* expression.h (OP_LABELED): New operator, for Chill
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Message to be printed before the error message, when an error occurs. */
53
54 extern char *error_pre_print;
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
63
64 int mapped_symbol_files; /* Try to use mapped symbol files */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 static void
71 add_to_objfile_sections (abfd, asect, objfile_p_char)
72 bfd *abfd;
73 sec_ptr asect;
74 PTR objfile_p_char;
75 {
76 struct objfile *objfile = (struct objfile *) objfile_p_char;
77 struct obj_section section;
78 flagword aflag;
79
80 aflag = bfd_get_section_flags (abfd, asect);
81 if (!(aflag & SEC_ALLOC))
82 return;
83 if (0 == bfd_section_size (abfd, asect))
84 return;
85 section.offset = 0;
86 section.objfile = objfile;
87 section.the_bfd_section = asect;
88 section.addr = bfd_section_vma (abfd, asect);
89 section.endaddr = section.addr + bfd_section_size (abfd, asect);
90 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
91 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
92 }
93
94 /* Builds a section table for OBJFILE.
95 Returns 0 if OK, 1 on error (in which case bfd_error contains the
96 error). */
97
98 int
99 build_objfile_section_table (objfile)
100 struct objfile *objfile;
101 {
102 /* objfile->sections can be already set when reading a mapped symbol
103 file. I believe that we do need to rebuild the section table in
104 this case (we rebuild other things derived from the bfd), but we
105 can't free the old one (it's in the psymbol_obstack). So we just
106 waste some memory. */
107
108 objfile->sections_end = 0;
109 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
110 objfile->sections = (struct obj_section *)
111 obstack_finish (&objfile->psymbol_obstack);
112 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
113 return(0);
114 }
115
116 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
117 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
118 struct, fill it in as best we can, link it into the list of all known
119 objfiles, and return a pointer to the new objfile struct. */
120
121 struct objfile *
122 allocate_objfile (abfd, mapped)
123 bfd *abfd;
124 int mapped;
125 {
126 struct objfile *objfile = NULL;
127 struct objfile *last_one = NULL;
128
129 mapped |= mapped_symbol_files;
130
131 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
132 {
133
134 /* If we can support mapped symbol files, try to open/reopen the
135 mapped file that corresponds to the file from which we wish to
136 read symbols. If the objfile is to be mapped, we must malloc
137 the structure itself using the mmap version, and arrange that
138 all memory allocation for the objfile uses the mmap routines.
139 If we are reusing an existing mapped file, from which we get
140 our objfile pointer, we have to make sure that we update the
141 pointers to the alloc/free functions in the obstack, in case
142 these functions have moved within the current gdb. */
143
144 int fd;
145
146 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
147 mapped);
148 if (fd >= 0)
149 {
150 CORE_ADDR mapto;
151 PTR md;
152
153 if (((mapto = map_to_address ()) == 0) ||
154 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
155 {
156 close (fd);
157 }
158 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
159 {
160 /* Update memory corruption handler function addresses. */
161 init_malloc (md);
162 objfile -> md = md;
163 objfile -> mmfd = fd;
164 /* Update pointers to functions to *our* copies */
165 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
166 obstack_freefun (&objfile -> psymbol_obstack, mfree);
167 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
168 obstack_freefun (&objfile -> symbol_obstack, mfree);
169 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
170 obstack_freefun (&objfile -> type_obstack, mfree);
171 /* If already in objfile list, unlink it. */
172 unlink_objfile (objfile);
173 /* Forget things specific to a particular gdb, may have changed. */
174 objfile -> sf = NULL;
175 }
176 else
177 {
178
179 /* Set up to detect internal memory corruption. MUST be
180 done before the first malloc. See comments in
181 init_malloc() and mmcheck(). */
182
