Replacing a bogus file with a semi-bogus one (sharing through devo).
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37
38 /* Prototypes for local functions */
39
40 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
41
42 static int
43 open_existing_mapped_file PARAMS ((char *, long, int));
44
45 static int
46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
47
48 static PTR
49 map_to_file PARAMS ((int));
50
51 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
52
53 static void
54 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
63
64 int mapped_symbol_files; /* Try to use mapped symbol files */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 #ifndef TARGET_KEEP_SECTION
71 #define TARGET_KEEP_SECTION(ASECT) 0
72 #endif
73
74 static void
75 add_to_objfile_sections (abfd, asect, objfile_p_char)
76 bfd *abfd;
77 sec_ptr asect;
78 PTR objfile_p_char;
79 {
80 struct objfile *objfile = (struct objfile *) objfile_p_char;
81 struct obj_section section;
82 flagword aflag;
83
84 aflag = bfd_get_section_flags (abfd, asect);
85
86 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION(asect)))
87 return;
88
89 if (0 == bfd_section_size (abfd, asect))
90 return;
91 section.offset = 0;
92 section.objfile = objfile;
93 section.the_bfd_section = asect;
94 section.ovly_mapped = 0;
95 section.addr = bfd_section_vma (abfd, asect);
96 section.endaddr = section.addr + bfd_section_size (abfd, asect);
97 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
98 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
99 }
100
101 /* Builds a section table for OBJFILE.
102 Returns 0 if OK, 1 on error (in which case bfd_error contains the
103 error). */
104
105 int
106 build_objfile_section_table (objfile)
107 struct objfile *objfile;
108 {
109 /* objfile->sections can be already set when reading a mapped symbol
110 file. I believe that we do need to rebuild the section table in
111 this case (we rebuild other things derived from the bfd), but we
112 can't free the old one (it's in the psymbol_obstack). So we just
113 waste some memory. */
114
115 objfile->sections_end = 0;
116 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
117 objfile->sections = (struct obj_section *)
118 obstack_finish (&objfile->psymbol_obstack);
119 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
120 return(0);
121 }
122
123 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
124 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
125 struct, fill it in as best we can, link it into the list of all known
126 objfiles, and return a pointer to the new objfile struct. */
127
128 struct objfile *
129 allocate_objfile (abfd, mapped)
130 bfd *abfd;
131 int mapped;
132 {
133 struct objfile *objfile = NULL;
134 struct objfile *last_one = NULL;
135
136 mapped |= mapped_symbol_files;
137
138 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
139 if (abfd != NULL)
140 {
141
142 /* If we can support mapped symbol files, try to open/reopen the
143 mapped file that corresponds to the file from which we wish to
144 read symbols. If the objfile is to be mapped, we must malloc
145 the structure itself using the mmap version, and arrange that
146 all memory allocation for the objfile uses the mmap routines.
147 If we are reusing an existing mapped file, from which we get
148 our objfile pointer, we have to make sure that we update the
149 pointers to the alloc/free functions in the obstack, in case
150 these functions have moved within the current gdb. */
151
152 int fd;
153
154 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
155 mapped);
156 if (fd >= 0)
157 {
158 PTR md;
159
160 if ((md = map_to_file (fd)) == NULL)
161 {
162 close (fd);
163 }
164 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
165 {
166 /* Update memory corruption handler function addresses. */
167 init_malloc (md);
168 objfile -> md = md;
169 objfile -> mmfd = fd;
170 /* Update pointers to functions to *our* copies */
171 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
172 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
173 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
174 obstack_freefun (&objfile -> psymbol_obstack, mfree);
175 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
176 obstack_freefun (&objfile -> symbol_obstack, mfree);
177 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
178 obstack_freefun (&objfile -> type_obstack, mfree);
179 /* If already in objfile list, unlink it. */
180 unlink_objfile (objfile);
181 /* Forget things specific to a particular gdb, may have changed. */
182 objfile -> sf = NULL;
183 }
184 else
185 {
