Documentation for the new mtag commands
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. Note that it is
124 not safe to call this multiple times for a given OBJFILE -- it can
125 only be called when allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = objfiles_bfd_data.get (abfd);
134
135 if (storage == NULL)
136 {
137 storage = new objfile_per_bfd_storage;
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 objfiles_bfd_data.set (abfd, storage);
143
144 /* Look up the gdbarch associated with the BFD. */
145 if (abfd != NULL)
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148
149 return storage;
150 }
151
152 /* See objfiles.h. */
153
154 void
155 set_objfile_per_bfd (struct objfile *objfile)
156 {
157 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
158 }
159
160 /* Set the objfile's per-BFD notion of the "main" name and
161 language. */
162
163 void
164 set_objfile_main_name (struct objfile *objfile,
165 const char *name, enum language lang)
166 {
167 if (objfile->per_bfd->name_of_main == NULL
168 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
169 objfile->per_bfd->name_of_main
170 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
171 objfile->per_bfd->language_of_main = lang;
172 }
173
174 /* Helper structure to map blocks to static link properties in hash tables. */
175
176 struct static_link_htab_entry
177 {
178 const struct block *block;
179 const struct dynamic_prop *static_link;
180 };
181
182 /* Return a hash code for struct static_link_htab_entry *P. */
183
184 static hashval_t
185 static_link_htab_entry_hash (const void *p)
186 {
187 const struct static_link_htab_entry *e
188 = (const struct static_link_htab_entry *) p;
189
190 return htab_hash_pointer (e->block);
191 }
192
193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
194 mappings for the same block. */
195
196 static int
197 static_link_htab_entry_eq (const void *p1, const void *p2)
198 {
199 const struct static_link_htab_entry *e1
200 = (const struct static_link_htab_entry *) p1;
201 const struct static_link_htab_entry *e2
202 = (const struct static_link_htab_entry *) p2;
203
204 return e1->block == e2->block;
205 }
206
207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
208 Must not be called more than once for each BLOCK. */
209
210 void
211 objfile_register_static_link (struct objfile *objfile,
212 const struct block *block,
213 const struct dynamic_prop *static_link)
214 {
215 void **slot;
216 struct static_link_htab_entry lookup_entry;
217 struct static_link_htab_entry *entry;
218
219 if (objfile->static_links == NULL)
220 objfile->static_links.reset (htab_create_alloc
221 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
222 xcalloc, xfree));
223
224 /* Create a slot for the mapping, make sure it's the first mapping for this
225 block and then create the mapping itself. */
226 lookup_entry.block = block;
227 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
228 gdb_assert (*slot == NULL);
229
230 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
231 entry->block = block;
232 entry->static_link = static_link;
233 *slot = (void *) entry;
234 }
235
236 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
237 none was found. */
238
239 const struct dynamic_prop *
240 objfile_lookup_static_link (struct objfile *objfile,
241 const struct block *block)
242 {
243 struct static_link_htab_entry *entry;
244 struct static_link_htab_entry lookup_entry;
245
246 if (objfile->static_links == NULL)
247 return NULL;
248 lookup_entry.block = block;
249 entry = ((struct static_link_htab_entry *)
250 htab_find (objfile->static_links.get (), &lookup_entry));
251 if (entry == NULL)
252 return NULL;
253
254 gdb_assert (entry->block == block);
255 return entry->static_link;
256 }
257
258 \f
259
260 /* Build up the section table that the objfile references. The
261 objfile contains pointers to the start of the table
262 (objfile->sections) and to the first location after the end of the
263 table (objfile->sections_end). */
264
265 static void
266 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
267 struct objfile *objfile, int force)
268 {
269 struct obj_section *section;
270
271 if (!force)
272 {
273 flagword aflag;
274
275 aflag = bfd_section_flags (asect);
276 if (!(aflag & SEC_ALLOC))
277 return;
278 }
279
280 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
281 section->objfile = objfile;
282 section->the_bfd_section = asect;
283 section->ovly_mapped = 0;
284 }
285
286 /* Builds a section table for OBJFILE.
