* gdb.base/Makefile.in (clean): Remove callf-info.exp.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Externally visible variables that are owned by this module.
53 See declarations in objfile.h for more info. */
54
55 struct objfile *object_files; /* Linked list of all objfiles */
56 struct objfile *current_objfile; /* For symbol file being read in */
57 struct objfile *symfile_objfile; /* Main symbol table loaded from */
58 struct objfile *rt_common_objfile; /* For runtime common symbols */
59
60 int mapped_symbol_files; /* Try to use mapped symbol files */
61
62 /* Locate all mappable sections of a BFD file.
63 objfile_p_char is a char * to get it through
64 bfd_map_over_sections; we cast it back to its proper type. */
65
66 static void
67 add_to_objfile_sections (abfd, asect, objfile_p_char)
68 bfd *abfd;
69 sec_ptr asect;
70 PTR objfile_p_char;
71 {
72 struct objfile *objfile = (struct objfile *) objfile_p_char;
73 struct obj_section section;
74 flagword aflag;
75
76 aflag = bfd_get_section_flags (abfd, asect);
77 if (!(aflag & SEC_ALLOC))
78 return;
79 if (0 == bfd_section_size (abfd, asect))
80 return;
81 section.offset = 0;
82 section.objfile = objfile;
83 section.the_bfd_section = asect;
84 section.addr = bfd_section_vma (abfd, asect);
85 section.endaddr = section.addr + bfd_section_size (abfd, asect);
86 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
87 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
88 }
89
90 /* Builds a section table for OBJFILE.
91 Returns 0 if OK, 1 on error (in which case bfd_error contains the
92 error). */
93
94 int
95 build_objfile_section_table (objfile)
96 struct objfile *objfile;
97 {
98 /* objfile->sections can be already set when reading a mapped symbol
99 file. I believe that we do need to rebuild the section table in
100 this case (we rebuild other things derived from the bfd), but we
101 can't free the old one (it's in the psymbol_obstack). So we just
102 waste some memory. */
103
104 objfile->sections_end = 0;
105 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
106 objfile->sections = (struct obj_section *)
107 obstack_finish (&objfile->psymbol_obstack);
108 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
109 return(0);
110 }
111
112 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
113 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
114 struct, fill it in as best we can, link it into the list of all known
115 objfiles, and return a pointer to the new objfile struct. */
116
117 struct objfile *
118 allocate_objfile (abfd, mapped)
119 bfd *abfd;
120 int mapped;
121 {
122 struct objfile *objfile = NULL;
123 struct objfile *last_one = NULL;
124
125 mapped |= mapped_symbol_files;
126
127 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
128 {
129
130 /* If we can support mapped symbol files, try to open/reopen the
131 mapped file that corresponds to the file from which we wish to
132 read symbols. If the objfile is to be mapped, we must malloc
133 the structure itself using the mmap version, and arrange that
134 all memory allocation for the objfile uses the mmap routines.
