Record objfile->original_name as an absolute path
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include <string.h>
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56 #include "btrace.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = program_space_data (pspace, objfiles_pspace_data);
103 if (info == NULL)
104 {
105 info = XZALLOC (struct objfile_pspace_info);
106 set_program_space_data (pspace, objfiles_pspace_data, info);
107 }
108
109 return info;
110 }
111
112 \f
113
114 /* Per-BFD data key. */
115
116 static const struct bfd_data *objfiles_bfd_data;
117
118 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
119 NULL, and it already has a per-BFD storage object, use that.
120 Otherwise, allocate a new per-BFD storage object. If ABFD is not
121 NULL, the object is allocated on the BFD; otherwise it is allocated
122 on OBJFILE's obstack. Note that it is not safe to call this
123 multiple times for a given OBJFILE -- it can only be called when
124 allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = bfd_data (abfd, objfiles_bfd_data);
133
134 if (storage == NULL)
135 {
136 /* If the object requires gdb to do relocations, we simply fall
137 back to not sharing data across users. These cases are rare
138 enough that this seems reasonable. */
139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
140 {
141 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
142 set_bfd_data (abfd, objfiles_bfd_data, storage);
143 }
144 else
145 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
146 struct objfile_per_bfd_storage);
147
148 /* Look up the gdbarch associated with the BFD. */
149 if (abfd != NULL)
150 storage->gdbarch = gdbarch_from_bfd (abfd);
151
152 obstack_init (&storage->storage_obstack);
153 storage->filename_cache = bcache_xmalloc (NULL, NULL);
154 storage->macro_cache = bcache_xmalloc (NULL, NULL);
155 }
156
157 return storage;
158 }
159
160 /* Free STORAGE. */
161
162 static void
163 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
164 {
165 bcache_xfree (storage->filename_cache);
166 bcache_xfree (storage->macro_cache);
167 if (storage->demangled_names_hash)
168 htab_delete (storage->demangled_names_hash);
169 obstack_free (&storage->storage_obstack, 0);
170 }
171
172 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
173 cleanup function to the BFD registry. */
174
175 static void
176 objfile_bfd_data_free (struct bfd *unused, void *d)
177 {
178 free_objfile_per_bfd_storage (d);
179 }
180
181 /* See objfiles.h. */
182
183 void
184 set_objfile_per_bfd (struct objfile *objfile)
185 {
186 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
187 }
188
189 \f
190
191 /* Called via bfd_map_over_sections to build up the section table that
192 the objfile references. The objfile contains pointers to the start
193 of the table (objfile->sections) and to the first location after
194 the end of the table (objfile->sections_end). */
195
196 static void
197 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
198 struct objfile *objfile, int force)
199 {
200 struct obj_section *section;
201
202 if (!force)
203 {
204 flagword aflag;
205
206 aflag = bfd_get_section_flags (abfd, asect);
207 if (!(aflag & SEC_ALLOC))
208 return;
209 }
210
211 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
212 section->objfile = objfile;
213 section->the_bfd_section = asect;
214 section->ovly_mapped = 0;
215 }
216
217 static void
218 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
219 void *objfilep)
220 {
221 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
222 }
223
224 /* Builds a section table for OBJFILE.
225
226 Note that the OFFSET and OVLY_MAPPED in each table entry are
227 initialized to zero. */
228
229 void
230 build_objfile_section_table (struct objfile *objfile)
231 {
232 int count = gdb_bfd_count_sections (objfile->obfd);
233
234 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
235 count,
236 struct obj_section);
237 objfile->sections_end = (objfile->sections + count);
238 bfd_map_over_sections (objfile->obfd,
239 add_to_objfile_sections, (void *) objfile);
240
241 /* See gdb_bfd_section_index. */
242 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
243 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
244 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
245 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
246 }
247
248 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
249 allocate a new objfile struct, fill it in as best we can, link it
250 into the list of all known objfiles, and return a pointer to the
251 new objfile struct.