186
187 /* Set up to detect internal memory corruption. MUST be
188 done before the first malloc. See comments in
189 init_malloc() and mmcheck(). */
190
191 init_malloc (md);
192
193 objfile = (struct objfile *)
194 xmmalloc (md, sizeof (struct objfile));
195 memset (objfile, 0, sizeof (struct objfile));
196 objfile -> md = md;
197 objfile -> mmfd = fd;
198 objfile -> flags |= OBJF_MAPPED;
199 mmalloc_setkey (objfile -> md, 0, objfile);
200 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
201 0, 0, xmmalloc, mfree,
202 objfile -> md);
203 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
204 0, 0, xmmalloc, mfree,
205 objfile -> md);
206 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
207 0, 0, xmmalloc, mfree,
208 objfile -> md);
209 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
210 0, 0, xmmalloc, mfree,
211 objfile -> md);
212 }
213 }
214
215 if (mapped && (objfile == NULL))
216 {
217 warning ("symbol table for '%s' will not be mapped",
218 bfd_get_filename (abfd));
219 }
220 }
221 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
222
223 if (mapped)
224 {
225 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
226
227 /* Turn off the global flag so we don't try to do mapped symbol tables
228 any more, which shuts up gdb unless the user specifically gives the
229 "mapped" keyword again. */
230
231 mapped_symbol_files = 0;
232 }
233
234 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
235
236 /* If we don't support mapped symbol files, didn't ask for the file to be
237 mapped, or failed to open the mapped file for some reason, then revert
238 back to an unmapped objfile. */
239
240 if (objfile == NULL)
241 {
242 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
243 memset (objfile, 0, sizeof (struct objfile));
244 objfile -> md = NULL;
245 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
246 xmalloc, free);
247 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
248 free);
249 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
250 free);
251 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
252 free);
253 }
254
255 /* Update the per-objfile information that comes from the bfd, ensuring
256 that any data that is reference is saved in the per-objfile data
257 region. */
258
259 objfile -> obfd = abfd;
260 if (objfile -> name != NULL)
261 {
262 mfree (objfile -> md, objfile -> name);
263 }
264 if (abfd != NULL)
265 {
266 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
267 objfile -> mtime = bfd_get_mtime (abfd);
268
269 /* Build section table. */
270
271 if (build_objfile_section_table (objfile))
272 {
273 error ("Can't find the file sections in `%s': %s",
274 objfile -> name, bfd_errmsg (bfd_get_error ()));
275 }
276 }
277
278 /* Add this file onto the tail of the linked list of other such files. */
279
280 objfile -> next = NULL;
281 if (object_files == NULL)
282 object_files = objfile;
283 else
284 {
285 for (last_one = object_files;
286 last_one -> next;
287 last_one = last_one -> next);
288 last_one -> next = objfile;
289 }
290 return (objfile);
291 }
292
293 /* Put OBJFILE at the front of the list. */
294
295 void
296 objfile_to_front (objfile)
297 struct objfile *objfile;
298 {
299 struct objfile **objp;
300 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
301 {
302 if (*objp == objfile)
303 {
304 /* Unhook it from where it is. */
305 *objp = objfile->next;
306 /* Put it in the front. */
307 objfile->next = object_files;
308 object_files = objfile;
309 break;
310 }
311 }
312 }
313
314 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
315 list.
316
317 It is not a bug, or error, to call this function if OBJFILE is not known
318 to be in the current list. This is done in the case of mapped objfiles,
319 for example, just to ensure that the mapped objfile doesn't appear twice
320 in the list. Since the list is threaded, linking in a mapped objfile
321 twice would create a circular list.
322
323 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
324 unlinking it, just to ensure that we have completely severed any linkages
325 between the OBJFILE and the list. */
326
327 void
328 unlink_objfile (objfile)
329 struct objfile *objfile;
330 {
331 struct objfile** objpp;
332
333 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
334 {
335 if (*objpp == objfile)
336 {
337 *objpp = (*objpp) -> next;
338 objfile -> next = NULL;
339 break;
340 }
341 }
342 }
343
344
345 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
346 that as much as possible is allocated on the symbol_obstack and
347 psymbol_obstack, so that the memory can be efficiently freed.