135 If we are reusing an existing mapped file, from which we get
136 our objfile pointer, we have to make sure that we update the
137 pointers to the alloc/free functions in the obstack, in case
138 these functions have moved within the current gdb. */
139
140 int fd;
141
142 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
143 mapped);
144 if (fd >= 0)
145 {
146 CORE_ADDR mapto;
147 PTR md;
148
149 if (((mapto = map_to_address ()) == 0) ||
150 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
151 {
152 close (fd);
153 }
154 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
155 {
156 /* Update memory corruption handler function addresses. */
157 init_malloc (md);
158 objfile -> md = md;
159 objfile -> mmfd = fd;
160 /* Update pointers to functions to *our* copies */
161 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
162 obstack_freefun (&objfile -> psymbol_obstack, mfree);
163 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
164 obstack_freefun (&objfile -> symbol_obstack, mfree);
165 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
166 obstack_freefun (&objfile -> type_obstack, mfree);
167 /* If already in objfile list, unlink it. */
168 unlink_objfile (objfile);
169 /* Forget things specific to a particular gdb, may have changed. */
170 objfile -> sf = NULL;
171 }
172 else
173 {
174
175 /* Set up to detect internal memory corruption. MUST be
176 done before the first malloc. See comments in
177 init_malloc() and mmcheck(). */
178
179 init_malloc (md);
180
181 objfile = (struct objfile *)
182 xmmalloc (md, sizeof (struct objfile));
183 memset (objfile, 0, sizeof (struct objfile));
184 objfile -> md = md;
185 objfile -> mmfd = fd;
186 objfile -> flags |= OBJF_MAPPED;
187 mmalloc_setkey (objfile -> md, 0, objfile);
188 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
189 0, 0, xmmalloc, mfree,
190 objfile -> md);
191 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
192 0, 0, xmmalloc, mfree,
193 objfile -> md);
194 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 }
198 }
199
200 if (mapped && (objfile == NULL))
201 {
202 warning ("symbol table for '%s' will not be mapped",
203 bfd_get_filename (abfd));
204 }
205 }
206 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
207
208 if (mapped)
209 {
210 warning ("this version of gdb does not support mapped symbol tables.");
211
212 /* Turn off the global flag so we don't try to do mapped symbol tables
213 any more, which shuts up gdb unless the user specifically gives the
214 "mapped" keyword again. */
215
216 mapped_symbol_files = 0;
217 }
218
219 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
220
221 /* If we don't support mapped symbol files, didn't ask for the file to be
222 mapped, or failed to open the mapped file for some reason, then revert
223 back to an unmapped objfile. */
224
225 if (objfile == NULL)
226 {
227 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
228 memset (objfile, 0, sizeof (struct objfile));
229 objfile -> md = NULL;
230 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
231 free);
232 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
233 free);
234 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
235 free);
236 }
237
238 /* Update the per-objfile information that comes from the bfd, ensuring
239 that any data that is reference is saved in the per-objfile data
240 region. */
241
242 objfile -> obfd = abfd;
243 if (objfile -> name != NULL)
244 {
245 mfree (objfile -> md, objfile -> name);
246 }
247 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
248 objfile -> mtime = bfd_get_mtime (abfd);
249
250 /* Build section table. */
251
252 if (build_objfile_section_table (objfile))
253 {
254 error ("Can't find the file sections in `%s': %s",
255 objfile -> name, bfd_errmsg (bfd_get_error ()));
256 }
257
258 /* Add this file onto the tail of the linked list of other such files. */
259
260 objfile -> next = NULL;
261 if (object_files == NULL)
262 object_files = objfile;
263 else
264 {
265 for (last_one = object_files;
266 last_one -> next;
267 last_one = last_one -> next);
268 last_one -> next = objfile;
269 }
270 return (objfile);
271 }
272
273 /* Put OBJFILE at the front of the list. */
274
275 void
276 objfile_to_front (objfile)
277 struct objfile *objfile;
278 {
279 struct objfile **objp;
280 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
281 {
282 if (*objp == objfile)
283 {
284 /* Unhook it from where it is. */
285 *objp = objfile->next;
286 /* Put it in the front. */
287 objfile->next = object_files;
288 object_files = objfile;
289 break;
290 }
291 }
292 }
293
294 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
295 list.
296
297 It is not a bug, or error, to call this function if OBJFILE is not known
298 to be in the current list. This is done in the case of mapped objfiles,
299 for example, just to ensure that the mapped objfile doesn't appear twice
300 in the list. Since the list is threaded, linking in a mapped objfile
301 twice would create a circular list.
302
303 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
304 unlinking it, just to ensure that we have completely severed any linkages
305 between the OBJFILE and the list. */
306
307 void
308 unlink_objfile (objfile)
309 struct objfile *objfile;
310 {
311 struct objfile** objpp;
312
313 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
314 {
315 if (*objpp == objfile)
316 {
317 *objpp = (*objpp) -> next;
318 objfile -> next = NULL;
319 break;
320 }
321 }
322 }
323
324
325 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
326 that as much as possible is allocated on the symbol_obstack and
327 psymbol_obstack, so that the memory can be efficiently freed.