252
253 NAME should contain original non-canonicalized filename or other
254 identifier as entered by user. If there is no better source use
255 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
256 NAME content is copied into returned objfile.
257
258 The FLAGS word contains various bits (OBJF_*) that can be taken as
259 requests for specific operations. Other bits like OBJF_SHARED are
260 simply copied through to the new objfile flags member. */
261
262 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
263 by jv-lang.c, to create an artificial objfile used to hold
264 information about dynamically-loaded Java classes. Unfortunately,
265 that branch of this function doesn't get tested very frequently, so
266 it's prone to breakage. (E.g. at one time the name was set to NULL
267 in that situation, which broke a loop over all names in the dynamic
268 library loader.) If you change this function, please try to leave
269 things in a consistent state even if abfd is NULL. */
270
271 struct objfile *
272 allocate_objfile (bfd *abfd, const char *name, int flags)
273 {
274 struct objfile *objfile;
275 char *expanded_name;
276
277 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
278 objfile->psymbol_cache = psymbol_bcache_init ();
279 /* We could use obstack_specify_allocation here instead, but
280 gdb_obstack.h specifies the alloc/dealloc functions. */
281 obstack_init (&objfile->objfile_obstack);
282 terminate_minimal_symbol_table (objfile);
283
284 objfile_alloc_data (objfile);
285
286 if (name == NULL)
287 {
288 gdb_assert (abfd == NULL);
289 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
290 expanded_name = xstrdup ("<<anonymous objfile>>");
291 }
292 else if ((flags & OBJF_NOT_FILENAME) != 0)
293 expanded_name = xstrdup (name);
294 else
295 expanded_name = gdb_abspath (name);
296 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
297 expanded_name,
298 strlen (expanded_name));
299 xfree (expanded_name);
300
301 /* Update the per-objfile information that comes from the bfd, ensuring
302 that any data that is reference is saved in the per-objfile data
303 region. */
304
305 /* Update the per-objfile information that comes from the bfd, ensuring
306 that any data that is reference is saved in the per-objfile data
307 region. */
308
309 objfile->obfd = abfd;
310 gdb_bfd_ref (abfd);
311 if (abfd != NULL)
312 {
313 objfile->mtime = bfd_get_mtime (abfd);
314
315 /* Build section table. */
316 build_objfile_section_table (objfile);
317 }
318
319 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
320 objfile->pspace = current_program_space;
321
322 /* Initialize the section indexes for this objfile, so that we can
323 later detect if they are used w/o being properly assigned to. */
324
325 objfile->sect_index_text = -1;
326 objfile->sect_index_data = -1;
327 objfile->sect_index_bss = -1;
328 objfile->sect_index_rodata = -1;
329
330 /* Add this file onto the tail of the linked list of other such files. */
331
332 objfile->next = NULL;
333 if (object_files == NULL)
334 object_files = objfile;
335 else
336 {
337 struct objfile *last_one;
338
339 for (last_one = object_files;
340 last_one->next;
341 last_one = last_one->next);
342 last_one->next = objfile;
343 }
344
345 /* Save passed in flag bits. */
346 objfile->flags |= flags;
347
348 /* Rebuild section map next time we need it. */
349 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
350
351 return objfile;
352 }
353
354 /* Retrieve the gdbarch associated with OBJFILE. */
355 struct gdbarch *
356 get_objfile_arch (struct objfile *objfile)
357 {
358 return objfile->per_bfd->gdbarch;
359 }
360
361 /* If there is a valid and known entry point, function fills *ENTRY_P with it
362 and returns non-zero; otherwise it returns zero. */
363
364 int
365 entry_point_address_query (CORE_ADDR *entry_p)
366 {
367 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
368 return 0;
369
370 *entry_p = symfile_objfile->ei.entry_point;
371
372 return 1;
373 }
374
375 /* Get current entry point address. Call error if it is not known. */
376
377 CORE_ADDR
378 entry_point_address (void)
379 {
380 CORE_ADDR retval;
381
382 if (!entry_point_address_query (&retval))
383 error (_("Entry point address is not known."));
384
385 return retval;
386 }
387
388 /* Iterator on PARENT and every separate debug objfile of PARENT.
389 The usage pattern is:
390 for (objfile = parent;
391 objfile;
392 objfile = objfile_separate_debug_iterate (parent, objfile))
393 ...
394 */
395
396 struct objfile *
397 objfile_separate_debug_iterate (const struct objfile *parent,
398 const struct objfile *objfile)
399 {
400 struct objfile *res;
401
402 /* If any, return the first child. */
403 res = objfile->separate_debug_objfile;
404 if (res)
405 return res;
406
407 /* Common case where there is no separate debug objfile. */
408 if (objfile == parent)
409 return NULL;
410
411 /* Return the brother if any. Note that we don't iterate on brothers of
412 the parents. */
413 res = objfile->separate_debug_objfile_link;
414 if (res)
415 return res;
416
417 for (res = objfile->separate_debug_objfile_backlink;
418 res != parent;
419 res = res->separate_debug_objfile_backlink)
420 {
421 gdb_assert (res != NULL);
422 if (res->separate_debug_objfile_link)
423 return res->separate_debug_objfile_link;
424 }
425 return NULL;
426 }
427
428 /* Put one object file before a specified on in the global list.
429 This can be used to make sure an object file is destroyed before
430 another when using ALL_OBJFILES_SAFE to free all objfiles. */
431 void
432 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
433 {
434 struct objfile **objp;
435
436 unlink_objfile (objfile);
437
438 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
439 {
440 if (*objp == before_this)
441 {
442 objfile->next = *objp;
443 *objp = objfile;
444 return;
445 }
446 }
447
448 internal_error (__FILE__, __LINE__,
449 _("put_objfile_before: before objfile not in list"));
450 }
451
452 /* Put OBJFILE at the front of the list. */
453
454 void
455 objfile_to_front (struct objfile *objfile)
456 {
457 struct objfile **objp;
458 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
459 {
460 if (*objp == objfile)
461 {
462 /* Unhook it from where it is. */
463 *objp = objfile->next;
464 /* Put it in the front. */
465 objfile->next = object_files;
466 object_files = objfile;
467 break;
468 }
469 }
470 }
471
472 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
473 list.