287
288 Note that the OFFSET and OVLY_MAPPED in each table entry are
289 initialized to zero. */
290
291 void
292 build_objfile_section_table (struct objfile *objfile)
293 {
294 int count = gdb_bfd_count_sections (objfile->obfd);
295
296 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
297 count,
298 struct obj_section);
299 objfile->sections_end = (objfile->sections + count);
300 for (asection *sect : gdb_bfd_sections (objfile->obfd))
301 add_to_objfile_sections (objfile->obfd, sect, objfile, 0);
302
303 /* See gdb_bfd_section_index. */
304 add_to_objfile_sections (objfile->obfd, bfd_com_section_ptr, objfile, 1);
305 add_to_objfile_sections (objfile->obfd, bfd_und_section_ptr, objfile, 1);
306 add_to_objfile_sections (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
307 add_to_objfile_sections (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
308 }
309
310 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
311 initialize the new objfile as best we can and link it into the list
312 of all known objfiles.
313
314 NAME should contain original non-canonicalized filename or other
315 identifier as entered by user. If there is no better source use
316 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
317 NAME content is copied into returned objfile.
318
319 The FLAGS word contains various bits (OBJF_*) that can be taken as
320 requests for specific operations. Other bits like OBJF_SHARED are
321 simply copied through to the new objfile flags member. */
322
323 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
324 : flags (flags_),
325 pspace (current_program_space),
326 obfd (abfd)
327 {
328 const char *expanded_name;
329
330 /* We could use obstack_specify_allocation here instead, but
331 gdb_obstack.h specifies the alloc/dealloc functions. */
332 obstack_init (&objfile_obstack);
333
334 objfile_alloc_data (this);
335
336 gdb::unique_xmalloc_ptr<char> name_holder;
337 if (name == NULL)
338 {
339 gdb_assert (abfd == NULL);
340 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
341 expanded_name = "<<anonymous objfile>>";
342 }
343 else if ((flags & OBJF_NOT_FILENAME) != 0
344 || is_target_filename (name))
345 expanded_name = name;
346 else
347 {
348 name_holder = gdb_abspath (name);
349 expanded_name = name_holder.get ();
350 }
351 original_name = obstack_strdup (&objfile_obstack, expanded_name);
352
353 /* Update the per-objfile information that comes from the bfd, ensuring
354 that any data that is reference is saved in the per-objfile data
355 region. */
356
357 gdb_bfd_ref (abfd);
358 if (abfd != NULL)
359 {
360 mtime = bfd_get_mtime (abfd);
361
362 /* Build section table. */
363 build_objfile_section_table (this);
364 }
365
366 per_bfd = get_objfile_bfd_data (this, abfd);
367 }
368
369 /* If there is a valid and known entry point, function fills *ENTRY_P with it
370 and returns non-zero; otherwise it returns zero. */
371
372 int
373 entry_point_address_query (CORE_ADDR *entry_p)
374 {
375 objfile *objf = current_program_space->symfile_object_file;
376 if (objf == NULL || !objf->per_bfd->ei.entry_point_p)
377 return 0;
378
379 int idx = objf->per_bfd->ei.the_bfd_section_index;
380 *entry_p = objf->per_bfd->ei.entry_point + objf->section_offsets[idx];
381
382 return 1;
383 }
384
385 /* Get current entry point address. Call error if it is not known. */
386
387 CORE_ADDR
388 entry_point_address (void)
389 {
390 CORE_ADDR retval;
391
392 if (!entry_point_address_query (&retval))
393 error (_("Entry point address is not known."));
394
395 return retval;
396 }
397
398 separate_debug_iterator &
399 separate_debug_iterator::operator++ ()
400 {
401 gdb_assert (m_objfile != nullptr);
402
403 struct objfile *res;
404
405 /* If any, return the first child. */
406 res = m_objfile->separate_debug_objfile;
407 if (res != nullptr)
408 {
409 m_objfile = res;
410 return *this;
411 }
412
413 /* Common case where there is no separate debug objfile. */
414 if (m_objfile == m_parent)
415 {
416 m_objfile = nullptr;
417 return *this;
418 }
419
420 /* Return the brother if any. Note that we don't iterate on brothers of
421 the parents. */
422 res = m_objfile->separate_debug_objfile_link;
423 if (res != nullptr)
424 {
425 m_objfile = res;
426 return *this;
427 }
428
429 for (res = m_objfile->separate_debug_objfile_backlink;
430 res != m_parent;
431 res = res->separate_debug_objfile_backlink)
432 {
433 gdb_assert (res != nullptr);
434 if (res->separate_debug_objfile_link != nullptr)
435 {
436 m_objfile = res->separate_debug_objfile_link;
437 return *this;
438 }
439 }
440 m_objfile = nullptr;
441 return *this;
442 }
443
444 /* Add OBJFILE as a separate debug objfile of PARENT. */
445
446 static void
447 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
448 {
449 gdb_assert (objfile && parent);
450
451 /* Must not be already in a list. */
452 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
