Fix for PR gdb/209, PR gdb/156:
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33
34 #include <sys/types.h>
35 #include "gdb_stat.h"
36 #include <fcntl.h>
37 #include "obstack.h"
38 #include "gdb_string.h"
39
40 #include "breakpoint.h"
41
42 /* Prototypes for local functions */
43
44 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
45
46 static int open_existing_mapped_file (char *, long, int);
47
48 static int open_mapped_file (char *filename, long mtime, int flags);
49
50 static PTR map_to_file (int);
51
52 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
53
54 static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
63
64 int mapped_symbol_files; /* Try to use mapped symbol files */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 #ifndef TARGET_KEEP_SECTION
71 #define TARGET_KEEP_SECTION(ASECT) 0
72 #endif
73
74 /* Called via bfd_map_over_sections to build up the section table that
75 the objfile references. The objfile contains pointers to the start
76 of the table (objfile->sections) and to the first location after
77 the end of the table (objfile->sections_end). */
78
79 static void
80 add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
81 {
82 struct objfile *objfile = (struct objfile *) objfile_p_char;
83 struct obj_section section;
84 flagword aflag;
85
86 aflag = bfd_get_section_flags (abfd, asect);
87
88 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
89 return;
90
91 if (0 == bfd_section_size (abfd, asect))
92 return;
93 section.offset = 0;
94 section.objfile = objfile;
95 section.the_bfd_section = asect;
96 section.ovly_mapped = 0;
97 section.addr = bfd_section_vma (abfd, asect);
98 section.endaddr = section.addr + bfd_section_size (abfd, asect);
99 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
100 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
101 }
102
103 /* Builds a section table for OBJFILE.
104 Returns 0 if OK, 1 on error (in which case bfd_error contains the
105 error).
106
107 Note that while we are building the table, which goes into the
108 psymbol obstack, we hijack the sections_end pointer to instead hold
109 a count of the number of sections. When bfd_map_over_sections
110 returns, this count is used to compute the pointer to the end of
111 the sections table, which then overwrites the count.
112
113 Also note that the OFFSET and OVLY_MAPPED in each table entry
114 are initialized to zero.
115
116 Also note that if anything else writes to the psymbol obstack while
117 we are building the table, we're pretty much hosed. */
118
119 int
120 build_objfile_section_table (struct objfile *objfile)
121 {
122 /* objfile->sections can be already set when reading a mapped symbol
123 file. I believe that we do need to rebuild the section table in
124 this case (we rebuild other things derived from the bfd), but we
125 can't free the old one (it's in the psymbol_obstack). So we just
126 waste some memory. */
127
128 objfile->sections_end = 0;
129 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
130 objfile->sections = (struct obj_section *)
131 obstack_finish (&objfile->psymbol_obstack);
132 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
133 return (0);
134 }
135
136 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
137 allocate a new objfile struct, fill it in as best we can, link it
138 into the list of all known objfiles, and return a pointer to the
139 new objfile struct.
140
141 The FLAGS word contains various bits (OBJF_*) that can be taken as
142 requests for specific operations, like trying to open a mapped
143 version of the objfile (OBJF_MAPPED). Other bits like
144 OBJF_SHARED are simply copied through to the new objfile flags
145 member. */
146
147 struct objfile *
148 allocate_objfile (bfd *abfd, int flags)
149 {
150 struct objfile *objfile = NULL;
151 struct objfile *last_one = NULL;
152
153 if (mapped_symbol_files)
154 flags |= OBJF_MAPPED;
155
156 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
157 if (abfd != NULL)
158 {
159
160 /* If we can support mapped symbol files, try to open/reopen the
161 mapped file that corresponds to the file from which we wish to
162 read symbols. If the objfile is to be mapped, we must malloc
163 the structure itself using the mmap version, and arrange that
164 all memory allocation for the objfile uses the mmap routines.