183 init_malloc (md);
184
185 objfile = (struct objfile *)
186 xmmalloc (md, sizeof (struct objfile));
187 memset (objfile, 0, sizeof (struct objfile));
188 objfile -> md = md;
189 objfile -> mmfd = fd;
190 objfile -> flags |= OBJF_MAPPED;
191 mmalloc_setkey (objfile -> md, 0, objfile);
192 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
193 0, 0, xmmalloc, mfree,
194 objfile -> md);
195 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
196 0, 0, xmmalloc, mfree,
197 objfile -> md);
198 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
199 0, 0, xmmalloc, mfree,
200 objfile -> md);
201 }
202 }
203
204 if (mapped && (objfile == NULL))
205 {
206 warning ("symbol table for '%s' will not be mapped",
207 bfd_get_filename (abfd));
208 }
209 }
210 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
211
212 if (mapped)
213 {
214 warning ("this version of gdb does not support mapped symbol tables.");
215
216 /* Turn off the global flag so we don't try to do mapped symbol tables
217 any more, which shuts up gdb unless the user specifically gives the
218 "mapped" keyword again. */
219
220 mapped_symbol_files = 0;
221 }
222
223 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
224
225 /* If we don't support mapped symbol files, didn't ask for the file to be
226 mapped, or failed to open the mapped file for some reason, then revert
227 back to an unmapped objfile. */
228
229 if (objfile == NULL)
230 {
231 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
232 memset (objfile, 0, sizeof (struct objfile));
233 objfile -> md = NULL;
234 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
235 free);
236 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
237 free);
238 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
239 free);
240 }
241
242 /* Update the per-objfile information that comes from the bfd, ensuring
243 that any data that is reference is saved in the per-objfile data
244 region. */
245
246 objfile -> obfd = abfd;
247 if (objfile -> name != NULL)
248 {
249 mfree (objfile -> md, objfile -> name);
250 }
251 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
252 objfile -> mtime = bfd_get_mtime (abfd);
253
254 /* Build section table. */
255
256 if (build_objfile_section_table (objfile))
257 {
258 error ("Can't find the file sections in `%s': %s",
259 objfile -> name, bfd_errmsg (bfd_get_error ()));
260 }
261
262 /* Add this file onto the tail of the linked list of other such files. */
263
264 objfile -> next = NULL;
265 if (object_files == NULL)
266 object_files = objfile;
267 else
268 {
269 for (last_one = object_files;
270 last_one -> next;
271 last_one = last_one -> next);
272 last_one -> next = objfile;
273 }
274 return (objfile);
275 }
276
277 /* Put OBJFILE at the front of the list. */
278
279 void
280 objfile_to_front (objfile)
281 struct objfile *objfile;
282 {
283 struct objfile **objp;
284 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
285 {
286 if (*objp == objfile)
287 {
288 /* Unhook it from where it is. */
289 *objp = objfile->next;
290 /* Put it in the front. */
291 objfile->next = object_files;
292 object_files = objfile;
293 break;
294 }
295 }
296 }
297
298 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
299 list.
300
301 It is not a bug, or error, to call this function if OBJFILE is not known
302 to be in the current list. This is done in the case of mapped objfiles,
303 for example, just to ensure that the mapped objfile doesn't appear twice
304 in the list. Since the list is threaded, linking in a mapped objfile
305 twice would create a circular list.
306
307 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
308 unlinking it, just to ensure that we have completely severed any linkages
309 between the OBJFILE and the list. */
310
311 void
312 unlink_objfile (objfile)
313 struct objfile *objfile;
314 {
315 struct objfile** objpp;
316
317 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
318 {
319 if (*objpp == objfile)
320 {
321 *objpp = (*objpp) -> next;
322 objfile -> next = NULL;
323 break;
324 }
325 }
326 }
327
328
329 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
330 that as much as possible is allocated on the symbol_obstack and
331 psymbol_obstack, so that the memory can be efficiently freed.
