* i387-tdep.c (print_i387_value): Cast &value to (char *) in
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32
33 #include <sys/types.h>
34 #include "gdb_stat.h"
35 #include <fcntl.h>
36 #include "obstack.h"
37 #include "gdb_string.h"
38
39 #include "breakpoint.h"
40
41 /* Prototypes for local functions */
42
43 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
45 static int
46 open_existing_mapped_file PARAMS ((char *, long, int));
47
48 static int
49 open_mapped_file PARAMS ((char *filename, long mtime, int flags));
50
51 static PTR
52 map_to_file PARAMS ((int));
53
54 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
55
56 static void
57 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
58
59 /* Externally visible variables that are owned by this module.
60 See declarations in objfile.h for more info. */
61
62 struct objfile *object_files; /* Linked list of all objfiles */
63 struct objfile *current_objfile; /* For symbol file being read in */
64 struct objfile *symfile_objfile; /* Main symbol table loaded from */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 int mapped_symbol_files; /* Try to use mapped symbol files */
68
69 /* Locate all mappable sections of a BFD file.
70 objfile_p_char is a char * to get it through
71 bfd_map_over_sections; we cast it back to its proper type. */
72
73 #ifndef TARGET_KEEP_SECTION
74 #define TARGET_KEEP_SECTION(ASECT) 0
75 #endif
76
77 /* Called via bfd_map_over_sections to build up the section table that
78 the objfile references. The objfile contains pointers to the start
79 of the table (objfile->sections) and to the first location after
80 the end of the table (objfile->sections_end). */
81
82 static void
83 add_to_objfile_sections (abfd, asect, objfile_p_char)
84 bfd *abfd;
85 sec_ptr asect;
86 PTR objfile_p_char;
87 {
88 struct objfile *objfile = (struct objfile *) objfile_p_char;
89 struct obj_section section;
90 flagword aflag;
91
92 aflag = bfd_get_section_flags (abfd, asect);
93
94 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
95 return;
96
97 if (0 == bfd_section_size (abfd, asect))
98 return;
99 section.offset = 0;
100 section.objfile = objfile;
101 section.the_bfd_section = asect;
102 section.ovly_mapped = 0;
103 section.addr = bfd_section_vma (abfd, asect);
104 section.endaddr = section.addr + bfd_section_size (abfd, asect);
105 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
106 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
107 }
108
109 /* Builds a section table for OBJFILE.
110 Returns 0 if OK, 1 on error (in which case bfd_error contains the
111 error).
112
113 Note that while we are building the table, which goes into the
114 psymbol obstack, we hijack the sections_end pointer to instead hold
115 a count of the number of sections. When bfd_map_over_sections
116 returns, this count is used to compute the pointer to the end of
117 the sections table, which then overwrites the count.
118
119 Also note that the OFFSET and OVLY_MAPPED in each table entry
120 are initialized to zero.
121
122 Also note that if anything else writes to the psymbol obstack while
123 we are building the table, we're pretty much hosed. */
124
125 int
126 build_objfile_section_table (objfile)
127 struct objfile *objfile;
128 {
129 /* objfile->sections can be already set when reading a mapped symbol
130 file. I believe that we do need to rebuild the section table in
131 this case (we rebuild other things derived from the bfd), but we
132 can't free the old one (it's in the psymbol_obstack). So we just
133 waste some memory. */
134
135 objfile->sections_end = 0;
136 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
137 objfile->sections = (struct obj_section *)
138 obstack_finish (&objfile->psymbol_obstack);
139 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
140 return (0);
141 }
142
143 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
144 allocate a new objfile struct, fill it in as best we can, link it
145 into the list of all known objfiles, and return a pointer to the
146 new objfile struct.
