* symmisc.c (print_symbol_bcache_statistics): Print filename cache
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile;
198
199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
202 objfile->filename_cache = bcache_xmalloc ();
203 /* We could use obstack_specify_allocation here instead, but
204 gdb_obstack.h specifies the alloc/dealloc functions. */
205 obstack_init (&objfile->objfile_obstack);
206 terminate_minimal_symbol_table (objfile);
207
208 objfile_alloc_data (objfile);
209
210 /* Update the per-objfile information that comes from the bfd, ensuring
211 that any data that is reference is saved in the per-objfile data
212 region. */
213
214 objfile->obfd = gdb_bfd_ref (abfd);
215 if (objfile->name != NULL)
216 {
217 xfree (objfile->name);
218 }
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
253
254 /* Add this file onto the tail of the linked list of other such files. */
255
256 objfile->next = NULL;
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
261 struct objfile *last_one;
262
263 for (last_one = object_files;
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
267 }
268
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
271
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
274
275 return objfile;
276 }
277
278 /* Retrieve the gdbarch associated with OBJFILE. */
279 struct gdbarch *
280 get_objfile_arch (struct objfile *objfile)
281 {
282 return objfile->gdbarch;
283 }
284
285 /* Initialize entry point information for this objfile. */
286
287 void
288 init_entry_point_info (struct objfile *objfile)
289 {
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
298 objfile->ei.entry_point_p = 1;
299 }
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
312 objfile->ei.entry_point_p = 0;
313 }
314 }
315
316 /* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
318
319 int
320 entry_point_address_query (CORE_ADDR *entry_p)
321 {
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
341 *entry_p = entry_point;
342 return 1;
343 }
344
345 /* Get current entry point address. Call error if it is not known. */
346
347 CORE_ADDR
348 entry_point_address (void)
349 {
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
356 }
357
358 /* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->objfile_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362 void
363 terminate_minimal_symbol_table (struct objfile *objfile)
364 {
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->objfile_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
377 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
378 }
379 }
380
381
382 /* Put one object file before a specified on in the global list.
383 This can be used to make sure an object file is destroyed before
384 another when using ALL_OBJFILES_SAFE to free all objfiles. */
385 void
386 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
387 {
388 struct objfile **objp;
389
390 unlink_objfile (objfile);
391
392 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
393 {
394 if (*objp == before_this)
395 {
396 objfile->next = *objp;
397 *objp = objfile;
398 return;
399 }
400 }
401
402 internal_error (__FILE__, __LINE__,
403 _("put_objfile_before: before objfile not in list"));
404 }
405
406 /* Put OBJFILE at the front of the list. */
407
408 void
409 objfile_to_front (struct objfile *objfile)
410 {
411 struct objfile **objp;
412 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
413 {
414 if (*objp == objfile)
415 {
416 /* Unhook it from where it is. */
417 *objp = objfile->next;
418 /* Put it in the front. */
419 objfile->next = object_files;
420 object_files = objfile;
421 break;
422 }
423 }
424 }
425
426 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
427 list.
428
429 It is not a bug, or error, to call this function if OBJFILE is not known
430 to be in the current list. This is done in the case of mapped objfiles,
431 for example, just to ensure that the mapped objfile doesn't appear twice
432 in the list. Since the list is threaded, linking in a mapped objfile
433 twice would create a circular list.
434
435 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
436 unlinking it, just to ensure that we have completely severed any linkages
437 between the OBJFILE and the list. */
438
439 void
440 unlink_objfile (struct objfile *objfile)
441 {
442 struct objfile **objpp;
443
444 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
445 {
446 if (*objpp == objfile)
447 {
448 *objpp = (*objpp)->next;
449 objfile->next = NULL;
450 return;
451 }
452 }
453
454 internal_error (__FILE__, __LINE__,
455 _("unlink_objfile: objfile already unlinked"));
456 }
457
458
459 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
460 that as much as possible is allocated on the objfile_obstack
461 so that the memory can be efficiently freed.