474
475 It is not a bug, or error, to call this function if OBJFILE is not known
476 to be in the current list. This is done in the case of mapped objfiles,
477 for example, just to ensure that the mapped objfile doesn't appear twice
478 in the list. Since the list is threaded, linking in a mapped objfile
479 twice would create a circular list.
480
481 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
482 unlinking it, just to ensure that we have completely severed any linkages
483 between the OBJFILE and the list. */
484
485 void
486 unlink_objfile (struct objfile *objfile)
487 {
488 struct objfile **objpp;
489
490 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
491 {
492 if (*objpp == objfile)
493 {
494 *objpp = (*objpp)->next;
495 objfile->next = NULL;
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("unlink_objfile: objfile already unlinked"));
502 }
503
504 /* Add OBJFILE as a separate debug objfile of PARENT. */
505
506 void
507 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
508 {
509 gdb_assert (objfile && parent);
510
511 /* Must not be already in a list. */
512 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
513 gdb_assert (objfile->separate_debug_objfile_link == NULL);
514 gdb_assert (objfile->separate_debug_objfile == NULL);
515 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
516 gdb_assert (parent->separate_debug_objfile_link == NULL);
517
518 objfile->separate_debug_objfile_backlink = parent;
519 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
520 parent->separate_debug_objfile = objfile;
521
522 /* Put the separate debug object before the normal one, this is so that
523 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
524 put_objfile_before (objfile, parent);
525 }
526
527 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
528 itself. */
529
530 void
531 free_objfile_separate_debug (struct objfile *objfile)
532 {
533 struct objfile *child;
534
535 for (child = objfile->separate_debug_objfile; child;)
536 {
537 struct objfile *next_child = child->separate_debug_objfile_link;
538 free_objfile (child);
539 child = next_child;
540 }
541 }
542
543 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
544 that as much as possible is allocated on the objfile_obstack
545 so that the memory can be efficiently freed.
546
547 Things which we do NOT free because they are not in malloc'd memory
548 or not in memory specific to the objfile include:
549
550 objfile -> sf
551
552 FIXME: If the objfile is using reusable symbol information (via mmalloc),
553 then we need to take into account the fact that more than one process
554 may be using the symbol information at the same time (when mmalloc is
555 extended to support cooperative locking). When more than one process
556 is using the mapped symbol info, we need to be more careful about when
557 we free objects in the reusable area. */
558
559 void
560 free_objfile (struct objfile *objfile)
561 {
562 /* First notify observers that this objfile is about to be freed. */
563 observer_notify_free_objfile (objfile);
564
565 /* Free all separate debug objfiles. */
566 free_objfile_separate_debug (objfile);
567
568 if (objfile->separate_debug_objfile_backlink)
569 {
570 /* We freed the separate debug file, make sure the base objfile
571 doesn't reference it. */
572 struct objfile *child;
573
574 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
575
576 if (child == objfile)
577 {
578 /* OBJFILE is the first child. */
579 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
580 objfile->separate_debug_objfile_link;
581 }
582 else
583 {
584 /* Find OBJFILE in the list. */
585 while (1)
586 {
587 if (child->separate_debug_objfile_link == objfile)
588 {
589 child->separate_debug_objfile_link =
590 objfile->separate_debug_objfile_link;
591 break;
592 }
593 child = child->separate_debug_objfile_link;
594 gdb_assert (child);
595 }
596 }
597 }
598
599 /* Remove any references to this objfile in the global value
600 lists. */
601 preserve_values (objfile);
602
603 /* It still may reference data modules have associated with the objfile and
604 the symbol file data. */
605 forget_cached_source_info_for_objfile (objfile);
606
607 breakpoint_free_objfile (objfile);
608 btrace_free_objfile (objfile);
609
610 /* First do any symbol file specific actions required when we are
611 finished with a particular symbol file. Note that if the objfile
612 is using reusable symbol information (via mmalloc) then each of
613 these routines is responsible for doing the correct thing, either
614 freeing things which are valid only during this particular gdb
615 execution, or leaving them to be reused during the next one. */
616
617 if (objfile->sf != NULL)
618 {
619 (*objfile->sf->sym_finish) (objfile);
620 }
621
622 /* Discard any data modules have associated with the objfile. The function
623 still may reference objfile->obfd. */
624 objfile_free_data (objfile);
625
626 if (objfile->obfd)
627 gdb_bfd_unref (objfile->obfd);
628 else
629 free_objfile_per_bfd_storage (objfile->per_bfd);
630
631 /* Remove it from the chain of all objfiles. */
632
633 unlink_objfile (objfile);
634
635 if (objfile == symfile_objfile)
636 symfile_objfile = NULL;
637
638 /* Before the symbol table code was redone to make it easier to
639 selectively load and remove information particular to a specific
640 linkage unit, gdb used to do these things whenever the monolithic
641 symbol table was blown away. How much still needs to be done
642 is unknown, but we play it safe for now and keep each action until
643 it is shown to be no longer needed. */
644
645 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
646 for example), so we need to call this here. */
647 clear_pc_function_cache ();
648
649 /* Clear globals which might have pointed into a removed objfile.