147
148 The FLAGS word contains various bits (OBJF_*) that can be taken as
149 requests for specific operations, like trying to open a mapped
150 version of the objfile (OBJF_MAPPED). Other bits like
151 OBJF_SHARED are simply copied through to the new objfile flags
152 member. */
153
154 struct objfile *
155 allocate_objfile (abfd, flags)
156 bfd *abfd;
157 int flags;
158 {
159 struct objfile *objfile = NULL;
160 struct objfile *last_one = NULL;
161
162 if (mapped_symbol_files)
163 flags |= OBJF_MAPPED;
164
165 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
166 if (abfd != NULL)
167 {
168
169 /* If we can support mapped symbol files, try to open/reopen the
170 mapped file that corresponds to the file from which we wish to
171 read symbols. If the objfile is to be mapped, we must malloc
172 the structure itself using the mmap version, and arrange that
173 all memory allocation for the objfile uses the mmap routines.
174 If we are reusing an existing mapped file, from which we get
175 our objfile pointer, we have to make sure that we update the
176 pointers to the alloc/free functions in the obstack, in case
177 these functions have moved within the current gdb. */
178
179 int fd;
180
181 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
182 flags);
183 if (fd >= 0)
184 {
185 PTR md;
186
187 if ((md = map_to_file (fd)) == NULL)
188 {
189 close (fd);
190 }
191 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
192 {
193 /* Update memory corruption handler function addresses. */
194 init_malloc (md);
195 objfile->md = md;
196 objfile->mmfd = fd;
197 /* Update pointers to functions to *our* copies */
198 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
199 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
200 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
201 obstack_freefun (&objfile->psymbol_obstack, mfree);
202 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
203 obstack_freefun (&objfile->symbol_obstack, mfree);
204 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
205 obstack_freefun (&objfile->type_obstack, mfree);
206 /* If already in objfile list, unlink it. */
207 unlink_objfile (objfile);
208 /* Forget things specific to a particular gdb, may have changed. */
209 objfile->sf = NULL;
210 }
211 else
212 {
213
214 /* Set up to detect internal memory corruption. MUST be
215 done before the first malloc. See comments in
216 init_malloc() and mmcheck(). */
217
218 init_malloc (md);
219
220 objfile = (struct objfile *)
221 xmmalloc (md, sizeof (struct objfile));
222 memset (objfile, 0, sizeof (struct objfile));
223 objfile->md = md;
224 objfile->mmfd = fd;
225 objfile->flags |= OBJF_MAPPED;
226 mmalloc_setkey (objfile->md, 0, objfile);
227 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
228 0, 0, xmmalloc, mfree,
229 objfile->md);
230 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
231 0, 0, xmmalloc, mfree,
232 objfile->md);
233 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
234 0, 0, xmmalloc, mfree,
235 objfile->md);
236 obstack_specify_allocation_with_arg (&objfile->type_obstack,
237 0, 0, xmmalloc, mfree,
238 objfile->md);
239 }
240 }
241
242 if ((flags & OBJF_MAPPED) && (objfile == NULL))
243 {
244 warning ("symbol table for '%s' will not be mapped",
245 bfd_get_filename (abfd));
246 flags &= ~OBJF_MAPPED;
247 }
248 }
249 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
250
251 if (flags & OBJF_MAPPED)
252 {
253 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
254
255 /* Turn off the global flag so we don't try to do mapped symbol tables
256 any more, which shuts up gdb unless the user specifically gives the
257 "mapped" keyword again. */
258
259 mapped_symbol_files = 0;
260 flags &= ~OBJF_MAPPED;
261 }
262
263 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
264
265 /* If we don't support mapped symbol files, didn't ask for the file to be
266 mapped, or failed to open the mapped file for some reason, then revert
267 back to an unmapped objfile. */
268
269 if (objfile == NULL)
270 {
271 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
272 memset (objfile, 0, sizeof (struct objfile));
273 objfile->md = NULL;
274 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
275 xmalloc, free);
276 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
277 free);