453 gdb_assert (objfile->separate_debug_objfile_link == NULL);
454 gdb_assert (objfile->separate_debug_objfile == NULL);
455 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
456 gdb_assert (parent->separate_debug_objfile_link == NULL);
457
458 objfile->separate_debug_objfile_backlink = parent;
459 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
460 parent->separate_debug_objfile = objfile;
461 }
462
463 /* See objfiles.h. */
464
465 objfile *
466 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
467 objfile *parent)
468 {
469 objfile *result = new objfile (bfd_, name_, flags_);
470 if (parent != nullptr)
471 add_separate_debug_objfile (result, parent);
472
473 /* Using std::make_shared might be a bit nicer here, but that would
474 require making the constructor public. */
475 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
476 parent);
477
478 /* Rebuild section map next time we need it. */
479 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
480
481 return result;
482 }
483
484 /* See objfiles.h. */
485
486 void
487 objfile::unlink ()
488 {
489 current_program_space->remove_objfile (this);
490 }
491
492 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
493 itself. */
494
495 void
496 free_objfile_separate_debug (struct objfile *objfile)
497 {
498 struct objfile *child;
499
500 for (child = objfile->separate_debug_objfile; child;)
501 {
502 struct objfile *next_child = child->separate_debug_objfile_link;
503 child->unlink ();
504 child = next_child;
505 }
506 }
507
508 /* Destroy an objfile and all the symtabs and psymtabs under it. */
509
510 objfile::~objfile ()
511 {
512 /* First notify observers that this objfile is about to be freed. */
513 gdb::observers::free_objfile.notify (this);
514
515 /* Free all separate debug objfiles. */
516 free_objfile_separate_debug (this);
517
518 if (separate_debug_objfile_backlink)
519 {
520 /* We freed the separate debug file, make sure the base objfile
521 doesn't reference it. */
522 struct objfile *child;
523
524 child = separate_debug_objfile_backlink->separate_debug_objfile;
525
526 if (child == this)
527 {
528 /* THIS is the first child. */
529 separate_debug_objfile_backlink->separate_debug_objfile =
530 separate_debug_objfile_link;
531 }
532 else
533 {
534 /* Find THIS in the list. */
535 while (1)
536 {
537 if (child->separate_debug_objfile_link == this)
538 {
539 child->separate_debug_objfile_link =
540 separate_debug_objfile_link;
541 break;
542 }
543 child = child->separate_debug_objfile_link;
544 gdb_assert (child);
545 }
546 }
547 }
548
549 /* Remove any references to this objfile in the global value
550 lists. */
551 preserve_values (this);
552
553 /* It still may reference data modules have associated with the objfile and
554 the symbol file data. */
555 forget_cached_source_info_for_objfile (this);
556
557 breakpoint_free_objfile (this);
558 btrace_free_objfile (this);
559
560 /* First do any symbol file specific actions required when we are
561 finished with a particular symbol file. Note that if the objfile
562 is using reusable symbol information (via mmalloc) then each of
563 these routines is responsible for doing the correct thing, either
564 freeing things which are valid only during this particular gdb
565 execution, or leaving them to be reused during the next one. */
566
567 if (sf != NULL)
568 (*sf->sym_finish) (this);
569
570 /* Discard any data modules have associated with the objfile. The function
571 still may reference obfd. */
572 objfile_free_data (this);
573
574 if (obfd)
575 gdb_bfd_unref (obfd);
576 else
577 delete per_bfd;
578
579 /* Before the symbol table code was redone to make it easier to
580 selectively load and remove information particular to a specific
581 linkage unit, gdb used to do these things whenever the monolithic
582 symbol table was blown away. How much still needs to be done
583 is unknown, but we play it safe for now and keep each action until
584 it is shown to be no longer needed. */
585
586 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
587 for example), so we need to call this here. */
588 clear_pc_function_cache ();
589
590 /* Check to see if the current_source_symtab belongs to this objfile,
591 and if so, call clear_current_source_symtab_and_line. */
592
593 {
594 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
595
596 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
597 clear_current_source_symtab_and_line ();
598 }
599
600 /* Free the obstacks for non-reusable objfiles. */
601 obstack_free (&objfile_obstack, 0);
602
603 /* Rebuild section map next time we need it. */
604 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
605 }
606
607 \f
608 /* A helper function for objfile_relocate1 that relocates a single
609 symbol. */
610
611 static void
612 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
613 const section_offsets &delta)
614 {
615 fixup_symbol_section (sym, objfile);
616