332
333 Things which we do NOT free because they are not in malloc'd memory
334 or not in memory specific to the objfile include:
335
336 objfile -> sf
337
338 FIXME: If the objfile is using reusable symbol information (via mmalloc),
339 then we need to take into account the fact that more than one process
340 may be using the symbol information at the same time (when mmalloc is
341 extended to support cooperative locking). When more than one process
342 is using the mapped symbol info, we need to be more careful about when
343 we free objects in the reusable area. */
344
345 void
346 free_objfile (objfile)
347 struct objfile *objfile;
348 {
349 /* First do any symbol file specific actions required when we are
350 finished with a particular symbol file. Note that if the objfile
351 is using reusable symbol information (via mmalloc) then each of
352 these routines is responsible for doing the correct thing, either
353 freeing things which are valid only during this particular gdb
354 execution, or leaving them to be reused during the next one. */
355
356 if (objfile -> sf != NULL)
357 {
358 (*objfile -> sf -> sym_finish) (objfile);
359 }
360
361 /* We always close the bfd. */
362
363 if (objfile -> obfd != NULL)
364 {
365 char *name = bfd_get_filename (objfile->obfd);
366 if (!bfd_close (objfile -> obfd))
367 warning ("cannot close \"%s\": %s",
368 name, bfd_errmsg (bfd_get_error ()));
369 free (name);
370 }
371
372 /* Remove it from the chain of all objfiles. */
373
374 unlink_objfile (objfile);
375
376 /* If we are going to free the runtime common objfile, mark it
377 as unallocated. */
378
379 if (objfile == rt_common_objfile)
380 rt_common_objfile = NULL;
381
382 /* Before the symbol table code was redone to make it easier to
383 selectively load and remove information particular to a specific
384 linkage unit, gdb used to do these things whenever the monolithic
385 symbol table was blown away. How much still needs to be done
386 is unknown, but we play it safe for now and keep each action until
387 it is shown to be no longer needed. */
388
389 #if defined (CLEAR_SOLIB)
390 CLEAR_SOLIB ();
391 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
392 the to_sections for a core file might refer to those bfd's. So
393 detach any core file. */
394 {
395 struct target_ops *t = find_core_target ();
396 if (t != NULL)
397 (t->to_detach) (NULL, 0);
398 }
399 #endif
400 /* I *think* all our callers call clear_symtab_users. If so, no need
401 to call this here. */
402 clear_pc_function_cache ();
403
404 /* The last thing we do is free the objfile struct itself for the
405 non-reusable case, or detach from the mapped file for the reusable
406 case. Note that the mmalloc_detach or the mfree is the last thing
407 we can do with this objfile. */
408
409 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
410
411 if (objfile -> flags & OBJF_MAPPED)
412 {
413 /* Remember the fd so we can close it. We can't close it before
414 doing the detach, and after the detach the objfile is gone. */
415 int mmfd;
416
417 mmfd = objfile -> mmfd;
418 mmalloc_detach (objfile -> md);
419 objfile = NULL;
420 close (mmfd);
421 }
422
423 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
424
425 /* If we still have an objfile, then either we don't support reusable
426 objfiles or this one was not reusable. So free it normally. */
427
428 if (objfile != NULL)
429 {
430 if (objfile -> name != NULL)
431 {
432 mfree (objfile -> md, objfile -> name);
433 }
434 if (objfile->global_psymbols.list)
435 mfree (objfile->md, objfile->global_psymbols.list);
436 if (objfile->static_psymbols.list)
437 mfree (objfile->md, objfile->static_psymbols.list);
438 /* Free the obstacks for non-reusable objfiles */
439 obstack_free (&objfile -> psymbol_obstack, 0);
440 obstack_free (&objfile -> symbol_obstack, 0);
441 obstack_free (&objfile -> type_obstack, 0);
442 mfree (objfile -> md, objfile);
443 objfile = NULL;
444 }
445 }
446
447
448 /* Free all the object files at once and clean up their users. */
449
450 void
451 free_all_objfiles ()
452 {
453 struct objfile *objfile, *temp;
454
455 ALL_OBJFILES_SAFE (objfile, temp)
456 {
457 free_objfile (objfile);
458 }
459 clear_symtab_users ();
460 }
461 \f