462
463 Things which we do NOT free because they are not in malloc'd memory
464 or not in memory specific to the objfile include:
465
466 objfile -> sf
467
468 FIXME: If the objfile is using reusable symbol information (via mmalloc),
469 then we need to take into account the fact that more than one process
470 may be using the symbol information at the same time (when mmalloc is
471 extended to support cooperative locking). When more than one process
472 is using the mapped symbol info, we need to be more careful about when
473 we free objects in the reusable area. */
474
475 void
476 free_objfile (struct objfile *objfile)
477 {
478 if (objfile->separate_debug_objfile)
479 {
480 free_objfile (objfile->separate_debug_objfile);
481 }
482
483 if (objfile->separate_debug_objfile_backlink)
484 {
485 /* We freed the separate debug file, make sure the base objfile
486 doesn't reference it. */
487 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
488 }
489
490 /* Remove any references to this objfile in the global value
491 lists. */
492 preserve_values (objfile);
493
494 /* First do any symbol file specific actions required when we are
495 finished with a particular symbol file. Note that if the objfile
496 is using reusable symbol information (via mmalloc) then each of
497 these routines is responsible for doing the correct thing, either
498 freeing things which are valid only during this particular gdb
499 execution, or leaving them to be reused during the next one. */
500
501 if (objfile->sf != NULL)
502 {
503 (*objfile->sf->sym_finish) (objfile);
504 }
505
506 /* Discard any data modules have associated with the objfile. */
507 objfile_free_data (objfile);
508
509 gdb_bfd_unref (objfile->obfd);
510
511 /* Remove it from the chain of all objfiles. */
512
513 unlink_objfile (objfile);
514
515 if (objfile == symfile_objfile)
516 symfile_objfile = NULL;
517
518 if (objfile == rt_common_objfile)
519 rt_common_objfile = NULL;
520
521 /* Before the symbol table code was redone to make it easier to
522 selectively load and remove information particular to a specific
523 linkage unit, gdb used to do these things whenever the monolithic
524 symbol table was blown away. How much still needs to be done
525 is unknown, but we play it safe for now and keep each action until
526 it is shown to be no longer needed. */
527
528 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
529 for example), so we need to call this here. */
530 clear_pc_function_cache ();
531
532 /* Clear globals which might have pointed into a removed objfile.
533 FIXME: It's not clear which of these are supposed to persist
534 between expressions and which ought to be reset each time. */
535 expression_context_block = NULL;
536 innermost_block = NULL;
537
538 /* Check to see if the current_source_symtab belongs to this objfile,
539 and if so, call clear_current_source_symtab_and_line. */
540
541 {
542 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
543 struct symtab *s;
544
545 ALL_OBJFILE_SYMTABS (objfile, s)
546 {
547 if (s == cursal.symtab)
548 clear_current_source_symtab_and_line ();
549 }
550 }
551
552 /* The last thing we do is free the objfile struct itself. */
553
554 if (objfile->name != NULL)
555 {
556 xfree (objfile->name);
557 }
558 if (objfile->global_psymbols.list)
559 xfree (objfile->global_psymbols.list);
560 if (objfile->static_psymbols.list)
561 xfree (objfile->static_psymbols.list);
562 /* Free the obstacks for non-reusable objfiles */
563 bcache_xfree (objfile->psymbol_cache);
564 bcache_xfree (objfile->macro_cache);
565 bcache_xfree (objfile->filename_cache);
566 if (objfile->demangled_names_hash)
567 htab_delete (objfile->demangled_names_hash);
568 obstack_free (&objfile->objfile_obstack, 0);
569
570 /* Rebuild section map next time we need it. */
571 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
572
573 xfree (objfile);
574 }
575
576 static void
577 do_free_objfile_cleanup (void *obj)
578 {
579 free_objfile (obj);
580 }
581
582 struct cleanup *
583 make_cleanup_free_objfile (struct objfile *obj)
584 {
585 return make_cleanup (do_free_objfile_cleanup, obj);
586 }
587
588 /* Free all the object files at once and clean up their users. */
589
590 void
591 free_all_objfiles (void)
592 {
593 struct objfile *objfile, *temp;
594
595 ALL_OBJFILES_SAFE (objfile, temp)
596 {
597 free_objfile (objfile);
598 }
599 clear_symtab_users ();
600 }
601 \f
602 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
603 entries in new_offsets. */
604 void
605 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
606 {
607 struct obj_section *s;
608 struct section_offsets *delta =
609 ((struct section_offsets *)
610 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
611
612 {
613 int i;
614 int something_changed = 0;
615 for (i = 0; i < objfile->num_sections; ++i)
616 {
617 delta->offsets[i] =
618 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
619 if (ANOFFSET (delta, i) != 0)
620 something_changed = 1;
621 }
622 if (!something_changed)
623 return;
624 }
625
626 /* OK, get all the symtabs. */
627 {
628 struct symtab *s;
629
630 ALL_OBJFILE_SYMTABS (objfile, s)
631 {
632 struct linetable *l;
633 struct blockvector *bv;
634 int i;
635
636 /* First the line table. */