165 If we are reusing an existing mapped file, from which we get
166 our objfile pointer, we have to make sure that we update the
167 pointers to the alloc/free functions in the obstack, in case
168 these functions have moved within the current gdb. */
169
170 int fd;
171
172 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
173 flags);
174 if (fd >= 0)
175 {
176 PTR md;
177
178 if ((md = map_to_file (fd)) == NULL)
179 {
180 close (fd);
181 }
182 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
183 {
184 /* Update memory corruption handler function addresses. */
185 init_malloc (md);
186 objfile->md = md;
187 objfile->mmfd = fd;
188 /* Update pointers to functions to *our* copies */
189 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
190 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
191 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
192 obstack_freefun (&objfile->psymbol_obstack, mfree);
193 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
194 obstack_freefun (&objfile->symbol_obstack, mfree);
195 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
196 obstack_freefun (&objfile->type_obstack, mfree);
197 /* If already in objfile list, unlink it. */
198 unlink_objfile (objfile);
199 /* Forget things specific to a particular gdb, may have changed. */
200 objfile->sf = NULL;
201 }
202 else
203 {
204
205 /* Set up to detect internal memory corruption. MUST be
206 done before the first malloc. See comments in
207 init_malloc() and mmcheck(). */
208
209 init_malloc (md);
210
211 objfile = (struct objfile *)
212 xmmalloc (md, sizeof (struct objfile));
213 memset (objfile, 0, sizeof (struct objfile));
214 objfile->md = md;
215 objfile->mmfd = fd;
216 objfile->flags |= OBJF_MAPPED;
217 mmalloc_setkey (objfile->md, 0, objfile);
218 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
219 0, 0, xmmalloc, mfree,
220 objfile->md);
221 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
222 0, 0, xmmalloc, mfree,
223 objfile->md);
224 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
225 0, 0, xmmalloc, mfree,
226 objfile->md);
227 obstack_specify_allocation_with_arg (&objfile->type_obstack,
228 0, 0, xmmalloc, mfree,
229 objfile->md);
230 }
231 }
232
233 if ((flags & OBJF_MAPPED) && (objfile == NULL))
234 {
235 warning ("symbol table for '%s' will not be mapped",
236 bfd_get_filename (abfd));
237 flags &= ~OBJF_MAPPED;
238 }
239 }
240 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
241
242 if (flags & OBJF_MAPPED)
243 {
244 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
245
246 /* Turn off the global flag so we don't try to do mapped symbol tables
247 any more, which shuts up gdb unless the user specifically gives the
248 "mapped" keyword again. */
249
250 mapped_symbol_files = 0;
251 flags &= ~OBJF_MAPPED;
252 }
253
254 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
255
256 /* If we don't support mapped symbol files, didn't ask for the file to be
257 mapped, or failed to open the mapped file for some reason, then revert
258 back to an unmapped objfile. */
259
260 if (objfile == NULL)
261 {
262 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
263 memset (objfile, 0, sizeof (struct objfile));
264 objfile->md = NULL;
265 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
266 xmalloc, xfree);
267 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
268 xfree);
269 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
270 xfree);
271 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
272 xfree);
273 flags &= ~OBJF_MAPPED;
274 }
275
276 /* Update the per-objfile information that comes from the bfd, ensuring
277 that any data that is reference is saved in the per-objfile data
278 region. */
279
280 objfile->obfd = abfd;
281 if (objfile->name != NULL)
282 {
283 mfree (objfile->md, objfile->name);
284 }
285 if (abfd != NULL)
286 {
287 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
288 objfile->mtime = bfd_get_mtime (abfd);
289
290 /* Build section table. */
291
292 if (build_objfile_section_table (objfile))
293 {
294 error ("Can't find the file sections in `%s': %s",
295 objfile->name, bfd_errmsg (bfd_get_error ()));
296 }
297 }
298
299 /* Initialize the section indexes for this objfile, so that we can
300 later detect if they are used w/o being properly assigned to. */
301
302 objfile->sect_index_text = -1;
303 objfile->sect_index_data = -1;
304 objfile->sect_index_bss = -1;
305 objfile->sect_index_rodata = -1;
306
307 /* Add this file onto the tail of the linked list of other such files. */
308
309 objfile->next = NULL;
310 if (object_files == NULL)
311 object_files = objfile;
312 else
313 {
314 for (last_one = object_files;
315 last_one->next;
316 last_one = last_one->next);
317 last_one->next = objfile;
318 }
319
320 /* Save passed in flag bits. */
321 objfile->flags |= flags;
322
323 return (objfile);
324 }
325
326 /* Put OBJFILE at the front of the list. */
327
328 void
329 objfile_to_front (struct objfile *objfile)
330 {
331 struct objfile **objp;
332 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
333 {
334 if (*objp == objfile)
335 {
336 /* Unhook it from where it is. */
337 *objp = objfile->next;
338 /* Put it in the front. */
339 objfile->next = object_files;
340 object_files = objfile;
341 break;
342 }
343 }
344 }
345
346 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
347 list.