278 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
279 free);
280 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
281 free);
282 flags &= ~OBJF_MAPPED;
283 }
284
285 /* Update the per-objfile information that comes from the bfd, ensuring
286 that any data that is reference is saved in the per-objfile data
287 region. */
288
289 objfile->obfd = abfd;
290 if (objfile->name != NULL)
291 {
292 mfree (objfile->md, objfile->name);
293 }
294 if (abfd != NULL)
295 {
296 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
297 objfile->mtime = bfd_get_mtime (abfd);
298
299 /* Build section table. */
300
301 if (build_objfile_section_table (objfile))
302 {
303 error ("Can't find the file sections in `%s': %s",
304 objfile->name, bfd_errmsg (bfd_get_error ()));
305 }
306 }
307
308 /* Initialize the section indexes for this objfile, so that we can
309 later detect if they are used w/o being properly assigned to. */
310
311 objfile->sect_index_text = -1;
312 objfile->sect_index_data = -1;
313 objfile->sect_index_bss = -1;
314 objfile->sect_index_rodata = -1;
315
316 /* Add this file onto the tail of the linked list of other such files. */
317
318 objfile->next = NULL;
319 if (object_files == NULL)
320 object_files = objfile;
321 else
322 {
323 for (last_one = object_files;
324 last_one->next;
325 last_one = last_one->next);
326 last_one->next = objfile;
327 }
328
329 /* Save passed in flag bits. */
330 objfile->flags |= flags;
331
332 return (objfile);
333 }
334
335 /* Put OBJFILE at the front of the list. */
336
337 void
338 objfile_to_front (objfile)
339 struct objfile *objfile;
340 {
341 struct objfile **objp;
342 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
343 {
344 if (*objp == objfile)
345 {
346 /* Unhook it from where it is. */
347 *objp = objfile->next;
348 /* Put it in the front. */
349 objfile->next = object_files;
350 object_files = objfile;
351 break;
352 }
353 }
354 }
355
356 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
357 list.
358
359 It is not a bug, or error, to call this function if OBJFILE is not known
360 to be in the current list. This is done in the case of mapped objfiles,
361 for example, just to ensure that the mapped objfile doesn't appear twice
362 in the list. Since the list is threaded, linking in a mapped objfile
363 twice would create a circular list.
364
365 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
366 unlinking it, just to ensure that we have completely severed any linkages
367 between the OBJFILE and the list. */
368
369 void
370 unlink_objfile (objfile)
371 struct objfile *objfile;
372 {
373 struct objfile **objpp;
374
375 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
376 {
377 if (*objpp == objfile)
378 {
379 *objpp = (*objpp)->next;
380 objfile->next = NULL;
381 return;
382 }
383 }
384
385 internal_error ("objfiles.c (unlink_objfile): objfile already unlinked");
386 }
387
388
389 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
390 that as much as possible is allocated on the symbol_obstack and
391 psymbol_obstack, so that the memory can be efficiently freed.
392
393 Things which we do NOT free because they are not in malloc'd memory
394 or not in memory specific to the objfile include:
395
396 objfile -> sf
397
398 FIXME: If the objfile is using reusable symbol information (via mmalloc),
399 then we need to take into account the fact that more than one process
400 may be using the symbol information at the same time (when mmalloc is
401 extended to support cooperative locking). When more than one process
402 is using the mapped symbol info, we need to be more careful about when
403 we free objects in the reusable area. */
404
405 void
406 free_objfile (objfile)
407 struct objfile *objfile;
408 {
409 /* First do any symbol file specific actions required when we are
410 finished with a particular symbol file. Note that if the objfile
411 is using reusable symbol information (via mmalloc) then each of
412 these routines is responsible for doing the correct thing, either
413 freeing things which are valid only during this particular gdb
414 execution, or leaving them to be reused during the next one. */
415
416 if (objfile->sf != NULL)
417 {
418 (*objfile->sf->sym_finish) (objfile);
419 }
420
421 /* We always close the bfd. */
422
423 if (objfile->obfd != NULL)