617 /* The RS6000 code from which this was taken skipped
618 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
619 But I'm leaving out that test, on the theory that
620 they can't possibly pass the tests below. */
621 if ((SYMBOL_CLASS (sym) == LOC_LABEL
622 || SYMBOL_CLASS (sym) == LOC_STATIC)
623 && sym->section_index () >= 0)
624 {
625 SET_SYMBOL_VALUE_ADDRESS (sym,
626 SYMBOL_VALUE_ADDRESS (sym)
627 + delta[sym->section_index ()]);
628 }
629 }
630
631 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
632 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
633 Return non-zero iff any change happened. */
634
635 static int
636 objfile_relocate1 (struct objfile *objfile,
637 const section_offsets &new_offsets)
638 {
639 section_offsets delta (objfile->section_offsets.size ());
640
641 int something_changed = 0;
642
643 for (int i = 0; i < objfile->section_offsets.size (); ++i)
644 {
645 delta[i] = new_offsets[i] - objfile->section_offsets[i];
646 if (delta[i] != 0)
647 something_changed = 1;
648 }
649 if (!something_changed)
650 return 0;
651
652 /* OK, get all the symtabs. */
653 {
654 for (compunit_symtab *cust : objfile->compunits ())
655 {
656 for (symtab *s : compunit_filetabs (cust))
657 {
658 struct linetable *l;
659
660 /* First the line table. */
661 l = SYMTAB_LINETABLE (s);
662 if (l)
663 {
664 for (int i = 0; i < l->nitems; ++i)
665 l->item[i].pc += delta[COMPUNIT_BLOCK_LINE_SECTION (cust)];
666 }
667 }
668 }
669
670 for (compunit_symtab *cust : objfile->compunits ())
671 {
672 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
673 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
674
675 if (BLOCKVECTOR_MAP (bv))
676 addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]);
677
678 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
679 {
680 struct block *b;
681 struct symbol *sym;
682 struct mdict_iterator miter;
683
684 b = BLOCKVECTOR_BLOCK (bv, i);
685 BLOCK_START (b) += delta[block_line_section];
686 BLOCK_END (b) += delta[block_line_section];
687
688 if (BLOCK_RANGES (b) != nullptr)
689 for (int j = 0; j < BLOCK_NRANGES (b); j++)
690 {
691 BLOCK_RANGE_START (b, j) += delta[block_line_section];
692 BLOCK_RANGE_END (b, j) += delta[block_line_section];
693 }
694
695 /* We only want to iterate over the local symbols, not any
696 symbols in included symtabs. */
697 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
698 {
699 relocate_one_symbol (sym, objfile, delta);
700 }
701 }
702 }
703 }
704
705 /* Notify the quick symbol object. */
706 for (const auto &iter : objfile->qf)
707 iter->relocated ();
708
709 /* Relocate isolated symbols. */
710 {
711 struct symbol *iter;
712
713 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
714 relocate_one_symbol (iter, objfile, delta);
715 }
716
717 {
718 int i;
719
720 for (i = 0; i < objfile->section_offsets.size (); ++i)
721 objfile->section_offsets[i] = new_offsets[i];
722 }
723
724 /* Rebuild section map next time we need it. */
725 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
726
727 /* Update the table in exec_ops, used to read memory. */
728 struct obj_section *s;
729 ALL_OBJFILE_OSECTIONS (objfile, s)
730 {
731 int idx = s - objfile->sections;
732
733 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
734 obj_section_addr (s));
735 }
736
737 /* Data changed. */
738 return 1;
739 }
740
741 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
742 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
743
744 The number and ordering of sections does differ between the two objfiles.
745 Only their names match. Also the file offsets will differ (objfile being
746 possibly prelinked but separate_debug_objfile is probably not prelinked) but
747 the in-memory absolute address as specified by NEW_OFFSETS must match both
748 files. */
749
750 void
751 objfile_relocate (struct objfile *objfile,
752 const section_offsets &new_offsets)
753 {
754 int changed = 0;
755
756 changed |= objfile_relocate1 (objfile, new_offsets);
757
758 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
759 {
760 if (debug_objfile == objfile)
761 continue;
762
763 section_addr_info objfile_addrs
764 = build_section_addr_info_from_objfile (objfile);
765
766 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
767 relative ones must be already created according to debug_objfile. */
768
769 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
770
771 gdb_assert (debug_objfile->section_offsets.size ()
772 == gdb_bfd_count_sections (debug_objfile->obfd));
773 section_offsets new_debug_offsets
774 (debug_objfile->section_offsets.size ());
775 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
776
777 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
778 }
779
780 /* Relocate breakpoints as necessary, after things are relocated. */
781 if (changed)
782 breakpoint_re_set ();
783 }
784
785 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
786 not touched here.