348
349 It is not a bug, or error, to call this function if OBJFILE is not known
350 to be in the current list. This is done in the case of mapped objfiles,
351 for example, just to ensure that the mapped objfile doesn't appear twice
352 in the list. Since the list is threaded, linking in a mapped objfile
353 twice would create a circular list.
354
355 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
356 unlinking it, just to ensure that we have completely severed any linkages
357 between the OBJFILE and the list. */
358
359 void
360 unlink_objfile (struct objfile *objfile)
361 {
362 struct objfile **objpp;
363
364 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
365 {
366 if (*objpp == objfile)
367 {
368 *objpp = (*objpp)->next;
369 objfile->next = NULL;
370 return;
371 }
372 }
373
374 internal_error (__FILE__, __LINE__,
375 "unlink_objfile: objfile already unlinked");
376 }
377
378
379 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
380 that as much as possible is allocated on the symbol_obstack and
381 psymbol_obstack, so that the memory can be efficiently freed.
382
383 Things which we do NOT free because they are not in malloc'd memory
384 or not in memory specific to the objfile include:
385
386 objfile -> sf
387
388 FIXME: If the objfile is using reusable symbol information (via mmalloc),
389 then we need to take into account the fact that more than one process
390 may be using the symbol information at the same time (when mmalloc is
391 extended to support cooperative locking). When more than one process
392 is using the mapped symbol info, we need to be more careful about when
393 we free objects in the reusable area. */
394
395 void
396 free_objfile (struct objfile *objfile)
397 {
398 /* First do any symbol file specific actions required when we are
399 finished with a particular symbol file. Note that if the objfile
400 is using reusable symbol information (via mmalloc) then each of
401 these routines is responsible for doing the correct thing, either
402 freeing things which are valid only during this particular gdb
403 execution, or leaving them to be reused during the next one. */
404
405 if (objfile->sf != NULL)
406 {
407 (*objfile->sf->sym_finish) (objfile);
408 }
409
410 /* We always close the bfd. */
411
412 if (objfile->obfd != NULL)
413 {
414 char *name = bfd_get_filename (objfile->obfd);
415 if (!bfd_close (objfile->obfd))
416 warning ("cannot close \"%s\": %s",
417 name, bfd_errmsg (bfd_get_error ()));
418 xfree (name);
419 }
420
421 /* Remove it from the chain of all objfiles. */
422
423 unlink_objfile (objfile);
424
425 /* If we are going to free the runtime common objfile, mark it
426 as unallocated. */
427
428 if (objfile == rt_common_objfile)
429 rt_common_objfile = NULL;
430
431 /* Before the symbol table code was redone to make it easier to
432 selectively load and remove information particular to a specific
433 linkage unit, gdb used to do these things whenever the monolithic
434 symbol table was blown away. How much still needs to be done
435 is unknown, but we play it safe for now and keep each action until
436 it is shown to be no longer needed. */
437
438 /* I *think* all our callers call clear_symtab_users. If so, no need
439 to call this here. */
440 clear_pc_function_cache ();
441
442 /* The last thing we do is free the objfile struct itself for the
443 non-reusable case, or detach from the mapped file for the reusable
444 case. Note that the mmalloc_detach or the mfree is the last thing
445 we can do with this objfile. */
446
447 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
448
449 if (objfile->flags & OBJF_MAPPED)
450 {