650 FIXME: It's not clear which of these are supposed to persist
651 between expressions and which ought to be reset each time. */
652 expression_context_block = NULL;
653 innermost_block = NULL;
654
655 /* Check to see if the current_source_symtab belongs to this objfile,
656 and if so, call clear_current_source_symtab_and_line. */
657
658 {
659 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
660
661 if (cursal.symtab && cursal.symtab->objfile == objfile)
662 clear_current_source_symtab_and_line ();
663 }
664
665 if (objfile->global_psymbols.list)
666 xfree (objfile->global_psymbols.list);
667 if (objfile->static_psymbols.list)
668 xfree (objfile->static_psymbols.list);
669 /* Free the obstacks for non-reusable objfiles. */
670 psymbol_bcache_free (objfile->psymbol_cache);
671 obstack_free (&objfile->objfile_obstack, 0);
672
673 /* Rebuild section map next time we need it. */
674 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
675
676 /* The last thing we do is free the objfile struct itself. */
677 xfree (objfile);
678 }
679
680 static void
681 do_free_objfile_cleanup (void *obj)
682 {
683 free_objfile (obj);
684 }
685
686 struct cleanup *
687 make_cleanup_free_objfile (struct objfile *obj)
688 {
689 return make_cleanup (do_free_objfile_cleanup, obj);
690 }
691
692 /* Free all the object files at once and clean up their users. */
693
694 void
695 free_all_objfiles (void)
696 {
697 struct objfile *objfile, *temp;
698 struct so_list *so;
699
700 /* Any objfile referencewould become stale. */
701 for (so = master_so_list (); so; so = so->next)
702 gdb_assert (so->objfile == NULL);
703
704 ALL_OBJFILES_SAFE (objfile, temp)
705 {
706 free_objfile (objfile);
707 }
708 clear_symtab_users (0);
709 }
710 \f
711 /* A helper function for objfile_relocate1 that relocates a single
712 symbol. */
713
714 static void
715 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
716 struct section_offsets *delta)
717 {
718 fixup_symbol_section (sym, objfile);
719
720 /* The RS6000 code from which this was taken skipped
721 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
722 But I'm leaving out that test, on the theory that
723 they can't possibly pass the tests below. */
724 if ((SYMBOL_CLASS (sym) == LOC_LABEL
725 || SYMBOL_CLASS (sym) == LOC_STATIC)
726 && SYMBOL_SECTION (sym) >= 0)
727 {
728 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
729 }
730 }
731
732 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
733 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
734 Return non-zero iff any change happened. */
735
736 static int
737 objfile_relocate1 (struct objfile *objfile,
738 const struct section_offsets *new_offsets)
739 {
740 struct obj_section *s;
741 struct section_offsets *delta =
742 ((struct section_offsets *)
743 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
744
745 int i;
746 int something_changed = 0;
747
748 for (i = 0; i < objfile->num_sections; ++i)
749 {
750 delta->offsets[i] =
751 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
752 if (ANOFFSET (delta, i) != 0)
753 something_changed = 1;
754 }
755 if (!something_changed)
756 return 0;
757
758 /* OK, get all the symtabs. */
759 {
760 struct symtab *s;
761
762 ALL_OBJFILE_SYMTABS (objfile, s)
763 {
764 struct linetable *l;
765 struct blockvector *bv;
766 int i;
767
768 /* First the line table. */
769 l = LINETABLE (s);
770 if (l)
771 {
772 for (i = 0; i < l->nitems; ++i)
773 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
774 }
775
776 /* Don't relocate a shared blockvector more than once. */
777 if (!s->primary)
778 continue;
779
780 bv = BLOCKVECTOR (s);
781 if (BLOCKVECTOR_MAP (bv))
782 addrmap_relocate (BLOCKVECTOR_MAP (bv),
783 ANOFFSET (delta, s->block_line_section));
784
785 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
786 {
787 struct block *b;
788 struct symbol *sym;
789 struct dict_iterator iter;
790
791 b = BLOCKVECTOR_BLOCK (bv, i);
792 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
793 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
794
795 /* We only want to iterate over the local symbols, not any
796 symbols in included symtabs. */
797 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
798 {
799 relocate_one_symbol (sym, objfile, delta);
800 }
801 }
802 }
803 }
804
805 /* Relocate isolated symbols. */
806 {
807 struct symbol *iter;
808
809 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
810 relocate_one_symbol (iter, objfile, delta);
811 }
812
813 if (objfile->psymtabs_addrmap)
814 addrmap_relocate (objfile->psymtabs_addrmap,
815 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
816
817 if (objfile->sf)
818 objfile->sf->qf->relocate (objfile, new_offsets, delta);
819
820 {
821 struct minimal_symbol *msym;
822
823 ALL_OBJFILE_MSYMBOLS (objfile, msym)
824 if (SYMBOL_SECTION (msym) >= 0)
825 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
826 }
827 /* Relocating different sections by different amounts may cause the symbols
828 to be out of order. */
829 msymbols_sort (objfile);
830
831 if (objfile->ei.entry_point_p)
832 {
833 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
834 only as a fallback. */
835 struct obj_section *s;
836 s = find_pc_section (objfile->ei.entry_point);
837 if (s)
838 {
839 int idx = gdb_bfd_section_index (objfile->obfd, s->the_bfd_section);
840
841 objfile->ei.entry_point += ANOFFSET (delta, idx);
842 }
843 else
844 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
845 }
846
847 {
848 int i;
849
850 for (i = 0; i < objfile->num_sections; ++i)
851 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
852 }
853
854 /* Rebuild section map next time we need it. */
855 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
856
857 /* Update the table in exec_ops, used to read memory. */
858 ALL_OBJFILE_OSECTIONS (objfile, s)
859 {
860 int idx = s - objfile->sections;
861
862 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
863 obj_section_addr (s));
864 }
865
866 /* Relocating probes. */
867 if (objfile->sf && objfile->sf->sym_probe_fns)
868 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
869 new_offsets, delta);
870
871 /* Data changed. */
872 return 1;