424 {
425 char *name = bfd_get_filename (objfile->obfd);
426 if (!bfd_close (objfile->obfd))
427 warning ("cannot close \"%s\": %s",
428 name, bfd_errmsg (bfd_get_error ()));
429 free (name);
430 }
431
432 /* Remove it from the chain of all objfiles. */
433
434 unlink_objfile (objfile);
435
436 /* If we are going to free the runtime common objfile, mark it
437 as unallocated. */
438
439 if (objfile == rt_common_objfile)
440 rt_common_objfile = NULL;
441
442 /* Before the symbol table code was redone to make it easier to
443 selectively load and remove information particular to a specific
444 linkage unit, gdb used to do these things whenever the monolithic
445 symbol table was blown away. How much still needs to be done
446 is unknown, but we play it safe for now and keep each action until
447 it is shown to be no longer needed. */
448
449 /* I *think* all our callers call clear_symtab_users. If so, no need
450 to call this here. */
451 clear_pc_function_cache ();
452
453 /* The last thing we do is free the objfile struct itself for the
454 non-reusable case, or detach from the mapped file for the reusable
455 case. Note that the mmalloc_detach or the mfree is the last thing
456 we can do with this objfile. */
457
458 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
459
460 if (objfile->flags & OBJF_MAPPED)
461 {
462 /* Remember the fd so we can close it. We can't close it before
463 doing the detach, and after the detach the objfile is gone. */
464 int mmfd;
465
466 mmfd = objfile->mmfd;
467 mmalloc_detach (objfile->md);
468 objfile = NULL;
469 close (mmfd);
470 }
471
472 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
473
474 /* If we still have an objfile, then either we don't support reusable
475 objfiles or this one was not reusable. So free it normally. */
476
477 if (objfile != NULL)
478 {
479 if (objfile->name != NULL)
480 {
481 mfree (objfile->md, objfile->name);
482 }
483 if (objfile->global_psymbols.list)
484 mfree (objfile->md, objfile->global_psymbols.list);
485 if (objfile->static_psymbols.list)
486 mfree (objfile->md, objfile->static_psymbols.list);
487 /* Free the obstacks for non-reusable objfiles */
488 free_bcache (&objfile->psymbol_cache);
489 obstack_free (&objfile->psymbol_obstack, 0);
490 obstack_free (&objfile->symbol_obstack, 0);
491 obstack_free (&objfile->type_obstack, 0);
492 mfree (objfile->md, objfile);
493 objfile = NULL;
494 }
495 }
496
497
498 /* Free all the object files at once and clean up their users. */
499
500 void
501 free_all_objfiles ()
502 {
503 struct objfile *objfile, *temp;
504
505 ALL_OBJFILES_SAFE (objfile, temp)
506 {
507 free_objfile (objfile);
508 }
509 clear_symtab_users ();
510 }
511 \f
512 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
513 entries in new_offsets. */
514 void
515 objfile_relocate (objfile, new_offsets)
516 struct objfile *objfile;
517 struct section_offsets *new_offsets;
518 {
519 struct section_offsets *delta =
520 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
521
522 {
523 int i;
524 int something_changed = 0;
525 for (i = 0; i < objfile->num_sections; ++i)
526 {
527 ANOFFSET (delta, i) =
528 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
529 if (ANOFFSET (delta, i) != 0)
530 something_changed = 1;
531 }
532 if (!something_changed)
533 return;
534 }
535
536 /* OK, get all the symtabs. */
537 {
538 struct symtab *s;
539
540 ALL_OBJFILE_SYMTABS (objfile, s)
541 {
542 struct linetable *l;
543 struct blockvector *bv;
544 int i;
545
546 /* First the line table. */
547 l = LINETABLE (s);
548 if (l)
549 {
550 for (i = 0; i < l->nitems; ++i)
551 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
552 }
553
554 /* Don't relocate a shared blockvector more than once. */
555 if (!s->primary)
556 continue;
557
558 bv = BLOCKVECTOR (s);
559 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
560 {
561 struct block *b;
562 int j;
563
564 b = BLOCKVECTOR_BLOCK (bv, i);
565 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
566 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
567
568 for (j = 0; j < BLOCK_NSYMS (b); ++j)
569 {
570 struct symbol *sym = BLOCK_SYM (b, j);
571 /* The RS6000 code from which this was taken skipped
572 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
573 But I'm leaving out that test, on the theory that