451 /* Remember the fd so we can close it. We can't close it before
452 doing the detach, and after the detach the objfile is gone. */
453 int mmfd;
454
455 mmfd = objfile->mmfd;
456 mmalloc_detach (objfile->md);
457 objfile = NULL;
458 close (mmfd);
459 }
460
461 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
462
463 /* If we still have an objfile, then either we don't support reusable
464 objfiles or this one was not reusable. So free it normally. */
465
466 if (objfile != NULL)
467 {
468 if (objfile->name != NULL)
469 {
470 mfree (objfile->md, objfile->name);
471 }
472 if (objfile->global_psymbols.list)
473 mfree (objfile->md, objfile->global_psymbols.list);
474 if (objfile->static_psymbols.list)
475 mfree (objfile->md, objfile->static_psymbols.list);
476 /* Free the obstacks for non-reusable objfiles */
477 free_bcache (&objfile->psymbol_cache);
478 obstack_free (&objfile->psymbol_obstack, 0);
479 obstack_free (&objfile->symbol_obstack, 0);
480 obstack_free (&objfile->type_obstack, 0);
481 mfree (objfile->md, objfile);
482 objfile = NULL;
483 }
484 }
485
486 static void
487 do_free_objfile_cleanup (void *obj)
488 {
489 free_objfile (obj);
490 }
491
492 struct cleanup *
493 make_cleanup_free_objfile (struct objfile *obj)
494 {
495 return make_cleanup (do_free_objfile_cleanup, obj);
496 }
497
498 /* Free all the object files at once and clean up their users. */
499
500 void
501 free_all_objfiles (void)
502 {
503 struct objfile *objfile, *temp;
504
505 ALL_OBJFILES_SAFE (objfile, temp)
506 {
507 free_objfile (objfile);
508 }
509 clear_symtab_users ();
510 }
511 \f
512 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
513 entries in new_offsets. */
514 void
515 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
516 {
517 struct section_offsets *delta =
518 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
519
520 {
521 int i;
522 int something_changed = 0;
523 for (i = 0; i < objfile->num_sections; ++i)
524 {
525 delta->offsets[i] =
526 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
527 if (ANOFFSET (delta, i) != 0)
528 something_changed = 1;
529 }
530 if (!something_changed)
531 return;
532 }
533
534 /* OK, get all the symtabs. */
535 {
536 struct symtab *s;
537
538 ALL_OBJFILE_SYMTABS (objfile, s)
539 {
540 struct linetable *l;
541 struct blockvector *bv;
542 int i;
543
544 /* First the line table. */
545 l = LINETABLE (s);
546 if (l)
547 {
548 for (i = 0; i < l->nitems; ++i)
549 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
550 }
551
552 /* Don't relocate a shared blockvector more than once. */
553 if (!s->primary)
554 continue;
555
556 bv = BLOCKVECTOR (s);
557 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
558 {
559 struct block *b;
560 struct symbol *sym;
561 int j;
562
563 b = BLOCKVECTOR_BLOCK (bv, i);
564 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
565 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
566
567 ALL_BLOCK_SYMBOLS (b, j, sym)
568 {
569 fixup_symbol_section (sym, objfile);
570
571 /* The RS6000 code from which this was taken skipped
572 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
573 But I'm leaving out that test, on the theory that
574 they can't possibly pass the tests below. */
575 if ((SYMBOL_CLASS (sym) == LOC_LABEL
576 || SYMBOL_CLASS (sym) == LOC_STATIC
577 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
578 && SYMBOL_SECTION (sym) >= 0)
579 {
580 SYMBOL_VALUE_ADDRESS (sym) +=
581 ANOFFSET (delta, SYMBOL_SECTION (sym));
582 }
583 #ifdef MIPS_EFI_SYMBOL_NAME
584 /* Relocate Extra Function Info for ecoff. */
585
586 else if (SYMBOL_CLASS (sym) == LOC_CONST
587 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