787 Return non-zero iff any change happened. */
788
789 static int
790 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
791 {
792 section_offsets new_offsets (objfile->section_offsets.size (), slide);
793 return objfile_relocate1 (objfile, new_offsets);
794 }
795
796 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
797 SEPARATE_DEBUG_OBJFILEs. */
798
799 void
800 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
801 {
802 int changed = 0;
803
804 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
805 changed |= objfile_rebase1 (debug_objfile, slide);
806
807 /* Relocate breakpoints as necessary, after things are relocated. */
808 if (changed)
809 breakpoint_re_set ();
810 }
811 \f
812 /* Return non-zero if OBJFILE has full symbols. */
813
814 int
815 objfile_has_full_symbols (struct objfile *objfile)
816 {
817 return objfile->compunit_symtabs != NULL;
818 }
819
820 /* Return non-zero if OBJFILE has full or partial symbols, either directly
821 or through a separate debug file. */
822
823 int
824 objfile_has_symbols (struct objfile *objfile)
825 {
826 for (::objfile *o : objfile->separate_debug_objfiles ())
827 if (o->has_partial_symbols () || objfile_has_full_symbols (o))
828 return 1;
829 return 0;
830 }
831
832
833 /* Many places in gdb want to test just to see if we have any partial
834 symbols available. This function returns zero if none are currently
835 available, nonzero otherwise. */
836
837 int
838 have_partial_symbols (void)
839 {
840 for (objfile *ofp : current_program_space->objfiles ())
841 {
842 if (ofp->has_partial_symbols ())
843 return 1;
844 }
845 return 0;
846 }
847
848 /* Many places in gdb want to test just to see if we have any full
849 symbols available. This function returns zero if none are currently
850 available, nonzero otherwise. */
851
852 int
853 have_full_symbols (void)
854 {
855 for (objfile *ofp : current_program_space->objfiles ())
856 {
857 if (objfile_has_full_symbols (ofp))
858 return 1;
859 }
860 return 0;
861 }
862
863
864 /* This operations deletes all objfile entries that represent solibs that
865 weren't explicitly loaded by the user, via e.g., the add-symbol-file
866 command. */
867
868 void
869 objfile_purge_solibs (void)
870 {
871 for (objfile *objf : current_program_space->objfiles_safe ())
872 {
873 /* We assume that the solib package has been purged already, or will
874 be soon. */
875
876 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
877 objf->unlink ();
878 }
879 }
880
881
882 /* Many places in gdb want to test just to see if we have any minimal
883 symbols available. This function returns zero if none are currently
884 available, nonzero otherwise. */
885
886 int
887 have_minimal_symbols (void)
888 {
889 for (objfile *ofp : current_program_space->objfiles ())
890 {
891 if (ofp->per_bfd->minimal_symbol_count > 0)
892 {
893 return 1;
894 }
895 }
896 return 0;
897 }
898
899 /* Qsort comparison function. */
900
901 static bool
902 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
903 {
904 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
905 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
906
907 if (sect1_addr < sect2_addr)
908 return true;
909 else if (sect1_addr > sect2_addr)
910 return false;