462 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
463 entries in new_offsets. */
464 void
465 objfile_relocate (objfile, new_offsets)
466 struct objfile *objfile;
467 struct section_offsets *new_offsets;
468 {
469 struct section_offsets *delta = (struct section_offsets *) alloca
470 (sizeof (struct section_offsets)
471 + objfile->num_sections * sizeof (delta->offsets));
472
473 {
474 int i;
475 int something_changed = 0;
476 for (i = 0; i < objfile->num_sections; ++i)
477 {
478 ANOFFSET (delta, i) =
479 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
480 if (ANOFFSET (delta, i) != 0)
481 something_changed = 1;
482 }
483 if (!something_changed)
484 return;
485 }
486
487 /* OK, get all the symtabs. */
488 {
489 struct symtab *s;
490
491 ALL_OBJFILE_SYMTABS (objfile, s)
492 {
493 struct linetable *l;
494 struct blockvector *bv;
495 int i;
496
497 /* First the line table. */
498 l = LINETABLE (s);
499 if (l)
500 {
501 for (i = 0; i < l->nitems; ++i)
502 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
503 }
504
505 /* Don't relocate a shared blockvector more than once. */
506 if (!s->primary)
507 continue;
508
509 bv = BLOCKVECTOR (s);
510 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
511 {
512 struct block *b;
513 int j;
514
515 b = BLOCKVECTOR_BLOCK (bv, i);
516 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
517 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
518
519 for (j = 0; j < BLOCK_NSYMS (b); ++j)
520 {
521 struct symbol *sym = BLOCK_SYM (b, j);
522 /* The RS6000 code from which this was taken skipped
523 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
524 But I'm leaving out that test, on the theory that
525 they can't possibly pass the tests below. */
526 if ((SYMBOL_CLASS (sym) == LOC_LABEL
527 || SYMBOL_CLASS (sym) == LOC_STATIC)
528 && SYMBOL_SECTION (sym) >= 0)
529 {
530 SYMBOL_VALUE_ADDRESS (sym) +=
531 ANOFFSET (delta, SYMBOL_SECTION (sym));
532 }
533 #ifdef MIPS_EFI_SYMBOL_NAME
534 /* Relocate Extra Function Info for ecoff. */
535
536 else
537 if (SYMBOL_CLASS (sym) == LOC_CONST
538 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
539 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
540 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
541 #endif
542 }
543 }
544 }
545 }
546
547 {
548 struct partial_symtab *p;
549
550 ALL_OBJFILE_PSYMTABS (objfile, p)
551 {
552 /* FIXME: specific to symbol readers which use gdb-stabs.h.
553 We can only get away with it since objfile_relocate is only
554 used on XCOFF, which lacks psymtabs, and for gdb-stabs.h
555 targets. */
556 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
557 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
558 }
559 }
560
561 {
562 struct partial_symbol *psym;
563
564 for (psym = objfile->global_psymbols.list;
565 psym < objfile->global_psymbols.next;
566 psym++)
567 if (SYMBOL_SECTION (psym) >= 0)
568 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
569 for (psym = objfile->static_psymbols.list;
570 psym < objfile->static_psymbols.next;
571 psym++)
572 if (SYMBOL_SECTION (psym) >= 0)
573 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
574 }
575
576 {
577 struct minimal_symbol *msym;
578 ALL_OBJFILE_MSYMBOLS (objfile, msym)
579 if (SYMBOL_SECTION (msym) >= 0)
580 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
581 }
582 /* Relocating different sections by different amounts may cause the symbols
583 to be out of order. */
584 msymbols_sort (objfile);
585
586 {
587 int i;
588 for (i = 0; i < objfile->num_sections; ++i)
589 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
590 }
591
592 {
593 struct obj_section *s;
594 bfd *abfd;
595
596 abfd = objfile->obfd;
597
598 for (s = objfile->sections;
599 s < objfile->sections_end; ++s)
600 {
601 flagword flags;
602
603 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
604
605 if (flags & SEC_CODE)
606 {
607 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
608 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
609 }
610 else if (flags & (SEC_DATA | SEC_LOAD))
611 {
612 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
613 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
614 }
615 else if (flags & SEC_ALLOC)
616 {
617 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