574 they can't possibly pass the tests below. */
575 if ((SYMBOL_CLASS (sym) == LOC_LABEL
576 || SYMBOL_CLASS (sym) == LOC_STATIC
577 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
578 && SYMBOL_SECTION (sym) >= 0)
579 {
580 SYMBOL_VALUE_ADDRESS (sym) +=
581 ANOFFSET (delta, SYMBOL_SECTION (sym));
582 }
583 #ifdef MIPS_EFI_SYMBOL_NAME
584 /* Relocate Extra Function Info for ecoff. */
585
586 else if (SYMBOL_CLASS (sym) == LOC_CONST
587 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
588 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
589 ecoff_relocate_efi (sym, ANOFFSET (delta,
590 s->block_line_section));
591 #endif
592 }
593 }
594 }
595 }
596
597 {
598 struct partial_symtab *p;
599
600 ALL_OBJFILE_PSYMTABS (objfile, p)
601 {
602 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
603 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
604 }
605 }
606
607 {
608 struct partial_symbol **psym;
609
610 for (psym = objfile->global_psymbols.list;
611 psym < objfile->global_psymbols.next;
612 psym++)
613 if (SYMBOL_SECTION (*psym) >= 0)
614 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
615 SYMBOL_SECTION (*psym));
616 for (psym = objfile->static_psymbols.list;
617 psym < objfile->static_psymbols.next;
618 psym++)
619 if (SYMBOL_SECTION (*psym) >= 0)
620 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
621 SYMBOL_SECTION (*psym));
622 }
623
624 {
625 struct minimal_symbol *msym;
626 ALL_OBJFILE_MSYMBOLS (objfile, msym)
627 if (SYMBOL_SECTION (msym) >= 0)
628 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
629 }
630 /* Relocating different sections by different amounts may cause the symbols
631 to be out of order. */
632 msymbols_sort (objfile);
633
634 {
635 int i;
636 for (i = 0; i < objfile->num_sections; ++i)
637 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
638 }
639
640 {
641 struct obj_section *s;
642 bfd *abfd;
643
644 abfd = objfile->obfd;
645
646 ALL_OBJFILE_OSECTIONS (objfile, s)
647 {
648 flagword flags;
649
650 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
651
652 if (flags & SEC_CODE)
653 {
654 s->addr += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
655 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
656 }
657 else if (flags & (SEC_DATA | SEC_LOAD))
658 {
659 s->addr += ANOFFSET (delta, SECT_OFF_DATA (objfile));
660 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA (objfile));
661 }
662 else if (flags & SEC_ALLOC)
663 {
664 s->addr += ANOFFSET (delta, SECT_OFF_BSS (objfile));
665 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS (objfile));
666 }
667 }
668 }
669
670 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
671 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
672
673 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
674 {
675 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
676 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
677 }
678
679 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
680 {
681 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
682 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
683 }
684
685 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
686 {
687 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
688 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
689 }
690
691 /* Relocate breakpoints as necessary, after things are relocated. */
692 breakpoint_re_set ();
693 }
694 \f
695 /* Many places in gdb want to test just to see if we have any partial
696 symbols available. This function returns zero if none are currently
697 available, nonzero otherwise. */
698
699 int
700 have_partial_symbols ()
701 {
702 struct objfile *ofp;
703
704 ALL_OBJFILES (ofp)
705 {
706 if (ofp->psymtabs != NULL)
707 {
708 return 1;
709 }
710 }
711 return 0;
712 }
713
714 /* Many places in gdb want to test just to see if we have any full
715 symbols available. This function returns zero if none are currently
716 available, nonzero otherwise. */
717
718 int
719 have_full_symbols ()
720 {
721 struct objfile *ofp;
722
723 ALL_OBJFILES (ofp)
724 {
725 if (ofp->symtabs != NULL)
726 {
727 return 1;
728 }
729 }
730 return 0;
731 }
732
733
734 /* This operations deletes all objfile entries that represent solibs that
735 weren't explicitly loaded by the user, via e.g., the add-symbol-file
736 command.