348
349 Things which we do NOT free because they are not in malloc'd memory
350 or not in memory specific to the objfile include:
351
352 objfile -> sf
353
354 FIXME: If the objfile is using reusable symbol information (via mmalloc),
355 then we need to take into account the fact that more than one process
356 may be using the symbol information at the same time (when mmalloc is
357 extended to support cooperative locking). When more than one process
358 is using the mapped symbol info, we need to be more careful about when
359 we free objects in the reusable area. */
360
361 void
362 free_objfile (objfile)
363 struct objfile *objfile;
364 {
365 /* First do any symbol file specific actions required when we are
366 finished with a particular symbol file. Note that if the objfile
367 is using reusable symbol information (via mmalloc) then each of
368 these routines is responsible for doing the correct thing, either
369 freeing things which are valid only during this particular gdb
370 execution, or leaving them to be reused during the next one. */
371
372 if (objfile -> sf != NULL)
373 {
374 (*objfile -> sf -> sym_finish) (objfile);
375 }
376
377 /* We always close the bfd. */
378
379 if (objfile -> obfd != NULL)
380 {
381 char *name = bfd_get_filename (objfile->obfd);
382 if (!bfd_close (objfile -> obfd))
383 warning ("cannot close \"%s\": %s",
384 name, bfd_errmsg (bfd_get_error ()));
385 free (name);
386 }
387
388 /* Remove it from the chain of all objfiles. */
389
390 unlink_objfile (objfile);
391
392 /* If we are going to free the runtime common objfile, mark it
393 as unallocated. */
394
395 if (objfile == rt_common_objfile)
396 rt_common_objfile = NULL;
397
398 /* Before the symbol table code was redone to make it easier to
399 selectively load and remove information particular to a specific
400 linkage unit, gdb used to do these things whenever the monolithic
401 symbol table was blown away. How much still needs to be done
402 is unknown, but we play it safe for now and keep each action until
403 it is shown to be no longer needed. */
404
405 #if defined (CLEAR_SOLIB)
406 CLEAR_SOLIB ();
407 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
408 the to_sections for a core file might refer to those bfd's. So
409 detach any core file. */
410 {
411 struct target_ops *t = find_core_target ();
412 if (t != NULL)
413 (t->to_detach) (NULL, 0);
414 }
415 #endif
416 /* I *think* all our callers call clear_symtab_users. If so, no need
417 to call this here. */
418 clear_pc_function_cache ();
419
420 /* The last thing we do is free the objfile struct itself for the
421 non-reusable case, or detach from the mapped file for the reusable
422 case. Note that the mmalloc_detach or the mfree is the last thing
423 we can do with this objfile. */
424
425 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
426
427 if (objfile -> flags & OBJF_MAPPED)
428 {
429 /* Remember the fd so we can close it. We can't close it before
430 doing the detach, and after the detach the objfile is gone. */
431 int mmfd;
432
433 mmfd = objfile -> mmfd;
434 mmalloc_detach (objfile -> md);
435 objfile = NULL;
436 close (mmfd);
437 }
438
439 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
440
441 /* If we still have an objfile, then either we don't support reusable
442 objfiles or this one was not reusable. So free it normally. */
443
444 if (objfile != NULL)
445 {
446 if (objfile -> name != NULL)
447 {
448 mfree (objfile -> md, objfile -> name);
449 }
450 if (objfile->global_psymbols.list)
451 mfree (objfile->md, objfile->global_psymbols.list);
452 if (objfile->static_psymbols.list)
453 mfree (objfile->md, objfile->static_psymbols.list);
454 /* Free the obstacks for non-reusable objfiles */
455 obstack_free (&objfile -> psymbol_cache.cache, 0);
456 obstack_free (&objfile -> psymbol_obstack, 0);
457 obstack_free (&objfile -> symbol_obstack, 0);
458 obstack_free (&objfile -> type_obstack, 0);
459 mfree (objfile -> md, objfile);
460 objfile = NULL;
461 }
462 }
463
464
465 /* Free all the object files at once and clean up their users. */
466
467 void
468 free_all_objfiles ()
469 {
470 struct objfile *objfile, *temp;
471
472 ALL_OBJFILES_SAFE (objfile, temp)
473 {
474 free_objfile (objfile);
475 }
476 clear_symtab_users ();
477 }
478 \f
479 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