637 l = LINETABLE (s);
638 if (l)
639 {
640 for (i = 0; i < l->nitems; ++i)
641 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
642 }
643
644 /* Don't relocate a shared blockvector more than once. */
645 if (!s->primary)
646 continue;
647
648 bv = BLOCKVECTOR (s);
649 if (BLOCKVECTOR_MAP (bv))
650 addrmap_relocate (BLOCKVECTOR_MAP (bv),
651 ANOFFSET (delta, s->block_line_section));
652
653 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
654 {
655 struct block *b;
656 struct symbol *sym;
657 struct dict_iterator iter;
658
659 b = BLOCKVECTOR_BLOCK (bv, i);
660 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
661 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
662
663 ALL_BLOCK_SYMBOLS (b, iter, sym)
664 {
665 fixup_symbol_section (sym, objfile);
666
667 /* The RS6000 code from which this was taken skipped
668 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
669 But I'm leaving out that test, on the theory that
670 they can't possibly pass the tests below. */
671 if ((SYMBOL_CLASS (sym) == LOC_LABEL
672 || SYMBOL_CLASS (sym) == LOC_STATIC)
673 && SYMBOL_SECTION (sym) >= 0)
674 {
675 SYMBOL_VALUE_ADDRESS (sym) +=
676 ANOFFSET (delta, SYMBOL_SECTION (sym));
677 }
678 }
679 }
680 }
681 }
682
683 {
684 struct partial_symtab *p;
685
686 ALL_OBJFILE_PSYMTABS (objfile, p)
687 {
688 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
689 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
690 }
691 }
692
693 {
694 struct partial_symbol **psym;
695
696 for (psym = objfile->global_psymbols.list;
697 psym < objfile->global_psymbols.next;
698 psym++)
699 {
700 fixup_psymbol_section (*psym, objfile);
701 if (SYMBOL_SECTION (*psym) >= 0)
702 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
703 SYMBOL_SECTION (*psym));
704 }
705 for (psym = objfile->static_psymbols.list;
706 psym < objfile->static_psymbols.next;
707 psym++)
708 {
709 fixup_psymbol_section (*psym, objfile);
710 if (SYMBOL_SECTION (*psym) >= 0)
711 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
712 SYMBOL_SECTION (*psym));
713 }
714 }
715
716 {
717 struct minimal_symbol *msym;
718 ALL_OBJFILE_MSYMBOLS (objfile, msym)
719 if (SYMBOL_SECTION (msym) >= 0)
720 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
721 }
722 /* Relocating different sections by different amounts may cause the symbols
723 to be out of order. */
724 msymbols_sort (objfile);
725
726 if (objfile->ei.entry_point_p)
727 {
728 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
729 only as a fallback. */
730 struct obj_section *s;
731 s = find_pc_section (objfile->ei.entry_point);
732 if (s)
733 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
734 else
735 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
736 }
737
738 {
739 int i;
740 for (i = 0; i < objfile->num_sections; ++i)
741 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
742 }
743
744 /* Rebuild section map next time we need it. */
745 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
746
747 /* Update the table in exec_ops, used to read memory. */
748 ALL_OBJFILE_OSECTIONS (objfile, s)
749 {
750 int idx = s->the_bfd_section->index;
751
752 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
753 obj_section_addr (s));
754 }
755
756 /* Relocate breakpoints as necessary, after things are relocated. */
757 breakpoint_re_set ();
758 }
759 \f
760 /* Return non-zero if OBJFILE has partial symbols. */
761
762 int
763 objfile_has_partial_symbols (struct objfile *objfile)
764 {
765 return objfile->psymtabs != NULL;
766 }
767
768 /* Return non-zero if OBJFILE has full symbols. */
769
770 int
771 objfile_has_full_symbols (struct objfile *objfile)
772 {
773 return objfile->symtabs != NULL;
774 }
775
776 /* Return non-zero if OBJFILE has full or partial symbols, either directly
777 or throught its separate debug file. */
778
779 int
780 objfile_has_symbols (struct objfile *objfile)
781 {
782 struct objfile *separate_objfile;
783
784 if (objfile_has_partial_symbols (objfile)
785 || objfile_has_full_symbols (objfile))
786 return 1;
787
788 separate_objfile = objfile->separate_debug_objfile;
789 if (separate_objfile == NULL)
790 return 0;
791
792 if (objfile_has_partial_symbols (separate_objfile)
793 || objfile_has_full_symbols (separate_objfile))
794 return 1;
795
796 return 0;
797 }
798
799
800 /* Many places in gdb want to test just to see if we have any partial
801 symbols available. This function returns zero if none are currently
802 available, nonzero otherwise. */
803
804 int
805 have_partial_symbols (void)
806 {
807 struct objfile *ofp;
808
809 ALL_OBJFILES (ofp)
810 {
811 if (objfile_has_partial_symbols (ofp))
812 return 1;
813 }
814 return 0;
815 }
816
817 /* Many places in gdb want to test just to see if we have any full
818 symbols available. This function returns zero if none are currently
819 available, nonzero otherwise. */
820
821 int
822 have_full_symbols (void)
823 {
824 struct objfile *ofp;
825
826 ALL_OBJFILES (ofp)
827 {
828 if (objfile_has_full_symbols (ofp))
829 return 1;
830 }
831 return 0;
832 }
833
834
835 /* This operations deletes all objfile entries that represent solibs that
836 weren't explicitly loaded by the user, via e.g., the add-symbol-file
837 command.