618 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
619 }
620 }
621 }
622
623 if (objfile->ei.entry_point != ~0)
624 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
625
626 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
627 {
628 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
629 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
630 }
631
632 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
633 {
634 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
635 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
636 }
637
638 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
639 {
640 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
641 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
642 }
643 }
644 \f
645 /* Many places in gdb want to test just to see if we have any partial
646 symbols available. This function returns zero if none are currently
647 available, nonzero otherwise. */
648
649 int
650 have_partial_symbols ()
651 {
652 struct objfile *ofp;
653
654 ALL_OBJFILES (ofp)
655 {
656 if (ofp -> psymtabs != NULL)
657 {
658 return 1;
659 }
660 }
661 return 0;
662 }
663
664 /* Many places in gdb want to test just to see if we have any full
665 symbols available. This function returns zero if none are currently
666 available, nonzero otherwise. */
667
668 int
669 have_full_symbols ()
670 {
671 struct objfile *ofp;
672
673 ALL_OBJFILES (ofp)
674 {
675 if (ofp -> symtabs != NULL)
676 {
677 return 1;
678 }
679 }
680 return 0;
681 }
682
683 /* Many places in gdb want to test just to see if we have any minimal
684 symbols available. This function returns zero if none are currently
685 available, nonzero otherwise. */
686
687 int
688 have_minimal_symbols ()
689 {
690 struct objfile *ofp;
691
692 ALL_OBJFILES (ofp)
693 {
694 if (ofp -> msymbols != NULL)
695 {
696 return 1;
697 }
698 }
699 return 0;
700 }
701
702 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
703
704 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
705 of the corresponding symbol file in MTIME, try to open an existing file
706 with the name SYMSFILENAME and verify it is more recent than the base
707 file by checking it's timestamp against MTIME.
708
709 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
710
711 If SYMSFILENAME does exist, but is out of date, we check to see if the
712 user has specified creation of a mapped file. If so, we don't issue
713 any warning message because we will be creating a new mapped file anyway,
714 overwriting the old one. If not, then we issue a warning message so that
715 the user will know why we aren't using this existing mapped symbol file.
716 In either case, we return -1.
717
718 If SYMSFILENAME does exist and is not out of date, but can't be opened for
719 some reason, then prints an appropriate system error message and returns -1.
720
721 Otherwise, returns the open file descriptor. */
722
723 static int
724 open_existing_mapped_file (symsfilename, mtime, mapped)
725 char *symsfilename;
726 long mtime;
727 int mapped;
728 {
729 int fd = -1;
730 struct stat sbuf;
731
732 if (stat (symsfilename, &sbuf) == 0)
733 {
734 if (sbuf.st_mtime < mtime)
735 {
736 if (!mapped)
737 {
738 warning ("mapped symbol file `%s' is out of date, ignored it",
739 symsfilename);
740 }
741 }
742 else if ((fd = open (symsfilename, O_RDWR)) < 0)
743 {
744 if (error_pre_print)
745 {
746 printf_unfiltered (error_pre_print);
747 }
748 print_sys_errmsg (symsfilename, errno);
749 }
750 }
751 return (fd);
752 }
753
754 /* Look for a mapped symbol file that corresponds to FILENAME and is more
755 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
756 use a mapped symbol file for this file, so create a new one if one does
757 not currently exist.
758
759 If found, then return an open file descriptor for the file, otherwise
760 return -1.
761
762 This routine is responsible for implementing the policy that generates
763 the name of the mapped symbol file from the name of a file containing
764 symbols that gdb would like to read. Currently this policy is to append
765 ".syms" to the name of the file.
766
767 This routine is also responsible for implementing the policy that
768 determines where the mapped symbol file is found (the search path).