480 entries in new_offsets. */
481 void
482 objfile_relocate (objfile, new_offsets)
483 struct objfile *objfile;
484 struct section_offsets *new_offsets;
485 {
486 struct section_offsets *delta = (struct section_offsets *)
487 alloca (sizeof (struct section_offsets)
488 + objfile->num_sections * sizeof (delta->offsets));
489
490 {
491 int i;
492 int something_changed = 0;
493 for (i = 0; i < objfile->num_sections; ++i)
494 {
495 ANOFFSET (delta, i) =
496 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
497 if (ANOFFSET (delta, i) != 0)
498 something_changed = 1;
499 }
500 if (!something_changed)
501 return;
502 }
503
504 /* OK, get all the symtabs. */
505 {
506 struct symtab *s;
507
508 ALL_OBJFILE_SYMTABS (objfile, s)
509 {
510 struct linetable *l;
511 struct blockvector *bv;
512 int i;
513
514 /* First the line table. */
515 l = LINETABLE (s);
516 if (l)
517 {
518 for (i = 0; i < l->nitems; ++i)
519 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
520 }
521
522 /* Don't relocate a shared blockvector more than once. */
523 if (!s->primary)
524 continue;
525
526 bv = BLOCKVECTOR (s);
527 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
528 {
529 struct block *b;
530 int j;
531
532 b = BLOCKVECTOR_BLOCK (bv, i);
533 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
534 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
535
536 for (j = 0; j < BLOCK_NSYMS (b); ++j)
537 {
538 struct symbol *sym = BLOCK_SYM (b, j);
539 /* The RS6000 code from which this was taken skipped
540 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
541 But I'm leaving out that test, on the theory that
542 they can't possibly pass the tests below. */
543 if ((SYMBOL_CLASS (sym) == LOC_LABEL
544 || SYMBOL_CLASS (sym) == LOC_STATIC)
545 && SYMBOL_SECTION (sym) >= 0)
546 {
547 SYMBOL_VALUE_ADDRESS (sym) +=
548 ANOFFSET (delta, SYMBOL_SECTION (sym));
549 }
550 #ifdef MIPS_EFI_SYMBOL_NAME
551 /* Relocate Extra Function Info for ecoff. */
552
553 else
554 if (SYMBOL_CLASS (sym) == LOC_CONST
555 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
556 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
557 ecoff_relocate_efi (sym, ANOFFSET (delta,
558 s->block_line_section));
559 #endif
560 }
561 }
562 }
563 }
564
565 {
566 struct partial_symtab *p;
567
568 ALL_OBJFILE_PSYMTABS (objfile, p)
569 {
570 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
571 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
572 }
573 }
574
575 {
576 struct partial_symbol **psym;
577
578 for (psym = objfile->global_psymbols.list;
579 psym < objfile->global_psymbols.next;
580 psym++)
581 if (SYMBOL_SECTION (*psym) >= 0)
582 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
583 SYMBOL_SECTION (*psym));
584 for (psym = objfile->static_psymbols.list;
585 psym < objfile->static_psymbols.next;
586 psym++)
587 if (SYMBOL_SECTION (*psym) >= 0)
588 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
589 SYMBOL_SECTION (*psym));
590 }
591
592 {
593 struct minimal_symbol *msym;
594 ALL_OBJFILE_MSYMBOLS (objfile, msym)
595 if (SYMBOL_SECTION (msym) >= 0)
596 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
597 }
598 /* Relocating different sections by different amounts may cause the symbols
599 to be out of order. */
600 msymbols_sort (objfile);
601
602 {
603 int i;
604 for (i = 0; i < objfile->num_sections; ++i)
605 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
606 }
607
608 {
609 struct obj_section *s;
610 bfd *abfd;
611
612 abfd = objfile->obfd;
613
614 for (s = objfile->sections;
615 s < objfile->sections_end; ++s)
616 {
617 flagword flags;
618
619 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
620
621 if (flags & SEC_CODE)
622 {
623 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
624 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
625 }
626 else if (flags & (SEC_DATA | SEC_LOAD))
627 {
628 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
629 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
630 }
631 else if (flags & SEC_ALLOC)
632 {
633 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
634 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
635 }
636 }
637 }
638
639 if (objfile->ei.entry_point != ~(CORE_ADDR)0)
640 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
641
642 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