737 */
738 void
739 objfile_purge_solibs ()
740 {
741 struct objfile *objf;
742 struct objfile *temp;
743
744 ALL_OBJFILES_SAFE (objf, temp)
745 {
746 /* We assume that the solib package has been purged already, or will
747 be soon.
748 */
749 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
750 free_objfile (objf);
751 }
752 }
753
754
755 /* Many places in gdb want to test just to see if we have any minimal
756 symbols available. This function returns zero if none are currently
757 available, nonzero otherwise. */
758
759 int
760 have_minimal_symbols ()
761 {
762 struct objfile *ofp;
763
764 ALL_OBJFILES (ofp)
765 {
766 if (ofp->msymbols != NULL)
767 {
768 return 1;
769 }
770 }
771 return 0;
772 }
773
774 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
775
776 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
777 of the corresponding symbol file in MTIME, try to open an existing file
778 with the name SYMSFILENAME and verify it is more recent than the base
779 file by checking it's timestamp against MTIME.
780
781 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
782
783 If SYMSFILENAME does exist, but is out of date, we check to see if the
784 user has specified creation of a mapped file. If so, we don't issue
785 any warning message because we will be creating a new mapped file anyway,
786 overwriting the old one. If not, then we issue a warning message so that
787 the user will know why we aren't using this existing mapped symbol file.
788 In either case, we return -1.
789
790 If SYMSFILENAME does exist and is not out of date, but can't be opened for
791 some reason, then prints an appropriate system error message and returns -1.
792
793 Otherwise, returns the open file descriptor. */
794
795 static int
796 open_existing_mapped_file (symsfilename, mtime, flags)
797 char *symsfilename;
798 long mtime;
799 int flags;
800 {
801 int fd = -1;
802 struct stat sbuf;
803
804 if (stat (symsfilename, &sbuf) == 0)
805 {
806 if (sbuf.st_mtime < mtime)
807 {
808 if (!(flags & OBJF_MAPPED))
809 {
810 warning ("mapped symbol file `%s' is out of date, ignored it",
811 symsfilename);
812 }
813 }
814 else if ((fd = open (symsfilename, O_RDWR)) < 0)
815 {
816 if (error_pre_print)
817 {
818 printf_unfiltered (error_pre_print);
819 }
820 print_sys_errmsg (symsfilename, errno);
821 }
822 }
823 return (fd);
824 }
825
826 /* Look for a mapped symbol file that corresponds to FILENAME and is more
827 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
828 use a mapped symbol file for this file, so create a new one if one does
829 not currently exist.
830
831 If found, then return an open file descriptor for the file, otherwise
832 return -1.
833
834 This routine is responsible for implementing the policy that generates
835 the name of the mapped symbol file from the name of a file containing
836 symbols that gdb would like to read. Currently this policy is to append
837 ".syms" to the name of the file.
838
839 This routine is also responsible for implementing the policy that
840 determines where the mapped symbol file is found (the search path).
841 This policy is that when reading an existing mapped file, a file of
842 the correct name in the current directory takes precedence over a
843 file of the correct name in the same directory as the symbol file.
844 When creating a new mapped file, it is always created in the current
845 directory. This helps to minimize the chances of a user unknowingly
846 creating big mapped files in places like /bin and /usr/local/bin, and
847 allows a local copy to override a manually installed global copy (in
848 /bin for example). */
849
850 static int
851 open_mapped_file (filename, mtime, flags)
852 char *filename;
853 long mtime;
854 int flags;
855 {
856 int fd;
857 char *symsfilename;
858
859 /* First try to open an existing file in the current directory, and
860 then try the directory where the symbol file is located. */
861
862 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
863 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
864 {
865 free (symsfilename);
866 symsfilename = concat (filename, ".syms", (char *) NULL);
867 fd = open_existing_mapped_file (symsfilename, mtime, flags);
868 }
869
870 /* If we don't have an open file by now, then either the file does not
871 already exist, or the base file has changed since it was created. In
872 either case, if the user has specified use of a mapped file, then
873 create a new mapped file, truncating any existing one. If we can't
874 create one, print a system error message saying why we can't.