911 else
912 {
913 /* Sections are at the same address. This could happen if
914 A) we have an objfile and a separate debuginfo.
915 B) we are confused, and have added sections without proper relocation,
916 or something like that. */
917
918 const struct objfile *const objfile1 = sect1->objfile;
919 const struct objfile *const objfile2 = sect2->objfile;
920
921 if (objfile1->separate_debug_objfile == objfile2
922 || objfile2->separate_debug_objfile == objfile1)
923 {
924 /* Case A. The ordering doesn't matter: separate debuginfo files
925 will be filtered out later. */
926
927 return false;
928 }
929
930 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
931 triage. This section could be slow (since we iterate over all
932 objfiles in each call to sort_cmp), but this shouldn't happen
933 very often (GDB is already in a confused state; one hopes this
934 doesn't happen at all). If you discover that significant time is
935 spent in the loops below, do 'set complaints 100' and examine the
936 resulting complaints. */
937 if (objfile1 == objfile2)
938 {
939 /* Both sections came from the same objfile. We are really
940 confused. Sort on sequence order of sections within the
941 objfile. The order of checks is important here, if we find a
942 match on SECT2 first then either SECT2 is before SECT1, or,
943 SECT2 == SECT1, in both cases we should return false. The
944 second case shouldn't occur during normal use, but std::sort
945 does check that '!(a < a)' when compiled in debug mode. */
946
947 const struct obj_section *osect;
948
949 ALL_OBJFILE_OSECTIONS (objfile1, osect)
950 if (osect == sect2)
951 return false;
952 else if (osect == sect1)
953 return true;
954
955 /* We should have found one of the sections before getting here. */
956 gdb_assert_not_reached ("section not found");
957 }
958 else
959 {
960 /* Sort on sequence number of the objfile in the chain. */
961
962 for (objfile *objfile : current_program_space->objfiles ())
963 if (objfile == objfile1)
964 return true;
965 else if (objfile == objfile2)
966 return false;
967
968 /* We should have found one of the objfiles before getting here. */
969 gdb_assert_not_reached ("objfile not found");
970 }
971 }
972
973 /* Unreachable. */
974 gdb_assert_not_reached ("unexpected code path");
975 return false;
976 }
977
978 /* Select "better" obj_section to keep. We prefer the one that came from
979 the real object, rather than the one from separate debuginfo.
980 Most of the time the two sections are exactly identical, but with
981 prelinking the .rel.dyn section in the real object may have different
982 size. */
983
984 static struct obj_section *
985 preferred_obj_section (struct obj_section *a, struct obj_section *b)
986 {
987 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
988 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
989 || (b->objfile->separate_debug_objfile == a->objfile));
990 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
991 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
992
993 if (a->objfile->separate_debug_objfile != NULL)
994 return a;
995 return b;
996 }
997
998 /* Return 1 if SECTION should be inserted into the section map.
999 We want to insert only non-overlay and non-TLS section. */
1000
1001 static int
1002 insert_section_p (const struct bfd *abfd,
1003 const struct bfd_section *section)
1004 {
1005 const bfd_vma lma = bfd_section_lma (section);
1006
1007 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1008 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1009 /* This is an overlay section. IN_MEMORY check is needed to avoid
1010 discarding sections from the "system supplied DSO" (aka vdso)
1011 on some Linux systems (e.g. Fedora 11). */
1012 return 0;
1013 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1014 /* This is a TLS section. */
1015 return 0;
1016
1017 return 1;
1018 }
1019
1020 /* Filter out overlapping sections where one section came from the real
1021 objfile, and the other from a separate debuginfo file.
1022 Return the size of table after redundant sections have been eliminated. */
1023
1024 static int
1025 filter_debuginfo_sections (struct obj_section **map, int map_size)
1026 {
1027 int i, j;
1028
1029 for (i = 0, j = 0; i < map_size - 1; i++)
1030 {
1031 struct obj_section *const sect1 = map[i];
1032 struct obj_section *const sect2 = map[i + 1];
1033 const struct objfile *const objfile1 = sect1->objfile;
1034 const struct objfile *const objfile2 = sect2->objfile;
1035 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1036 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1037
1038 if (sect1_addr == sect2_addr
1039 && (objfile1->separate_debug_objfile == objfile2
1040 || objfile2->separate_debug_objfile == objfile1))
1041 {
1042 map[j++] = preferred_obj_section (sect1, sect2);
1043 ++i;
1044 }
1045 else
1046 map[j++] = sect1;
1047 }
1048
1049 if (i < map_size)
1050 {
1051 gdb_assert (i == map_size - 1);
1052 map[j++] = map[i];
1053 }
1054
1055 /* The map should not have shrunk to less than half the original size. */
1056 gdb_assert (map_size / 2 <= j);
1057
1058 return j;
1059 }
1060
1061 /* Filter out overlapping sections, issuing a warning if any are found.