873 }
874
875 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
876 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
877
878 The number and ordering of sections does differ between the two objfiles.
879 Only their names match. Also the file offsets will differ (objfile being
880 possibly prelinked but separate_debug_objfile is probably not prelinked) but
881 the in-memory absolute address as specified by NEW_OFFSETS must match both
882 files. */
883
884 void
885 objfile_relocate (struct objfile *objfile,
886 const struct section_offsets *new_offsets)
887 {
888 struct objfile *debug_objfile;
889 int changed = 0;
890
891 changed |= objfile_relocate1 (objfile, new_offsets);
892
893 for (debug_objfile = objfile->separate_debug_objfile;
894 debug_objfile;
895 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
896 {
897 struct section_addr_info *objfile_addrs;
898 struct section_offsets *new_debug_offsets;
899 struct cleanup *my_cleanups;
900
901 objfile_addrs = build_section_addr_info_from_objfile (objfile);
902 my_cleanups = make_cleanup (xfree, objfile_addrs);
903
904 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
905 relative ones must be already created according to debug_objfile. */
906
907 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
908
909 gdb_assert (debug_objfile->num_sections
910 == gdb_bfd_count_sections (debug_objfile->obfd));
911 new_debug_offsets =
912 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
913 make_cleanup (xfree, new_debug_offsets);
914 relative_addr_info_to_section_offsets (new_debug_offsets,
915 debug_objfile->num_sections,
916 objfile_addrs);
917
918 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
919
920 do_cleanups (my_cleanups);
921 }
922
923 /* Relocate breakpoints as necessary, after things are relocated. */
924 if (changed)
925 breakpoint_re_set ();
926 }
927
928 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
929 not touched here.
930 Return non-zero iff any change happened. */
931
932 static int
933 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
934 {
935 struct section_offsets *new_offsets =
936 ((struct section_offsets *)
937 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
938 int i;
939
940 for (i = 0; i < objfile->num_sections; ++i)
941 new_offsets->offsets[i] = slide;
942
943 return objfile_relocate1 (objfile, new_offsets);
944 }
945
946 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
947 SEPARATE_DEBUG_OBJFILEs. */
948
949 void
950 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
951 {
952 struct objfile *debug_objfile;
953 int changed = 0;
954
955 changed |= objfile_rebase1 (objfile, slide);
956
957 for (debug_objfile = objfile->separate_debug_objfile;
958 debug_objfile;
959 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
960 changed |= objfile_rebase1 (debug_objfile, slide);
961
962 /* Relocate breakpoints as necessary, after things are relocated. */
963 if (changed)
964 breakpoint_re_set ();
965 }
966 \f
967 /* Return non-zero if OBJFILE has partial symbols. */
968
969 int
970 objfile_has_partial_symbols (struct objfile *objfile)
971 {
972 if (!objfile->sf)
973 return 0;
974
975 /* If we have not read psymbols, but we have a function capable of reading
976 them, then that is an indication that they are in fact available. Without
977 this function the symbols may have been already read in but they also may
978 not be present in this objfile. */
979 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
980 && objfile->sf->sym_read_psymbols != NULL)
981 return 1;
982
983 return objfile->sf->qf->has_symbols (objfile);
984 }
985
986 /* Return non-zero if OBJFILE has full symbols. */
987
988 int
989 objfile_has_full_symbols (struct objfile *objfile)
990 {
991 return objfile->symtabs != NULL;
992 }
993
994 /* Return non-zero if OBJFILE has full or partial symbols, either directly
995 or through a separate debug file. */
996
997 int
998 objfile_has_symbols (struct objfile *objfile)
999 {
1000 struct objfile *o;
1001
1002 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1003 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1004 return 1;
1005 return 0;
1006 }
1007
1008
1009 /* Many places in gdb want to test just to see if we have any partial
1010 symbols available. This function returns zero if none are currently
1011 available, nonzero otherwise. */
1012
1013 int
1014 have_partial_symbols (void)
1015 {
1016 struct objfile *ofp;
1017
1018 ALL_OBJFILES (ofp)
1019 {
1020 if (objfile_has_partial_symbols (ofp))
1021 return 1;
1022 }
1023 return 0;
1024 }
1025
1026 /* Many places in gdb want to test just to see if we have any full
1027 symbols available. This function returns zero if none are currently
1028 available, nonzero otherwise. */
1029
1030 int
1031 have_full_symbols (void)
1032 {
1033 struct objfile *ofp;
1034
1035 ALL_OBJFILES (ofp)
1036 {
1037 if (objfile_has_full_symbols (ofp))
1038 return 1;
1039 }
1040 return 0;
1041 }
1042
1043
1044 /* This operations deletes all objfile entries that represent solibs that