328
329 Things which we do NOT free because they are not in malloc'd memory
330 or not in memory specific to the objfile include:
331
332 objfile -> sf
333
334 FIXME: If the objfile is using reusable symbol information (via mmalloc),
335 then we need to take into account the fact that more than one process
336 may be using the symbol information at the same time (when mmalloc is
337 extended to support cooperative locking). When more than one process
338 is using the mapped symbol info, we need to be more careful about when
339 we free objects in the reusable area. */
340
341 void
342 free_objfile (objfile)
343 struct objfile *objfile;
344 {
345 /* First do any symbol file specific actions required when we are
346 finished with a particular symbol file. Note that if the objfile
347 is using reusable symbol information (via mmalloc) then each of
348 these routines is responsible for doing the correct thing, either
349 freeing things which are valid only during this particular gdb
350 execution, or leaving them to be reused during the next one. */
351
352 if (objfile -> sf != NULL)
353 {
354 (*objfile -> sf -> sym_finish) (objfile);
355 }
356
357 /* We always close the bfd. */
358
359 if (objfile -> obfd != NULL)
360 {
361 char *name = bfd_get_filename (objfile->obfd);
362 if (!bfd_close (objfile -> obfd))
363 warning ("cannot close \"%s\": %s",
364 name, bfd_errmsg (bfd_get_error ()));
365 free (name);
366 }
367
368 /* Remove it from the chain of all objfiles. */
369
370 unlink_objfile (objfile);
371
372 /* If we are going to free the runtime common objfile, mark it
373 as unallocated. */
374
375 if (objfile == rt_common_objfile)
376 rt_common_objfile = NULL;
377
378 /* Before the symbol table code was redone to make it easier to
379 selectively load and remove information particular to a specific
380 linkage unit, gdb used to do these things whenever the monolithic
381 symbol table was blown away. How much still needs to be done
382 is unknown, but we play it safe for now and keep each action until
383 it is shown to be no longer needed. */
384
385 #if defined (CLEAR_SOLIB)
386 CLEAR_SOLIB ();
387 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
388 the to_sections for a core file might refer to those bfd's. So
389 detach any core file. */
390 {
391 struct target_ops *t = find_core_target ();
392 if (t != NULL)
393 (t->to_detach) (NULL, 0);
394 }
395 #endif
396 /* I *think* all our callers call clear_symtab_users. If so, no need
397 to call this here. */
398 clear_pc_function_cache ();
399
400 /* The last thing we do is free the objfile struct itself for the
401 non-reusable case, or detach from the mapped file for the reusable
402 case. Note that the mmalloc_detach or the mfree is the last thing
403 we can do with this objfile. */
404
405 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
406
407 if (objfile -> flags & OBJF_MAPPED)
408 {
409 /* Remember the fd so we can close it. We can't close it before
410 doing the detach, and after the detach the objfile is gone. */
411 int mmfd;
412
413 mmfd = objfile -> mmfd;
414 mmalloc_detach (objfile -> md);
415 objfile = NULL;
416 close (mmfd);
417 }
418
419 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
420
421 /* If we still have an objfile, then either we don't support reusable
422 objfiles or this one was not reusable. So free it normally. */
423
424 if (objfile != NULL)
425 {
426 if (objfile -> name != NULL)
427 {
428 mfree (objfile -> md, objfile -> name);
429 }
430 if (objfile->global_psymbols.list)
431 mfree (objfile->md, objfile->global_psymbols.list);
432 if (objfile->static_psymbols.list)
433 mfree (objfile->md, objfile->static_psymbols.list);
434 /* Free the obstacks for non-reusable objfiles */
435 obstack_free (&objfile -> psymbol_obstack, 0);
436 obstack_free (&objfile -> symbol_obstack, 0);
437 obstack_free (&objfile -> type_obstack, 0);
438 mfree (objfile -> md, objfile);
439 objfile = NULL;
440 }
441 }
442
443
444 /* Free all the object files at once and clean up their users. */
445
446 void
447 free_all_objfiles ()
448 {
449 struct objfile *objfile, *temp;
450
451 ALL_OBJFILES_SAFE (objfile, temp)
452 {
453 free_objfile (objfile);