1062 Overlapping sections could really be overlay sections which we didn't
1063 classify as such in insert_section_p, or we could be dealing with a
1064 corrupt binary. */
1065
1066 static int
1067 filter_overlapping_sections (struct obj_section **map, int map_size)
1068 {
1069 int i, j;
1070
1071 for (i = 0, j = 0; i < map_size - 1; )
1072 {
1073 int k;
1074
1075 map[j++] = map[i];
1076 for (k = i + 1; k < map_size; k++)
1077 {
1078 struct obj_section *const sect1 = map[i];
1079 struct obj_section *const sect2 = map[k];
1080 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1081 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1082 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1083
1084 gdb_assert (sect1_addr <= sect2_addr);
1085
1086 if (sect1_endaddr <= sect2_addr)
1087 break;
1088 else
1089 {
1090 /* We have an overlap. Report it. */
1091
1092 struct objfile *const objf1 = sect1->objfile;
1093 struct objfile *const objf2 = sect2->objfile;
1094
1095 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1096 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1097
1098 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1099
1100 struct gdbarch *const gdbarch = objf1->arch ();
1101
1102 complaint (_("unexpected overlap between:\n"
1103 " (A) section `%s' from `%s' [%s, %s)\n"
1104 " (B) section `%s' from `%s' [%s, %s).\n"
1105 "Will ignore section B"),
1106 bfd_section_name (bfds1), objfile_name (objf1),
1107 paddress (gdbarch, sect1_addr),
1108 paddress (gdbarch, sect1_endaddr),
1109 bfd_section_name (bfds2), objfile_name (objf2),
1110 paddress (gdbarch, sect2_addr),
1111 paddress (gdbarch, sect2_endaddr));
1112 }
1113 }
1114 i = k;
1115 }
1116
1117 if (i < map_size)
1118 {
1119 gdb_assert (i == map_size - 1);
1120 map[j++] = map[i];
1121 }
1122
1123 return j;
1124 }
1125
1126
1127 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1128 TLS, overlay and overlapping sections. */
1129
1130 static void
1131 update_section_map (struct program_space *pspace,
1132 struct obj_section ***pmap, int *pmap_size)
1133 {
1134 struct objfile_pspace_info *pspace_info;
1135 int alloc_size, map_size, i;
1136 struct obj_section *s, **map;
1137
1138 pspace_info = get_objfile_pspace_data (pspace);
1139 gdb_assert (pspace_info->section_map_dirty != 0
1140 || pspace_info->new_objfiles_available != 0);
1141
1142 map = *pmap;
1143 xfree (map);
1144
1145 alloc_size = 0;
1146 for (objfile *objfile : pspace->objfiles ())
1147 ALL_OBJFILE_OSECTIONS (objfile, s)
1148 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1149 alloc_size += 1;
1150
1151 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1152 if (alloc_size == 0)
1153 {
1154 *pmap = NULL;
1155 *pmap_size = 0;
1156 return;
1157 }
1158
1159 map = XNEWVEC (struct obj_section *, alloc_size);
1160
1161 i = 0;
1162 for (objfile *objfile : pspace->objfiles ())
1163 ALL_OBJFILE_OSECTIONS (objfile, s)
1164 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1165 map[i++] = s;
1166
1167 std::sort (map, map + alloc_size, sort_cmp);
1168 map_size = filter_debuginfo_sections(map, alloc_size);
1169 map_size = filter_overlapping_sections(map, map_size);
1170
1171 if (map_size < alloc_size)
1172 /* Some sections were eliminated. Trim excess space. */
1173 map = XRESIZEVEC (struct obj_section *, map, map_size);
1174 else
1175 gdb_assert (alloc_size == map_size);
1176
1177 *pmap = map;
1178 *pmap_size = map_size;
1179 }
1180
1181 /* Bsearch comparison function. */
1182
1183 static int
1184 bsearch_cmp (const void *key, const void *elt)
1185 {
1186 const CORE_ADDR pc = *(CORE_ADDR *) key;
1187 const struct obj_section *section = *(const struct obj_section **) elt;
1188
1189 if (pc < obj_section_addr (section))
1190 return -1;
1191 if (pc < obj_section_endaddr (section))
1192 return 0;
1193 return 1;
1194 }
1195
1196 /* Returns a section whose range includes PC or NULL if none found. */
1197
1198 struct obj_section *
1199 find_pc_section (CORE_ADDR pc)
1200 {
1201 struct objfile_pspace_info *pspace_info;
1202 struct obj_section *s, **sp;
1203
1204 /* Check for mapped overlay section first. */
1205 s = find_pc_mapped_section (pc);
1206 if (s)
1207 return s;
1208
1209 pspace_info = get_objfile_pspace_data (current_program_space);
1210 if (pspace_info->section_map_dirty
