714
715 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
716
717 If SYMSFILENAME does exist, but is out of date, we check to see if the
718 user has specified creation of a mapped file. If so, we don't issue
719 any warning message because we will be creating a new mapped file anyway,
720 overwriting the old one. If not, then we issue a warning message so that
721 the user will know why we aren't using this existing mapped symbol file.
722 In either case, we return -1.
723
724 If SYMSFILENAME does exist and is not out of date, but can't be opened for
725 some reason, then prints an appropriate system error message and returns -1.
726
727 Otherwise, returns the open file descriptor. */
728
729 static int
730 open_existing_mapped_file (symsfilename, mtime, mapped)
731 char *symsfilename;
732 long mtime;
733 int mapped;
734 {
735 int fd = -1;
736 struct stat sbuf;
737
738 if (stat (symsfilename, &sbuf) == 0)
739 {
740 if (sbuf.st_mtime < mtime)
741 {
742 if (!mapped)
743 {
744 warning ("mapped symbol file `%s' is out of date, ignored it",
745 symsfilename);
746 }
747 }
748 else if ((fd = open (symsfilename, O_RDWR)) < 0)
749 {
750 if (error_pre_print)
751 {
752 printf_unfiltered (error_pre_print);
753 }
754 print_sys_errmsg (symsfilename, errno);
755 }
756 }
757 return (fd);
758 }
759
760 /* Look for a mapped symbol file that corresponds to FILENAME and is more
761 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
762 use a mapped symbol file for this file, so create a new one if one does
763 not currently exist.
764
765 If found, then return an open file descriptor for the file, otherwise
766 return -1.
767
768 This routine is responsible for implementing the policy that generates
769 the name of the mapped symbol file from the name of a file containing
770 symbols that gdb would like to read. Currently this policy is to append
771 ".syms" to the name of the file.
772
773 This routine is also responsible for implementing the policy that
774 determines where the mapped symbol file is found (the search path).
775 This policy is that when reading an existing mapped file, a file of
776 the correct name in the current directory takes precedence over a
777 file of the correct name in the same directory as the symbol file.
778 When creating a new mapped file, it is always created in the current
779 directory. This helps to minimize the chances of a user unknowingly
780 creating big mapped files in places like /bin and /usr/local/bin, and
781 allows a local copy to override a manually installed global copy (in
782 /bin for example). */
783
784 static int
785 open_mapped_file (filename, mtime, mapped)
786 char *filename;
787 long mtime;
788 int mapped;
789 {
790 int fd;
791 char *symsfilename;
792
793 /* First try to open an existing file in the current directory, and
794 then try the directory where the symbol file is located. */
795
796 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
797 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
798 {
799 free (symsfilename);
800 symsfilename = concat (filename, ".syms", (char *) NULL);
801 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
802 }
803
804 /* If we don't have an open file by now, then either the file does not
805 already exist, or the base file has changed since it was created. In
806 either case, if the user has specified use of a mapped file, then
807 create a new mapped file, truncating any existing one. If we can't
808 create one, print a system error message saying why we can't.
809
810 By default the file is rw for everyone, with the user's umask taking
811 care of turning off the permissions the user wants off. */
812
813 if ((fd < 0) && mapped)
814 {
815 free (symsfilename);
816 symsfilename = concat ("./", basename (filename), ".syms",
817 (char *) NULL);
818 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
819 {
820 if (error_pre_print)
821 {
822 printf_unfiltered (error_pre_print);
823 }
824 print_sys_errmsg (symsfilename, errno);
825 }
826 }
827
828 free (symsfilename);
829 return (fd);
830 }
831
832 static PTR
833 map_to_file (fd)
834 int fd;
835 {
836 PTR md;
837 CORE_ADDR mapto;
838
839 md = mmalloc_attach (fd, (PTR) 0);
840 if (md != NULL)
841 {
842 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
843 md = mmalloc_detach (md);
844 if (md != NULL)
845 {
846 /* FIXME: should figure out why detach failed */
847 md = NULL;
848 }
849 else if (mapto != (CORE_ADDR) NULL)
850 {
851 /* This mapping file needs to be remapped at "mapto" */
852 md = mmalloc_attach (fd, (PTR) mapto);
853 }
854 else
855 {
856 /* This is a freshly created mapping file. */
857 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
858 if (mapto != 0)
859 {
860 /* To avoid reusing the freshly created mapping file, at the
861 address selected by mmap, we must truncate it before trying
862 to do an attach at the address we want. */
863 ftruncate (fd, 0);
864 md = mmalloc_attach (fd, (PTR) mapto);
865 if (md != NULL)
866 {
867 mmalloc_setkey (md, 1, (PTR) mapto);
868 }
869 }
870 }
871 }
872 return (md);
873 }
874
875 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
876
877 /* Returns a section whose range includes PC and SECTION,
878 or NULL if none found. Note the distinction between the return type,
879 struct obj_section (which is defined in gdb), and the input type
880 struct sec (which is a bfd-defined data type). The obj_section
881 contains a pointer to the bfd struct sec section. */
882
883 struct obj_section *
884 find_pc_sect_section (pc, section)
885 CORE_ADDR pc;
886 struct sec *section;
887 {
888 struct obj_section *s;
889 struct objfile *objfile;
890
891 ALL_OBJFILES (objfile)
892 for (s = objfile->sections; s < objfile->sections_end; ++s)
893 if ((section == 0 || section == s->the_bfd_section) &&
894 s->addr <= pc && pc < s->endaddr)
895 return(s);
896
897 return(NULL);
898 }
899
900 /* Returns a section whose range includes PC or NULL if none found.
901 Backward compatibility, no section. */
902
903 struct obj_section *
904 find_pc_section(pc)
905 CORE_ADDR pc;
906 {
907 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
908 }
909
910
911 /* In SVR4, we recognize a trampoline by it's section name.
912 That is, if the pc is in a section named ".plt" then we are in
913 a trampoline. */
914
915 int
916 in_plt_section(pc, name)
917 CORE_ADDR pc;
918 char *name;
919 {
920 struct obj_section *s;
921 int retval = 0;
922
923 s = find_pc_section(pc);
924
925 retval = (s != NULL
926 && s->the_bfd_section->name != NULL
927 && STREQ (s->the_bfd_section->name, ".plt"));
928 return(retval);
929 }
This page took 0.051329 seconds and 4 git commands to generate.