588 && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
589 ecoff_relocate_efi (sym, ANOFFSET (delta,
590 s->block_line_section));
591 #endif
592 }
593 }
594 }
595 }
596
597 {
598 struct partial_symtab *p;
599
600 ALL_OBJFILE_PSYMTABS (objfile, p)
601 {
602 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
603 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
604 }
605 }
606
607 {
608 struct partial_symbol **psym;
609
610 for (psym = objfile->global_psymbols.list;
611 psym < objfile->global_psymbols.next;
612 psym++)
613 {
614 fixup_psymbol_section (*psym, objfile);
615 if (SYMBOL_SECTION (*psym) >= 0)
616 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
617 SYMBOL_SECTION (*psym));
618 }
619 for (psym = objfile->static_psymbols.list;
620 psym < objfile->static_psymbols.next;
621 psym++)
622 {
623 fixup_psymbol_section (*psym, objfile);
624 if (SYMBOL_SECTION (*psym) >= 0)
625 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
626 SYMBOL_SECTION (*psym));
627 }
628 }
629
630 {
631 struct minimal_symbol *msym;
632 ALL_OBJFILE_MSYMBOLS (objfile, msym)
633 if (SYMBOL_SECTION (msym) >= 0)
634 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
635 }
636 /* Relocating different sections by different amounts may cause the symbols
637 to be out of order. */
638 msymbols_sort (objfile);
639
640 {
641 int i;
642 for (i = 0; i < objfile->num_sections; ++i)
643 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
644 }
645
646 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
647 {
648 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
649 only as a fallback. */
650 struct obj_section *s;
651 s = find_pc_section (objfile->ei.entry_point);
652 if (s)
653 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
654 else
655 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
656 }
657
658 {
659 struct obj_section *s;
660 bfd *abfd;
661
662 abfd = objfile->obfd;
663
664 ALL_OBJFILE_OSECTIONS (objfile, s)
665 {
666 int idx = s->the_bfd_section->index;
667
668 s->addr += ANOFFSET (delta, idx);
669 s->endaddr += ANOFFSET (delta, idx);
670 }
671 }
672
673 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
674 {
675 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
676 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
677 }
678
679 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
680 {
681 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
682 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
683 }
684
685 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
686 {
687 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
688 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
689 }
690
691 /* Relocate breakpoints as necessary, after things are relocated. */
692 breakpoint_re_set ();
693 }
694 \f
695 /* Many places in gdb want to test just to see if we have any partial
696 symbols available. This function returns zero if none are currently
697 available, nonzero otherwise. */
698
699 int
700 have_partial_symbols (void)
701 {
702 struct objfile *ofp;
703
704 ALL_OBJFILES (ofp)
705 {
706 if (ofp->psymtabs != NULL)
707 {
708 return 1;
709 }
710 }
711 return 0;
712 }
713
714 /* Many places in gdb want to test just to see if we have any full
715 symbols available. This function returns zero if none are currently
716 available, nonzero otherwise. */
717
718 int
719 have_full_symbols (void)
720 {
721 struct objfile *ofp;
722
723 ALL_OBJFILES (ofp)
724 {
725 if (ofp->symtabs != NULL)
726 {
727 return 1;
728 }
729 }
730 return 0;
731 }
732
733
734 /* This operations deletes all objfile entries that represent solibs that
735 weren't explicitly loaded by the user, via e.g., the add-symbol-file
736 command.