1211 || (pspace_info->new_objfiles_available
1212 && !pspace_info->inhibit_updates))
1213 {
1214 update_section_map (current_program_space,
1215 &pspace_info->sections,
1216 &pspace_info->num_sections);
1217
1218 /* Don't need updates to section map until objfiles are added,
1219 removed or relocated. */
1220 pspace_info->new_objfiles_available = 0;
1221 pspace_info->section_map_dirty = 0;
1222 }
1223
1224 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1225 bsearch be non-NULL. */
1226 if (pspace_info->sections == NULL)
1227 {
1228 gdb_assert (pspace_info->num_sections == 0);
1229 return NULL;
1230 }
1231
1232 sp = (struct obj_section **) bsearch (&pc,
1233 pspace_info->sections,
1234 pspace_info->num_sections,
1235 sizeof (*pspace_info->sections),
1236 bsearch_cmp);
1237 if (sp != NULL)
1238 return *sp;
1239 return NULL;
1240 }
1241
1242
1243 /* Return non-zero if PC is in a section called NAME. */
1244
1245 int
1246 pc_in_section (CORE_ADDR pc, const char *name)
1247 {
1248 struct obj_section *s;
1249 int retval = 0;
1250
1251 s = find_pc_section (pc);
1252
1253 retval = (s != NULL
1254 && s->the_bfd_section->name != NULL
1255 && strcmp (s->the_bfd_section->name, name) == 0);
1256 return (retval);
1257 }
1258 \f
1259
1260 /* Set section_map_dirty so section map will be rebuilt next time it
1261 is used. Called by reread_symbols. */
1262
1263 void
1264 objfiles_changed (void)
1265 {
1266 /* Rebuild section map next time we need it. */
1267 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1268 }
1269
1270 /* See comments in objfiles.h. */
1271
1272 scoped_restore_tmpl<int>
1273 inhibit_section_map_updates (struct program_space *pspace)
1274 {
1275 return scoped_restore_tmpl<int>
1276 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1277 }
1278
1279 /* See objfiles.h. */
1280
1281 bool
1282 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1283 {
1284 struct obj_section *osect;
1285
1286 if (objfile == NULL)
1287 return false;
1288
1289 ALL_OBJFILE_OSECTIONS (objfile, osect)
1290 {
1291 if (section_is_overlay (osect) && !section_is_mapped (osect))
1292 continue;
1293
1294 if (obj_section_addr (osect) <= addr
1295 && addr < obj_section_endaddr (osect))
1296 return true;
1297 }
1298 return false;
1299 }
1300
1301 /* See objfiles.h. */
1302
1303 bool
1304 shared_objfile_contains_address_p (struct program_space *pspace,
1305 CORE_ADDR address)
1306 {
1307 for (objfile *objfile : pspace->objfiles ())
1308 {
1309 if ((objfile->flags & OBJF_SHARED) != 0
1310 && is_addr_in_objfile (address, objfile))
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
1317 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1318 gdbarch method. It is equivalent to use the objfiles iterable,
1319 searching the objfiles in the order they are stored internally,
1320 ignoring CURRENT_OBJFILE.
1321
1322 On most platforms, it should be close enough to doing the best
1323 we can without some knowledge specific to the architecture. */
1324
1325 void
1326 default_iterate_over_objfiles_in_search_order
1327 (struct gdbarch *gdbarch,
1328 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1329 void *cb_data, struct objfile *current_objfile)
1330 {
1331 int stop = 0;
1332
1333 for (objfile *objfile : current_program_space->objfiles ())
1334 {
1335 stop = cb (objfile, cb_data);
1336 if (stop)
1337 return;
1338 }
1339 }
1340
1341 /* See objfiles.h. */
1342
1343 const char *
1344 objfile_name (const struct objfile *objfile)
1345 {
1346 if (objfile->obfd != NULL)
1347 return bfd_get_filename (objfile->obfd);
1348
1349 return objfile->original_name;
1350 }
1351
1352 /* See objfiles.h. */
1353
1354 const char *
1355 objfile_filename (const struct objfile *objfile)
1356 {
1357 if (objfile->obfd != NULL)
1358 return bfd_get_filename (objfile->obfd);
1359
1360 return NULL;
1361 }
1362
1363 /* See objfiles.h. */
1364
1365 const char *
1366 objfile_debug_name (const struct objfile *objfile)
1367 {
1368 return lbasename (objfile->original_name);
1369 }
1370
1371 /* See objfiles.h. */
1372
1373 const char *
1374 objfile_flavour_name (struct objfile *objfile)
1375 {
1376 if (objfile->obfd != NULL)
1377 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1378 return NULL;
1379 }
This page took 0.061565 seconds and 4 git commands to generate.