1045 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1046 command. */
1047
1048 void
1049 objfile_purge_solibs (void)
1050 {
1051 struct objfile *objf;
1052 struct objfile *temp;
1053
1054 ALL_OBJFILES_SAFE (objf, temp)
1055 {
1056 /* We assume that the solib package has been purged already, or will
1057 be soon. */
1058
1059 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1060 free_objfile (objf);
1061 }
1062 }
1063
1064
1065 /* Many places in gdb want to test just to see if we have any minimal
1066 symbols available. This function returns zero if none are currently
1067 available, nonzero otherwise. */
1068
1069 int
1070 have_minimal_symbols (void)
1071 {
1072 struct objfile *ofp;
1073
1074 ALL_OBJFILES (ofp)
1075 {
1076 if (ofp->minimal_symbol_count > 0)
1077 {
1078 return 1;
1079 }
1080 }
1081 return 0;
1082 }
1083
1084 /* Qsort comparison function. */
1085
1086 static int
1087 qsort_cmp (const void *a, const void *b)
1088 {
1089 const struct obj_section *sect1 = *(const struct obj_section **) a;
1090 const struct obj_section *sect2 = *(const struct obj_section **) b;
1091 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1092 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1093
1094 if (sect1_addr < sect2_addr)
1095 return -1;
1096 else if (sect1_addr > sect2_addr)
1097 return 1;
1098 else
1099 {
1100 /* Sections are at the same address. This could happen if
1101 A) we have an objfile and a separate debuginfo.
1102 B) we are confused, and have added sections without proper relocation,
1103 or something like that. */
1104
1105 const struct objfile *const objfile1 = sect1->objfile;
1106 const struct objfile *const objfile2 = sect2->objfile;
1107
1108 if (objfile1->separate_debug_objfile == objfile2
1109 || objfile2->separate_debug_objfile == objfile1)
1110 {
1111 /* Case A. The ordering doesn't matter: separate debuginfo files
1112 will be filtered out later. */
1113
1114 return 0;
1115 }
1116
1117 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1118 triage. This section could be slow (since we iterate over all
1119 objfiles in each call to qsort_cmp), but this shouldn't happen
1120 very often (GDB is already in a confused state; one hopes this
1121 doesn't happen at all). If you discover that significant time is
1122 spent in the loops below, do 'set complaints 100' and examine the
1123 resulting complaints. */
1124
1125 if (objfile1 == objfile2)
1126 {
1127 /* Both sections came from the same objfile. We are really confused.
1128 Sort on sequence order of sections within the objfile. */
1129
1130 const struct obj_section *osect;
1131
1132 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1133 if (osect == sect1)
1134 return -1;
1135 else if (osect == sect2)
1136 return 1;
1137
1138 /* We should have found one of the sections before getting here. */
1139 gdb_assert_not_reached ("section not found");
1140 }
1141 else
1142 {
1143 /* Sort on sequence number of the objfile in the chain. */
1144
1145 const struct objfile *objfile;
1146
1147 ALL_OBJFILES (objfile)
1148 if (objfile == objfile1)
1149 return -1;
1150 else if (objfile == objfile2)
1151 return 1;
1152
1153 /* We should have found one of the objfiles before getting here. */
1154 gdb_assert_not_reached ("objfile not found");
1155 }
1156 }
1157
1158 /* Unreachable. */
1159 gdb_assert_not_reached ("unexpected code path");
1160 return 0;
1161 }
1162
1163 /* Select "better" obj_section to keep. We prefer the one that came from
1164 the real object, rather than the one from separate debuginfo.
1165 Most of the time the two sections are exactly identical, but with
1166 prelinking the .rel.dyn section in the real object may have different
1167 size. */
1168
1169 static struct obj_section *
1170 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1171 {
1172 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1173 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1174 || (b->objfile->separate_debug_objfile == a->objfile));
1175 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1176 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1177
1178 if (a->objfile->separate_debug_objfile != NULL)
1179 return a;
1180 return b;
1181 }
1182
1183 /* Return 1 if SECTION should be inserted into the section map.
1184 We want to insert only non-overlay and non-TLS section. */
1185
1186 static int
1187 insert_section_p (const struct bfd *abfd,
1188 const struct bfd_section *section)
1189 {
1190 const bfd_vma lma = bfd_section_lma (abfd, section);
1191
1192 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1193 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1194 /* This is an overlay section. IN_MEMORY check is needed to avoid
1195 discarding sections from the "system supplied DSO" (aka vdso)
1196 on some Linux systems (e.g. Fedora 11). */
1197 return 0;
1198 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1199 /* This is a TLS section. */
1200 return 0;
1201
1202 return 1;
1203 }
1204
1205 /* Filter out overlapping sections where one section came from the real
1206 objfile, and the other from a separate debuginfo file.