643 {
644 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
645 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
646 }
647
648 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
649 {
650 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
651 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
652 }
653
654 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
655 {
656 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
657 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
658 }
659
660 /* Relocate breakpoints as necessary, after things are relocated. */
661 breakpoint_re_set ();
662 }
663 \f
664 /* Many places in gdb want to test just to see if we have any partial
665 symbols available. This function returns zero if none are currently
666 available, nonzero otherwise. */
667
668 int
669 have_partial_symbols ()
670 {
671 struct objfile *ofp;
672
673 ALL_OBJFILES (ofp)
674 {
675 if (ofp -> psymtabs != NULL)
676 {
677 return 1;
678 }
679 }
680 return 0;
681 }
682
683 /* Many places in gdb want to test just to see if we have any full
684 symbols available. This function returns zero if none are currently
685 available, nonzero otherwise. */
686
687 int
688 have_full_symbols ()
689 {
690 struct objfile *ofp;
691
692 ALL_OBJFILES (ofp)
693 {
694 if (ofp -> symtabs != NULL)
695 {
696 return 1;
697 }
698 }
699 return 0;
700 }
701
702 /* Many places in gdb want to test just to see if we have any minimal
703 symbols available. This function returns zero if none are currently
704 available, nonzero otherwise. */
705
706 int
707 have_minimal_symbols ()
708 {
709 struct objfile *ofp;
710
711 ALL_OBJFILES (ofp)
712 {
713 if (ofp -> msymbols != NULL)
714 {
715 return 1;
716 }
717 }
718 return 0;
719 }
720
721 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
722
723 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
724 of the corresponding symbol file in MTIME, try to open an existing file
725 with the name SYMSFILENAME and verify it is more recent than the base
726 file by checking it's timestamp against MTIME.
727
728 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
729
730 If SYMSFILENAME does exist, but is out of date, we check to see if the
731 user has specified creation of a mapped file. If so, we don't issue
732 any warning message because we will be creating a new mapped file anyway,
733 overwriting the old one. If not, then we issue a warning message so that
734 the user will know why we aren't using this existing mapped symbol file.
735 In either case, we return -1.
736
737 If SYMSFILENAME does exist and is not out of date, but can't be opened for
738 some reason, then prints an appropriate system error message and returns -1.
739
740 Otherwise, returns the open file descriptor. */
741
742 static int
743 open_existing_mapped_file (symsfilename, mtime, mapped)
744 char *symsfilename;
745 long mtime;
746 int mapped;
747 {
748 int fd = -1;
749 struct stat sbuf;
750
751 if (stat (symsfilename, &sbuf) == 0)
752 {
753 if (sbuf.st_mtime < mtime)
754 {
755 if (!mapped)
756 {
757 warning ("mapped symbol file `%s' is out of date, ignored it",
758 symsfilename);
759 }
760 }
761 else if ((fd = open (symsfilename, O_RDWR)) < 0)
762 {
763 if (error_pre_print)
764 {
765 printf_unfiltered (error_pre_print);
766 }
767 print_sys_errmsg (symsfilename, errno);
768 }
769 }
770 return (fd);
771 }
772
773 /* Look for a mapped symbol file that corresponds to FILENAME and is more
774 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
775 use a mapped symbol file for this file, so create a new one if one does
776 not currently exist.
777
778 If found, then return an open file descriptor for the file, otherwise
779 return -1.
780
781 This routine is responsible for implementing the policy that generates
782 the name of the mapped symbol file from the name of a file containing
783 symbols that gdb would like to read. Currently this policy is to append
784 ".syms" to the name of the file.
785
786 This routine is also responsible for implementing the policy that
787 determines where the mapped symbol file is found (the search path).
788 This policy is that when reading an existing mapped file, a file of
789 the correct name in the current directory takes precedence over a
790 file of the correct name in the same directory as the symbol file.