737 */
738 void
739 objfile_purge_solibs (void)
740 {
741 struct objfile *objf;
742 struct objfile *temp;
743
744 ALL_OBJFILES_SAFE (objf, temp)
745 {
746 /* We assume that the solib package has been purged already, or will
747 be soon.
748 */
749 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
750 free_objfile (objf);
751 }
752 }
753
754
755 /* Many places in gdb want to test just to see if we have any minimal
756 symbols available. This function returns zero if none are currently
757 available, nonzero otherwise. */
758
759 int
760 have_minimal_symbols (void)
761 {
762 struct objfile *ofp;
763
764 ALL_OBJFILES (ofp)
765 {
766 if (ofp->msymbols != NULL)
767 {
768 return 1;
769 }
770 }
771 return 0;
772 }
773
774 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
775
776 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
777 of the corresponding symbol file in MTIME, try to open an existing file
778 with the name SYMSFILENAME and verify it is more recent than the base
779 file by checking it's timestamp against MTIME.
780
781 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
782
783 If SYMSFILENAME does exist, but is out of date, we check to see if the
784 user has specified creation of a mapped file. If so, we don't issue
785 any warning message because we will be creating a new mapped file anyway,
786 overwriting the old one. If not, then we issue a warning message so that
787 the user will know why we aren't using this existing mapped symbol file.
788 In either case, we return -1.
789
790 If SYMSFILENAME does exist and is not out of date, but can't be opened for
791 some reason, then prints an appropriate system error message and returns -1.
792
793 Otherwise, returns the open file descriptor. */
794
795 static int
796 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
797 {
798 int fd = -1;
799 struct stat sbuf;
800
801 if (stat (symsfilename, &sbuf) == 0)
802 {
803 if (sbuf.st_mtime < mtime)
804 {
805 if (!(flags & OBJF_MAPPED))
806 {
807 warning ("mapped symbol file `%s' is out of date, ignored it",
808 symsfilename);
809 }
810 }
811 else if ((fd = open (symsfilename, O_RDWR)) < 0)
812 {
813 if (error_pre_print)
814 {
815 printf_unfiltered (error_pre_print);
816 }
817 print_sys_errmsg (symsfilename, errno);
818 }
819 }
820 return (fd);
821 }
822
823 /* Look for a mapped symbol file that corresponds to FILENAME and is more
824 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
825 use a mapped symbol file for this file, so create a new one if one does
826 not currently exist.
827
828 If found, then return an open file descriptor for the file, otherwise
829 return -1.
830
831 This routine is responsible for implementing the policy that generates
832 the name of the mapped symbol file from the name of a file containing
833 symbols that gdb would like to read. Currently this policy is to append
834 ".syms" to the name of the file.
835
836 This routine is also responsible for implementing the policy that
837 determines where the mapped symbol file is found (the search path).
838 This policy is that when reading an existing mapped file, a file of
839 the correct name in the current directory takes precedence over a
840 file of the correct name in the same directory as the symbol file.
841 When creating a new mapped file, it is always created in the current
842 directory. This helps to minimize the chances of a user unknowingly
843 creating big mapped files in places like /bin and /usr/local/bin, and
844 allows a local copy to override a manually installed global copy (in
845 /bin for example). */
846
847 static int
848 open_mapped_file (char *filename, long mtime, int flags)
849 {
850 int fd;
851 char *symsfilename;
852
853 /* First try to open an existing file in the current directory, and
854 then try the directory where the symbol file is located. */
855
856 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
857 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
858 {
859 xfree (symsfilename);
860 symsfilename = concat (filename, ".syms", (char *) NULL);
861 fd = open_existing_mapped_file (symsfilename, mtime, flags);
862 }
863
864 /* If we don't have an open file by now, then either the file does not
865 already exist, or the base file has changed since it was created. In
866 either case, if the user has specified use of a mapped file, then
867 create a new mapped file, truncating any existing one. If we can't
868 create one, print a system error message saying why we can't.