1207 Return the size of table after redundant sections have been eliminated. */
1208
1209 static int
1210 filter_debuginfo_sections (struct obj_section **map, int map_size)
1211 {
1212 int i, j;
1213
1214 for (i = 0, j = 0; i < map_size - 1; i++)
1215 {
1216 struct obj_section *const sect1 = map[i];
1217 struct obj_section *const sect2 = map[i + 1];
1218 const struct objfile *const objfile1 = sect1->objfile;
1219 const struct objfile *const objfile2 = sect2->objfile;
1220 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1221 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1222
1223 if (sect1_addr == sect2_addr
1224 && (objfile1->separate_debug_objfile == objfile2
1225 || objfile2->separate_debug_objfile == objfile1))
1226 {
1227 map[j++] = preferred_obj_section (sect1, sect2);
1228 ++i;
1229 }
1230 else
1231 map[j++] = sect1;
1232 }
1233
1234 if (i < map_size)
1235 {
1236 gdb_assert (i == map_size - 1);
1237 map[j++] = map[i];
1238 }
1239
1240 /* The map should not have shrunk to less than half the original size. */
1241 gdb_assert (map_size / 2 <= j);
1242
1243 return j;
1244 }
1245
1246 /* Filter out overlapping sections, issuing a warning if any are found.
1247 Overlapping sections could really be overlay sections which we didn't
1248 classify as such in insert_section_p, or we could be dealing with a
1249 corrupt binary. */
1250
1251 static int
1252 filter_overlapping_sections (struct obj_section **map, int map_size)
1253 {
1254 int i, j;
1255
1256 for (i = 0, j = 0; i < map_size - 1; )
1257 {
1258 int k;
1259
1260 map[j++] = map[i];
1261 for (k = i + 1; k < map_size; k++)
1262 {
1263 struct obj_section *const sect1 = map[i];
1264 struct obj_section *const sect2 = map[k];
1265 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1266 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1267 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1268
1269 gdb_assert (sect1_addr <= sect2_addr);
1270
1271 if (sect1_endaddr <= sect2_addr)
1272 break;
1273 else
1274 {
1275 /* We have an overlap. Report it. */
1276
1277 struct objfile *const objf1 = sect1->objfile;
1278 struct objfile *const objf2 = sect2->objfile;
1279
1280 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1281 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1282
1283 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1284
1285 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1286
1287 complaint (&symfile_complaints,
1288 _("unexpected overlap between:\n"
1289 " (A) section `%s' from `%s' [%s, %s)\n"
1290 " (B) section `%s' from `%s' [%s, %s).\n"
1291 "Will ignore section B"),
1292 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1293 paddress (gdbarch, sect1_addr),
1294 paddress (gdbarch, sect1_endaddr),
1295 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1296 paddress (gdbarch, sect2_addr),
1297 paddress (gdbarch, sect2_endaddr));
1298 }
1299 }
1300 i = k;
1301 }
1302
1303 if (i < map_size)
1304 {
1305 gdb_assert (i == map_size - 1);
1306 map[j++] = map[i];
1307 }
1308
1309 return j;
1310 }
1311
1312
1313 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1314 TLS, overlay and overlapping sections. */
1315
1316 static void
1317 update_section_map (struct program_space *pspace,
1318 struct obj_section ***pmap, int *pmap_size)
1319 {
1320 struct objfile_pspace_info *pspace_info;
1321 int alloc_size, map_size, i;
1322 struct obj_section *s, **map;
1323 struct objfile *objfile;
1324
1325 pspace_info = get_objfile_pspace_data (pspace);
1326 gdb_assert (pspace_info->section_map_dirty != 0
1327 || pspace_info->new_objfiles_available != 0);
1328
1329 map = *pmap;
1330 xfree (map);
1331
1332 alloc_size = 0;
1333 ALL_PSPACE_OBJFILES (pspace, objfile)
1334 ALL_OBJFILE_OSECTIONS (objfile, s)
1335 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1336 alloc_size += 1;
1337
1338 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1339 if (alloc_size == 0)
1340 {
1341 *pmap = NULL;
1342 *pmap_size = 0;
1343 return;
1344 }
1345
1346 map = xmalloc (alloc_size * sizeof (*map));
1347
1348 i = 0;
1349 ALL_PSPACE_OBJFILES (pspace, objfile)
1350 ALL_OBJFILE_OSECTIONS (objfile, s)
1351 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1352 map[i++] = s;
1353
1354 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1355 map_size = filter_debuginfo_sections(map, alloc_size);
1356 map_size = filter_overlapping_sections(map, map_size);
1357
1358 if (map_size < alloc_size)
1359 /* Some sections were eliminated. Trim excess space. */
1360 map = xrealloc (map, map_size * sizeof (*map));
1361 else
1362 gdb_assert (alloc_size == map_size);
1363
1364 *pmap = map;
1365 *pmap_size = map_size;
1366 }
1367
1368 /* Bsearch comparison function. */
1369
1370 static int
1371 bsearch_cmp (const void *key, const void *elt)
1372 {