875
876 By default the file is rw for everyone, with the user's umask taking
877 care of turning off the permissions the user wants off. */
878
879 if ((fd < 0) && (flags & OBJF_MAPPED))
880 {
881 free (symsfilename);
882 symsfilename = concat ("./", basename (filename), ".syms",
883 (char *) NULL);
884 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
885 {
886 if (error_pre_print)
887 {
888 printf_unfiltered (error_pre_print);
889 }
890 print_sys_errmsg (symsfilename, errno);
891 }
892 }
893
894 free (symsfilename);
895 return (fd);
896 }
897
898 static PTR
899 map_to_file (fd)
900 int fd;
901 {
902 PTR md;
903 CORE_ADDR mapto;
904
905 md = mmalloc_attach (fd, (PTR) 0);
906 if (md != NULL)
907 {
908 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
909 md = mmalloc_detach (md);
910 if (md != NULL)
911 {
912 /* FIXME: should figure out why detach failed */
913 md = NULL;
914 }
915 else if (mapto != (CORE_ADDR) NULL)
916 {
917 /* This mapping file needs to be remapped at "mapto" */
918 md = mmalloc_attach (fd, (PTR) mapto);
919 }
920 else
921 {
922 /* This is a freshly created mapping file. */
923 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
924 if (mapto != 0)
925 {
926 /* To avoid reusing the freshly created mapping file, at the
927 address selected by mmap, we must truncate it before trying
928 to do an attach at the address we want. */
929 ftruncate (fd, 0);
930 md = mmalloc_attach (fd, (PTR) mapto);
931 if (md != NULL)
932 {
933 mmalloc_setkey (md, 1, (PTR) mapto);
934 }
935 }
936 }
937 }
938 return (md);
939 }
940
941 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
942
943 /* Returns a section whose range includes PC and SECTION,
944 or NULL if none found. Note the distinction between the return type,
945 struct obj_section (which is defined in gdb), and the input type
946 struct sec (which is a bfd-defined data type). The obj_section
947 contains a pointer to the bfd struct sec section. */
948
949 struct obj_section *
950 find_pc_sect_section (pc, section)
951 CORE_ADDR pc;
952 struct sec *section;
953 {
954 struct obj_section *s;
955 struct objfile *objfile;
956
957 ALL_OBJSECTIONS (objfile, s)
958 if ((section == 0 || section == s->the_bfd_section) &&
959 s->addr <= pc && pc < s->endaddr)
960 return (s);
961
962 return (NULL);
963 }
964
965 /* Returns a section whose range includes PC or NULL if none found.
966 Backward compatibility, no section. */
967
968 struct obj_section *
969 find_pc_section (pc)
970 CORE_ADDR pc;
971 {
972 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
973 }
974
975
976 /* In SVR4, we recognize a trampoline by it's section name.
977 That is, if the pc is in a section named ".plt" then we are in
978 a trampoline. */
979
980 int
981 in_plt_section (pc, name)
982 CORE_ADDR pc;
983 char *name;
984 {
985 struct obj_section *s;
986 int retval = 0;
987
988 s = find_pc_section (pc);
989
990 retval = (s != NULL
991 && s->the_bfd_section->name != NULL
992 && STREQ (s->the_bfd_section->name, ".plt"));
993 return (retval);
994 }
995
996 /* Return nonzero if NAME is in the import list of OBJFILE. Else
997 return zero. */
998
999 int
1000 is_in_import_list (name, objfile)
1001 char *name;
1002 struct objfile *objfile;
1003 {
1004 register int i;
1005
1006 if (!objfile || !name || !*name)
1007 return 0;
1008
1009 for (i = 0; i < objfile->import_list_size; i++)
1010 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1011 return 1;
1012 return 0;
1013 }
1014
This page took 0.050341 seconds and 4 git commands to generate.