838 */
839 void
840 objfile_purge_solibs (void)
841 {
842 struct objfile *objf;
843 struct objfile *temp;
844
845 ALL_OBJFILES_SAFE (objf, temp)
846 {
847 /* We assume that the solib package has been purged already, or will
848 be soon.
849 */
850 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
851 free_objfile (objf);
852 }
853 }
854
855
856 /* Many places in gdb want to test just to see if we have any minimal
857 symbols available. This function returns zero if none are currently
858 available, nonzero otherwise. */
859
860 int
861 have_minimal_symbols (void)
862 {
863 struct objfile *ofp;
864
865 ALL_OBJFILES (ofp)
866 {
867 if (ofp->minimal_symbol_count > 0)
868 {
869 return 1;
870 }
871 }
872 return 0;
873 }
874
875 /* Qsort comparison function. */
876
877 static int
878 qsort_cmp (const void *a, const void *b)
879 {
880 const struct obj_section *sect1 = *(const struct obj_section **) a;
881 const struct obj_section *sect2 = *(const struct obj_section **) b;
882 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
883 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
884
885 if (sect1_addr < sect2_addr)
886 return -1;
887 else if (sect1_addr > sect2_addr)
888 return 1;
889 else
890 {
891 /* Sections are at the same address. This could happen if
892 A) we have an objfile and a separate debuginfo.
893 B) we are confused, and have added sections without proper relocation,
894 or something like that. */
895
896 const struct objfile *const objfile1 = sect1->objfile;
897 const struct objfile *const objfile2 = sect2->objfile;
898
899 if (objfile1->separate_debug_objfile == objfile2
900 || objfile2->separate_debug_objfile == objfile1)
901 {
902 /* Case A. The ordering doesn't matter: separate debuginfo files
903 will be filtered out later. */
904
905 return 0;
906 }
907
908 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
909 triage. This section could be slow (since we iterate over all
910 objfiles in each call to qsort_cmp), but this shouldn't happen
911 very often (GDB is already in a confused state; one hopes this
912 doesn't happen at all). If you discover that significant time is
913 spent in the loops below, do 'set complaints 100' and examine the
914 resulting complaints. */
915
916 if (objfile1 == objfile2)
917 {
918 /* Both sections came from the same objfile. We are really confused.
919 Sort on sequence order of sections within the objfile. */
920
921 const struct obj_section *osect;
922
923 ALL_OBJFILE_OSECTIONS (objfile1, osect)
924 if (osect == sect1)
925 return -1;
926 else if (osect == sect2)
927 return 1;
928
929 /* We should have found one of the sections before getting here. */
930 gdb_assert (0);
931 }
932 else
933 {
934 /* Sort on sequence number of the objfile in the chain. */
935
936 const struct objfile *objfile;
937
938 ALL_OBJFILES (objfile)
939 if (objfile == objfile1)
940 return -1;
941 else if (objfile == objfile2)
942 return 1;
943
944 /* We should have found one of the objfiles before getting here. */
945 gdb_assert (0);
946 }
947
948 }
949
950 /* Unreachable. */
951 gdb_assert (0);
952 return 0;
953 }
954
955 /* Select "better" obj_section to keep. We prefer the one that came from
956 the real object, rather than the one from separate debuginfo.