454 }
455 clear_symtab_users ();
456 }
457 \f
458 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
459 entries in new_offsets. */
460 void
461 objfile_relocate (objfile, new_offsets)
462 struct objfile *objfile;
463 struct section_offsets *new_offsets;
464 {
465 struct section_offsets *delta = (struct section_offsets *) alloca
466 (sizeof (struct section_offsets)
467 + objfile->num_sections * sizeof (delta->offsets));
468
469 {
470 int i;
471 int something_changed = 0;
472 for (i = 0; i < objfile->num_sections; ++i)
473 {
474 ANOFFSET (delta, i) =
475 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
476 if (ANOFFSET (delta, i) != 0)
477 something_changed = 1;
478 }
479 if (!something_changed)
480 return;
481 }
482
483 /* OK, get all the symtabs. */
484 {
485 struct symtab *s;
486
487 ALL_OBJFILE_SYMTABS (objfile, s)
488 {
489 struct linetable *l;
490 struct blockvector *bv;
491 int i;
492
493 /* First the line table. */
494 l = LINETABLE (s);
495 if (l)
496 {
497 for (i = 0; i < l->nitems; ++i)
498 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
499 }
500
501 /* Don't relocate a shared blockvector more than once. */
502 if (!s->primary)
503 continue;
504
505 bv = BLOCKVECTOR (s);
506 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
507 {
508 struct block *b;
509 int j;
510
511 b = BLOCKVECTOR_BLOCK (bv, i);
512 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
513 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
514
515 for (j = 0; j < BLOCK_NSYMS (b); ++j)
516 {
517 struct symbol *sym = BLOCK_SYM (b, j);
518 /* The RS6000 code from which this was taken skipped
519 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
520 But I'm leaving out that test, on the theory that
521 they can't possibly pass the tests below. */
522 if ((SYMBOL_CLASS (sym) == LOC_LABEL
523 || SYMBOL_CLASS (sym) == LOC_STATIC)
524 && SYMBOL_SECTION (sym) >= 0)
525 {
526 SYMBOL_VALUE_ADDRESS (sym) +=
527 ANOFFSET (delta, SYMBOL_SECTION (sym));
528 }
529 #ifdef MIPS_EFI_SYMBOL_NAME
530 /* Relocate Extra Function Info for ecoff. */
531
532 else
533 if (SYMBOL_CLASS (sym) == LOC_CONST
534 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
535 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
536 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
537 #endif
538 }
539 }
540 }
541 }
542
543 {
544 struct partial_symtab *p;
545
546 ALL_OBJFILE_PSYMTABS (objfile, p)
547 {
548 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
549 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
550 }
551 }
552
553 {
554 struct partial_symbol *psym;
555
556 for (psym = objfile->global_psymbols.list;
557 psym < objfile->global_psymbols.next;
558 psym++)
559 if (SYMBOL_SECTION (psym) >= 0)
560 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
561 for (psym = objfile->static_psymbols.list;
562 psym < objfile->static_psymbols.next;
563 psym++)
564 if (SYMBOL_SECTION (psym) >= 0)
565 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
566 }
567
568 {
569 struct minimal_symbol *msym;
570 ALL_OBJFILE_MSYMBOLS (objfile, msym)
571 if (SYMBOL_SECTION (msym) >= 0)
572 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
573 }
574 /* Relocating different sections by different amounts may cause the symbols
575 to be out of order. */
576 msymbols_sort (objfile);
577
578 {
579 int i;
580 for (i = 0; i < objfile->num_sections; ++i)
581 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
582 }
583
584 {
585 struct obj_section *s;
586 bfd *abfd;
587
588 abfd = objfile->obfd;
589
590 for (s = objfile->sections;
591 s < objfile->sections_end; ++s)
592 {
593 flagword flags;
594
595 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
596
597 if (flags & SEC_CODE)
598 {
599 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
600 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
601 }
602 else if (flags & (SEC_DATA | SEC_LOAD))
603 {
604 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
605 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
606 }
607 else if (flags & SEC_ALLOC)
608 {
609 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
610 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
611 }
612 }