791 When creating a new mapped file, it is always created in the current
792 directory. This helps to minimize the chances of a user unknowingly
793 creating big mapped files in places like /bin and /usr/local/bin, and
794 allows a local copy to override a manually installed global copy (in
795 /bin for example). */
796
797 static int
798 open_mapped_file (filename, mtime, mapped)
799 char *filename;
800 long mtime;
801 int mapped;
802 {
803 int fd;
804 char *symsfilename;
805
806 /* First try to open an existing file in the current directory, and
807 then try the directory where the symbol file is located. */
808
809 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
810 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
811 {
812 free (symsfilename);
813 symsfilename = concat (filename, ".syms", (char *) NULL);
814 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
815 }
816
817 /* If we don't have an open file by now, then either the file does not
818 already exist, or the base file has changed since it was created. In
819 either case, if the user has specified use of a mapped file, then
820 create a new mapped file, truncating any existing one. If we can't
821 create one, print a system error message saying why we can't.
822
823 By default the file is rw for everyone, with the user's umask taking
824 care of turning off the permissions the user wants off. */
825
826 if ((fd < 0) && mapped)
827 {
828 free (symsfilename);
829 symsfilename = concat ("./", basename (filename), ".syms",
830 (char *) NULL);
831 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
832 {
833 if (error_pre_print)
834 {
835 printf_unfiltered (error_pre_print);
836 }
837 print_sys_errmsg (symsfilename, errno);
838 }
839 }
840
841 free (symsfilename);
842 return (fd);
843 }
844
845 static PTR
846 map_to_file (fd)
847 int fd;
848 {
849 PTR md;
850 CORE_ADDR mapto;
851
852 md = mmalloc_attach (fd, (PTR) 0);
853 if (md != NULL)
854 {
855 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
856 md = mmalloc_detach (md);
857 if (md != NULL)
858 {
859 /* FIXME: should figure out why detach failed */
860 md = NULL;
861 }
862 else if (mapto != (CORE_ADDR) NULL)
863 {
864 /* This mapping file needs to be remapped at "mapto" */
865 md = mmalloc_attach (fd, (PTR) mapto);
866 }
867 else
868 {
869 /* This is a freshly created mapping file. */
870 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
871 if (mapto != 0)
872 {
873 /* To avoid reusing the freshly created mapping file, at the
874 address selected by mmap, we must truncate it before trying
875 to do an attach at the address we want. */
876 ftruncate (fd, 0);
877 md = mmalloc_attach (fd, (PTR) mapto);
878 if (md != NULL)
879 {
880 mmalloc_setkey (md, 1, (PTR) mapto);
881 }
882 }
883 }
884 }
885 return (md);
886 }
887
888 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
889
890 /* Returns a section whose range includes PC and SECTION,
891 or NULL if none found. Note the distinction between the return type,
892 struct obj_section (which is defined in gdb), and the input type
893 struct sec (which is a bfd-defined data type). The obj_section
894 contains a pointer to the bfd struct sec section. */
895
896 struct obj_section *
897 find_pc_sect_section (pc, section)
898 CORE_ADDR pc;
899 struct sec *section;
900 {
901 struct obj_section *s;
902 struct objfile *objfile;
903
904 ALL_OBJFILES (objfile)
905 for (s = objfile->sections; s < objfile->sections_end; ++s)
906 if ((section == 0 || section == s->the_bfd_section) &&
907 s->addr <= pc && pc < s->endaddr)
908 return(s);
909
910 return(NULL);
911 }
912
913 /* Returns a section whose range includes PC or NULL if none found.
914 Backward compatibility, no section. */
915
916 struct obj_section *
917 find_pc_section(pc)
918 CORE_ADDR pc;
919 {
920 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
921 }
922
923
924 /* In SVR4, we recognize a trampoline by it's section name.
925 That is, if the pc is in a section named ".plt" then we are in
926 a trampoline. */
927
928 int
929 in_plt_section(pc, name)
930 CORE_ADDR pc;
931 char *name;
932 {
933 struct obj_section *s;
934 int retval = 0;
935
936 s = find_pc_section(pc);
937
938 retval = (s != NULL
939 && s->the_bfd_section->name != NULL
940 && STREQ (s->the_bfd_section->name, ".plt"));
941 return(retval);
942 }
This page took 0.055452 seconds and 4 git commands to generate.