957 Most of the time the two sections are exactly identical, but with
958 prelinking the .rel.dyn section in the real object may have different
959 size. */
960
961 static struct obj_section *
962 preferred_obj_section (struct obj_section *a, struct obj_section *b)
963 {
964 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
965 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
966 || (b->objfile->separate_debug_objfile == a->objfile));
967 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
968 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
969
970 if (a->objfile->separate_debug_objfile != NULL)
971 return a;
972 return b;
973 }
974
975 /* Return 1 if SECTION should be inserted into the section map.
976 We want to insert only non-overlay and non-TLS section. */
977
978 static int
979 insert_section_p (const struct bfd *abfd,
980 const struct bfd_section *section)
981 {
982 const bfd_vma lma = bfd_section_lma (abfd, section);
983
984 if (lma != 0 && lma != bfd_section_vma (abfd, section)
985 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
986 /* This is an overlay section. IN_MEMORY check is needed to avoid
987 discarding sections from the "system supplied DSO" (aka vdso)
988 on some Linux systems (e.g. Fedora 11). */
989 return 0;
990 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
991 /* This is a TLS section. */
992 return 0;
993
994 return 1;
995 }
996
997 /* Filter out overlapping sections where one section came from the real
998 objfile, and the other from a separate debuginfo file.
999 Return the size of table after redundant sections have been eliminated. */
1000
1001 static int
1002 filter_debuginfo_sections (struct obj_section **map, int map_size)
1003 {
1004 int i, j;
1005
1006 for (i = 0, j = 0; i < map_size - 1; i++)
1007 {
1008 struct obj_section *const sect1 = map[i];
1009 struct obj_section *const sect2 = map[i + 1];
1010 const struct objfile *const objfile1 = sect1->objfile;
1011 const struct objfile *const objfile2 = sect2->objfile;
1012 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1013 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1014
1015 if (sect1_addr == sect2_addr
1016 && (objfile1->separate_debug_objfile == objfile2
1017 || objfile2->separate_debug_objfile == objfile1))
1018 {
1019 map[j++] = preferred_obj_section (sect1, sect2);
1020 ++i;
1021 }
1022 else
1023 map[j++] = sect1;
1024 }
1025
1026 if (i < map_size)
1027 {
1028 gdb_assert (i == map_size - 1);
1029 map[j++] = map[i];
1030 }
1031
1032 /* The map should not have shrunk to less than half the original size. */
1033 gdb_assert (map_size / 2 <= j);
1034
1035 return j;
1036 }
1037
1038 /* Filter out overlapping sections, issuing a warning if any are found.
1039 Overlapping sections could really be overlay sections which we didn't
1040 classify as such in insert_section_p, or we could be dealing with a
1041 corrupt binary. */
1042
1043 static int
1044 filter_overlapping_sections (struct obj_section **map, int map_size)
1045 {
1046 int i, j;
1047
1048 for (i = 0, j = 0; i < map_size - 1; )
1049 {
1050 int k;
1051
1052 map[j++] = map[i];
1053 for (k = i + 1; k < map_size; k++)
1054 {
1055 struct obj_section *const sect1 = map[i];
1056 struct obj_section *const sect2 = map[k];
1057 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1058 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1059 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1060
1061 gdb_assert (sect1_addr <= sect2_addr);
1062
1063 if (sect1_endaddr <= sect2_addr)
1064 break;
1065 else
1066 {
1067 /* We have an overlap. Report it. */
1068
1069 struct objfile *const objf1 = sect1->objfile;
1070 struct objfile *const objf2 = sect2->objfile;
1071
1072 const struct bfd *const abfd1 = objf1->obfd;
1073 const struct bfd *const abfd2 = objf2->obfd;
1074
1075 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1076 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1077
1078 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1079
1080 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1081
1082 complaint (&symfile_complaints,
1083 _("unexpected overlap between:\n"
1084 " (A) section `%s' from `%s' [%s, %s)\n"
1085 " (B) section `%s' from `%s' [%s, %s).\n"
1086 "Will ignore section B"),
1087 bfd_section_name (abfd1, bfds1), objf1->name,
1088 paddress (gdbarch, sect1_addr),