613 }
614
615 if (objfile->ei.entry_point != ~0)
616 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
617
618 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
619 {
620 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
621 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
622 }
623
624 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
625 {
626 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
627 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
628 }
629
630 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
631 {
632 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
633 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
634 }
635 }
636 \f
637 /* Many places in gdb want to test just to see if we have any partial
638 symbols available. This function returns zero if none are currently
639 available, nonzero otherwise. */
640
641 int
642 have_partial_symbols ()
643 {
644 struct objfile *ofp;
645
646 ALL_OBJFILES (ofp)
647 {
648 if (ofp -> psymtabs != NULL)
649 {
650 return 1;
651 }
652 }
653 return 0;
654 }
655
656 /* Many places in gdb want to test just to see if we have any full
657 symbols available. This function returns zero if none are currently
658 available, nonzero otherwise. */
659
660 int
661 have_full_symbols ()
662 {
663 struct objfile *ofp;
664
665 ALL_OBJFILES (ofp)
666 {
667 if (ofp -> symtabs != NULL)
668 {
669 return 1;
670 }
671 }
672 return 0;
673 }
674
675 /* Many places in gdb want to test just to see if we have any minimal
676 symbols available. This function returns zero if none are currently
677 available, nonzero otherwise. */
678
679 int
680 have_minimal_symbols ()
681 {
682 struct objfile *ofp;
683
684 ALL_OBJFILES (ofp)
685 {
686 if (ofp -> msymbols != NULL)
687 {
688 return 1;
689 }
690 }
691 return 0;
692 }
693
694 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
695
696 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
697 of the corresponding symbol file in MTIME, try to open an existing file
698 with the name SYMSFILENAME and verify it is more recent than the base
699 file by checking it's timestamp against MTIME.
700
701 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
702
703 If SYMSFILENAME does exist, but is out of date, we check to see if the
704 user has specified creation of a mapped file. If so, we don't issue
705 any warning message because we will be creating a new mapped file anyway,
706 overwriting the old one. If not, then we issue a warning message so that
707 the user will know why we aren't using this existing mapped symbol file.
708 In either case, we return -1.
709
710 If SYMSFILENAME does exist and is not out of date, but can't be opened for
711 some reason, then prints an appropriate system error message and returns -1.
712
713 Otherwise, returns the open file descriptor. */
714
715 static int
716 open_existing_mapped_file (symsfilename, mtime, mapped)
717 char *symsfilename;
718 long mtime;
719 int mapped;
720 {
721 int fd = -1;
722 struct stat sbuf;
723
724 if (stat (symsfilename, &sbuf) == 0)
725 {
726 if (sbuf.st_mtime < mtime)
727 {
728 if (!mapped)
729 {
730 warning ("mapped symbol file `%s' is out of date, ignored it",
731 symsfilename);
732 }
733 }
734 else if ((fd = open (symsfilename, O_RDWR)) < 0)
735 {
736 if (error_pre_print)
737 {
738 printf_unfiltered (error_pre_print);
739 }
740 print_sys_errmsg (symsfilename, errno);
741 }
742 }
743 return (fd);
744 }
745
746 /* Look for a mapped symbol file that corresponds to FILENAME and is more
747 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
748 use a mapped symbol file for this file, so create a new one if one does
749 not currently exist.
750
751 If found, then return an open file descriptor for the file, otherwise
752 return -1.
753
754 This routine is responsible for implementing the policy that generates
755 the name of the mapped symbol file from the name of a file containing
756 symbols that gdb would like to read. Currently this policy is to append
757 ".syms" to the name of the file.
758
759 This routine is also responsible for implementing the policy that
760 determines where the mapped symbol file is found (the search path).