1373 const CORE_ADDR pc = *(CORE_ADDR *) key;
1374 const struct obj_section *section = *(const struct obj_section **) elt;
1375
1376 if (pc < obj_section_addr (section))
1377 return -1;
1378 if (pc < obj_section_endaddr (section))
1379 return 0;
1380 return 1;
1381 }
1382
1383 /* Returns a section whose range includes PC or NULL if none found. */
1384
1385 struct obj_section *
1386 find_pc_section (CORE_ADDR pc)
1387 {
1388 struct objfile_pspace_info *pspace_info;
1389 struct obj_section *s, **sp;
1390
1391 /* Check for mapped overlay section first. */
1392 s = find_pc_mapped_section (pc);
1393 if (s)
1394 return s;
1395
1396 pspace_info = get_objfile_pspace_data (current_program_space);
1397 if (pspace_info->section_map_dirty
1398 || (pspace_info->new_objfiles_available
1399 && !pspace_info->inhibit_updates))
1400 {
1401 update_section_map (current_program_space,
1402 &pspace_info->sections,
1403 &pspace_info->num_sections);
1404
1405 /* Don't need updates to section map until objfiles are added,
1406 removed or relocated. */
1407 pspace_info->new_objfiles_available = 0;
1408 pspace_info->section_map_dirty = 0;
1409 }
1410
1411 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1412 bsearch be non-NULL. */
1413 if (pspace_info->sections == NULL)
1414 {
1415 gdb_assert (pspace_info->num_sections == 0);
1416 return NULL;
1417 }
1418
1419 sp = (struct obj_section **) bsearch (&pc,
1420 pspace_info->sections,
1421 pspace_info->num_sections,
1422 sizeof (*pspace_info->sections),
1423 bsearch_cmp);
1424 if (sp != NULL)
1425 return *sp;
1426 return NULL;
1427 }
1428
1429
1430 /* Return non-zero if PC is in a section called NAME. */
1431
1432 int
1433 pc_in_section (CORE_ADDR pc, char *name)
1434 {
1435 struct obj_section *s;
1436 int retval = 0;
1437
1438 s = find_pc_section (pc);
1439
1440 retval = (s != NULL
1441 && s->the_bfd_section->name != NULL
1442 && strcmp (s->the_bfd_section->name, name) == 0);
1443 return (retval);
1444 }
1445 \f
1446
1447 /* Set section_map_dirty so section map will be rebuilt next time it
1448 is used. Called by reread_symbols. */
1449
1450 void
1451 objfiles_changed (void)
1452 {
1453 /* Rebuild section map next time we need it. */
1454 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1455 }
1456
1457 /* See comments in objfiles.h. */
1458
1459 void
1460 inhibit_section_map_updates (struct program_space *pspace)
1461 {
1462 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1463 }
1464
1465 /* See comments in objfiles.h. */
1466
1467 void
1468 resume_section_map_updates (struct program_space *pspace)
1469 {
1470 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1471 }
1472
1473 /* See comments in objfiles.h. */
1474
1475 void
1476 resume_section_map_updates_cleanup (void *arg)
1477 {
1478 resume_section_map_updates (arg);
1479 }
1480
1481 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1482 otherwise. */
1483
1484 int
1485 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1486 {
1487 struct obj_section *osect;
1488
1489 if (objfile == NULL)
1490 return 0;
1491
1492 ALL_OBJFILE_OSECTIONS (objfile, osect)
1493 {
1494 if (section_is_overlay (osect) && !section_is_mapped (osect))
1495 continue;
1496
1497 if (obj_section_addr (osect) <= addr
1498 && addr < obj_section_endaddr (osect))
1499 return 1;
1500 }
1501 return 0;
1502 }
1503
1504 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1505 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1506 searching the objfiles in the order they are stored internally,
1507 ignoring CURRENT_OBJFILE.
1508
1509 On most platorms, it should be close enough to doing the best
1510 we can without some knowledge specific to the architecture. */
1511
1512 void
1513 default_iterate_over_objfiles_in_search_order
1514 (struct gdbarch *gdbarch,
1515 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1516 void *cb_data, struct objfile *current_objfile)
1517 {
1518 int stop = 0;
1519 struct objfile *objfile;
1520
1521 ALL_OBJFILES (objfile)
1522 {
1523 stop = cb (objfile, cb_data);
1524 if (stop)
1525 return;
1526 }
1527 }
1528
1529 /* Return canonical name for OBJFILE. */
1530
1531 const char *
1532 objfile_name (const struct objfile *objfile)
1533 {
1534 if (objfile->obfd != NULL)
1535 return bfd_get_filename (objfile->obfd);
1536
1537 return objfile->original_name;
1538 }
1539
1540 /* Provide a prototype to silence -Wmissing-prototypes. */
1541 extern initialize_file_ftype _initialize_objfiles;
1542
1543 void
1544 _initialize_objfiles (void)
1545 {
1546 objfiles_pspace_data
1547 = register_program_space_data_with_cleanup (NULL,
1548 objfiles_pspace_data_cleanup);
1549
1550 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1551 objfile_bfd_data_free);
1552 }
This page took 0.087867 seconds and 5 git commands to generate.