869
870 By default the file is rw for everyone, with the user's umask taking
871 care of turning off the permissions the user wants off. */
872
873 if ((fd < 0) && (flags & OBJF_MAPPED))
874 {
875 xfree (symsfilename);
876 symsfilename = concat ("./", lbasename (filename), ".syms",
877 (char *) NULL);
878 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
879 {
880 if (error_pre_print)
881 {
882 printf_unfiltered (error_pre_print);
883 }
884 print_sys_errmsg (symsfilename, errno);
885 }
886 }
887
888 xfree (symsfilename);
889 return (fd);
890 }
891
892 static PTR
893 map_to_file (int fd)
894 {
895 PTR md;
896 CORE_ADDR mapto;
897
898 md = mmalloc_attach (fd, (PTR) 0);
899 if (md != NULL)
900 {
901 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
902 md = mmalloc_detach (md);
903 if (md != NULL)
904 {
905 /* FIXME: should figure out why detach failed */
906 md = NULL;
907 }
908 else if (mapto != (CORE_ADDR) NULL)
909 {
910 /* This mapping file needs to be remapped at "mapto" */
911 md = mmalloc_attach (fd, (PTR) mapto);
912 }
913 else
914 {
915 /* This is a freshly created mapping file. */
916 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
917 if (mapto != 0)
918 {
919 /* To avoid reusing the freshly created mapping file, at the
920 address selected by mmap, we must truncate it before trying
921 to do an attach at the address we want. */
922 ftruncate (fd, 0);
923 md = mmalloc_attach (fd, (PTR) mapto);
924 if (md != NULL)
925 {
926 mmalloc_setkey (md, 1, (PTR) mapto);
927 }
928 }
929 }
930 }
931 return (md);
932 }
933
934 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
935
936 /* Returns a section whose range includes PC and SECTION,
937 or NULL if none found. Note the distinction between the return type,
938 struct obj_section (which is defined in gdb), and the input type
939 struct sec (which is a bfd-defined data type). The obj_section
940 contains a pointer to the bfd struct sec section. */
941
942 struct obj_section *
943 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
944 {
945 struct obj_section *s;
946 struct objfile *objfile;
947
948 ALL_OBJSECTIONS (objfile, s)
949 if ((section == 0 || section == s->the_bfd_section) &&
950 s->addr <= pc && pc < s->endaddr)
951 return (s);
952
953 return (NULL);
954 }
955
956 /* Returns a section whose range includes PC or NULL if none found.
957 Backward compatibility, no section. */
958
959 struct obj_section *
960 find_pc_section (CORE_ADDR pc)
961 {
962 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
963 }
964
965
966 /* In SVR4, we recognize a trampoline by it's section name.
967 That is, if the pc is in a section named ".plt" then we are in
968 a trampoline. */
969
970 int
971 in_plt_section (CORE_ADDR pc, char *name)
972 {
973 struct obj_section *s;
974 int retval = 0;
975
976 s = find_pc_section (pc);
977
978 retval = (s != NULL
979 && s->the_bfd_section->name != NULL
980 && STREQ (s->the_bfd_section->name, ".plt"));
981 return (retval);
982 }
983
984 /* Return nonzero if NAME is in the import list of OBJFILE. Else
985 return zero. */
986
987 int
988 is_in_import_list (char *name, struct objfile *objfile)
989 {
990 register int i;
991
992 if (!objfile || !name || !*name)
993 return 0;
994
995 for (i = 0; i < objfile->import_list_size; i++)
996 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
997 return 1;
998 return 0;
999 }
1000
This page took 0.051261 seconds and 4 git commands to generate.