761 This policy is that when reading an existing mapped file, a file of
762 the correct name in the current directory takes precedence over a
763 file of the correct name in the same directory as the symbol file.
764 When creating a new mapped file, it is always created in the current
765 directory. This helps to minimize the chances of a user unknowingly
766 creating big mapped files in places like /bin and /usr/local/bin, and
767 allows a local copy to override a manually installed global copy (in
768 /bin for example). */
769
770 static int
771 open_mapped_file (filename, mtime, mapped)
772 char *filename;
773 long mtime;
774 int mapped;
775 {
776 int fd;
777 char *symsfilename;
778
779 /* First try to open an existing file in the current directory, and
780 then try the directory where the symbol file is located. */
781
782 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
783 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
784 {
785 free (symsfilename);
786 symsfilename = concat (filename, ".syms", (char *) NULL);
787 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
788 }
789
790 /* If we don't have an open file by now, then either the file does not
791 already exist, or the base file has changed since it was created. In
792 either case, if the user has specified use of a mapped file, then
793 create a new mapped file, truncating any existing one. If we can't
794 create one, print a system error message saying why we can't.
795
796 By default the file is rw for everyone, with the user's umask taking
797 care of turning off the permissions the user wants off. */
798
799 if ((fd < 0) && mapped)
800 {
801 free (symsfilename);
802 symsfilename = concat ("./", basename (filename), ".syms",
803 (char *) NULL);
804 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
805 {
806 if (error_pre_print)
807 {
808 printf_unfiltered (error_pre_print);
809 }
810 print_sys_errmsg (symsfilename, errno);
811 }
812 }
813
814 free (symsfilename);
815 return (fd);
816 }
817
818 /* Return the base address at which we would like the next objfile's
819 mapped data to start.
820
821 For now, we use the kludge that the configuration specifies a base
822 address to which it is safe to map the first mmalloc heap, and an
823 increment to add to this address for each successive heap. There are
824 a lot of issues to deal with here to make this work reasonably, including:
825
826 Avoid memory collisions with existing mapped address spaces
827
828 Reclaim address spaces when their mmalloc heaps are unmapped
829
830 When mmalloc heaps are shared between processes they have to be
831 mapped at the same addresses in each
832
833 Once created, a mmalloc heap that is to be mapped back in must be
834 mapped at the original address. I.E. each objfile will expect to
835 be remapped at it's original address. This becomes a problem if
836 the desired address is already in use.
837
838 etc, etc, etc.
839
840 */
841
842
843 static CORE_ADDR
844 map_to_address ()
845 {
846
847 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
848
849 static CORE_ADDR next = MMAP_BASE_ADDRESS;
850 CORE_ADDR mapto = next;
851
852 next += MMAP_INCREMENT;
853 return (mapto);
854
855 #else
856
857 return (0);
858
859 #endif
860
861 }
862
863 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
864
865 /* Returns a section whose range includes PC or NULL if none found. */
866
867 struct obj_section *
868 find_pc_section(pc)
869 CORE_ADDR pc;
870 {
871 struct obj_section *s;
872 struct objfile *objfile;
873
874 ALL_OBJFILES (objfile)
875 for (s = objfile->sections; s < objfile->sections_end; ++s)
876 if (s->addr <= pc
877 && pc < s->endaddr)
878 return(s);
879
880 return(NULL);
881 }
882
883 /* In SVR4, we recognize a trampoline by it's section name.
884 That is, if the pc is in a section named ".plt" then we are in
885 a trampoline. */
886
887 int
888 in_plt_section(pc, name)
889 CORE_ADDR pc;
890 char *name;
891 {
892 struct obj_section *s;
893 int retval = 0;
894
895 s = find_pc_section(pc);
896
897 retval = (s != NULL
898 && s->the_bfd_section->name != NULL
899 && STREQ (s->the_bfd_section->name, ".plt"));
900 return(retval);
901 }
This page took 0.048681 seconds and 4 git commands to generate.