769 This policy is that when reading an existing mapped file, a file of
770 the correct name in the current directory takes precedence over a
771 file of the correct name in the same directory as the symbol file.
772 When creating a new mapped file, it is always created in the current
773 directory. This helps to minimize the chances of a user unknowingly
774 creating big mapped files in places like /bin and /usr/local/bin, and
775 allows a local copy to override a manually installed global copy (in
776 /bin for example). */
777
778 static int
779 open_mapped_file (filename, mtime, mapped)
780 char *filename;
781 long mtime;
782 int mapped;
783 {
784 int fd;
785 char *symsfilename;
786
787 /* First try to open an existing file in the current directory, and
788 then try the directory where the symbol file is located. */
789
790 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
791 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
792 {
793 free (symsfilename);
794 symsfilename = concat (filename, ".syms", (char *) NULL);
795 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
796 }
797
798 /* If we don't have an open file by now, then either the file does not
799 already exist, or the base file has changed since it was created. In
800 either case, if the user has specified use of a mapped file, then
801 create a new mapped file, truncating any existing one. If we can't
802 create one, print a system error message saying why we can't.
803
804 By default the file is rw for everyone, with the user's umask taking
805 care of turning off the permissions the user wants off. */
806
807 if ((fd < 0) && mapped)
808 {
809 free (symsfilename);
810 symsfilename = concat ("./", basename (filename), ".syms",
811 (char *) NULL);
812 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
813 {
814 if (error_pre_print)
815 {
816 printf_unfiltered (error_pre_print);
817 }
818 print_sys_errmsg (symsfilename, errno);
819 }
820 }
821
822 free (symsfilename);
823 return (fd);
824 }
825
826 /* Return the base address at which we would like the next objfile's
827 mapped data to start.
828
829 For now, we use the kludge that the configuration specifies a base
830 address to which it is safe to map the first mmalloc heap, and an
831 increment to add to this address for each successive heap. There are
832 a lot of issues to deal with here to make this work reasonably, including:
833
834 Avoid memory collisions with existing mapped address spaces
835
836 Reclaim address spaces when their mmalloc heaps are unmapped
837
838 When mmalloc heaps are shared between processes they have to be
839 mapped at the same addresses in each
840
841 Once created, a mmalloc heap that is to be mapped back in must be
842 mapped at the original address. I.E. each objfile will expect to
843 be remapped at it's original address. This becomes a problem if
844 the desired address is already in use.
845
846 etc, etc, etc.
847
848 */
849
850
851 static CORE_ADDR
852 map_to_address ()
853 {
854
855 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
856
857 static CORE_ADDR next = MMAP_BASE_ADDRESS;
858 CORE_ADDR mapto = next;
859
860 next += MMAP_INCREMENT;
861 return (mapto);
862
863 #else
864
865 return (0);
866
867 #endif
868
869 }
870
871 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
872
873 /* Returns a section whose range includes PC or NULL if none found. */
874
875 struct obj_section *
876 find_pc_section(pc)
877 CORE_ADDR pc;
878 {
879 struct obj_section *s;
880 struct objfile *objfile;
881
882 ALL_OBJFILES (objfile)
883 for (s = objfile->sections; s < objfile->sections_end; ++s)
884 if (s->addr <= pc
885 && pc < s->endaddr)
886 return(s);
887
888 return(NULL);
889 }
890
891 /* In SVR4, we recognize a trampoline by it's section name.
892 That is, if the pc is in a section named ".plt" then we are in
893 a trampoline. */
894
895 int
896 in_plt_section(pc, name)
897 CORE_ADDR pc;
898 char *name;
899 {
900 struct obj_section *s;
901 int retval = 0;
902
903 s = find_pc_section(pc);
904
905 retval = (s != NULL
906 && s->the_bfd_section->name != NULL
907 && STREQ (s->the_bfd_section->name, ".plt"));
908 return(retval);
909 }
This page took 0.04704 seconds and 4 git commands to generate.