1089 paddress (gdbarch, sect1_endaddr),
1090 bfd_section_name (abfd2, bfds2), objf2->name,
1091 paddress (gdbarch, sect2_addr),
1092 paddress (gdbarch, sect2_endaddr));
1093 }
1094 }
1095 i = k;
1096 }
1097
1098 if (i < map_size)
1099 {
1100 gdb_assert (i == map_size - 1);
1101 map[j++] = map[i];
1102 }
1103
1104 return j;
1105 }
1106
1107
1108 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1109 TLS, overlay and overlapping sections. */
1110
1111 static void
1112 update_section_map (struct program_space *pspace,
1113 struct obj_section ***pmap, int *pmap_size)
1114 {
1115 int alloc_size, map_size, i;
1116 struct obj_section *s, **map;
1117 struct objfile *objfile;
1118
1119 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1120
1121 map = *pmap;
1122 xfree (map);
1123
1124 alloc_size = 0;
1125 ALL_PSPACE_OBJFILES (pspace, objfile)
1126 ALL_OBJFILE_OSECTIONS (objfile, s)
1127 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1128 alloc_size += 1;
1129
1130 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1131 if (alloc_size == 0)
1132 {
1133 *pmap = NULL;
1134 *pmap_size = 0;
1135 return;
1136 }
1137
1138 map = xmalloc (alloc_size * sizeof (*map));
1139
1140 i = 0;
1141 ALL_PSPACE_OBJFILES (pspace, objfile)
1142 ALL_OBJFILE_OSECTIONS (objfile, s)
1143 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1144 map[i++] = s;
1145
1146 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1147 map_size = filter_debuginfo_sections(map, alloc_size);
1148 map_size = filter_overlapping_sections(map, map_size);
1149
1150 if (map_size < alloc_size)
1151 /* Some sections were eliminated. Trim excess space. */
1152 map = xrealloc (map, map_size * sizeof (*map));
1153 else
1154 gdb_assert (alloc_size == map_size);
1155
1156 *pmap = map;
1157 *pmap_size = map_size;
1158 }
1159
1160 /* Bsearch comparison function. */
1161
1162 static int
1163 bsearch_cmp (const void *key, const void *elt)
1164 {
1165 const CORE_ADDR pc = *(CORE_ADDR *) key;
1166 const struct obj_section *section = *(const struct obj_section **) elt;
1167
1168 if (pc < obj_section_addr (section))
1169 return -1;
1170 if (pc < obj_section_endaddr (section))
1171 return 0;
1172 return 1;
1173 }
1174
1175 /* Returns a section whose range includes PC or NULL if none found. */
1176
1177 struct obj_section *
1178 find_pc_section (CORE_ADDR pc)
1179 {
1180 struct objfile_pspace_info *pspace_info;
1181 struct obj_section *s, **sp;
1182
1183 /* Check for mapped overlay section first. */
1184 s = find_pc_mapped_section (pc);
1185 if (s)
1186 return s;
1187
1188 pspace_info = get_objfile_pspace_data (current_program_space);
1189 if (pspace_info->objfiles_changed_p != 0)
1190 {
1191 update_section_map (current_program_space,
1192 &pspace_info->sections,
1193 &pspace_info->num_sections);
1194
1195 /* Don't need updates to section map until objfiles are added,
1196 removed or relocated. */
1197 pspace_info->objfiles_changed_p = 0;
1198 }
1199
1200 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1201 bsearch be non-NULL. */
1202 if (pspace_info->sections == NULL)
1203 {
1204 gdb_assert (pspace_info->num_sections == 0);
1205 return NULL;
1206 }
1207
1208 sp = (struct obj_section **) bsearch (&pc,
1209 pspace_info->sections,
1210 pspace_info->num_sections,
1211 sizeof (*pspace_info->sections),
1212 bsearch_cmp);
1213 if (sp != NULL)
1214 return *sp;
1215 return NULL;
1216 }
1217
1218
1219 /* In SVR4, we recognize a trampoline by it's section name.
1220 That is, if the pc is in a section named ".plt" then we are in
1221 a trampoline. */
1222
1223 int
1224 in_plt_section (CORE_ADDR pc, char *name)
1225 {
1226 struct obj_section *s;
1227 int retval = 0;
1228
1229 s = find_pc_section (pc);
1230
1231 retval = (s != NULL
1232 && s->the_bfd_section->name != NULL
1233 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1234 return (retval);
1235 }
1236 \f
1237
1238 /* Keep a registry of per-objfile data-pointers required by other GDB
1239 modules. */
1240
1241 struct objfile_data
1242 {
1243 unsigned index;
1244 void (*save) (struct objfile *, void *);
1245 void (*free) (struct objfile *, void *);
1246 };
1247
1248 struct objfile_data_registration
1249 {
1250 struct objfile_data *data;
1251 struct objfile_data_registration *next;
1252 };
1253
1254 struct objfile_data_registry
1255 {
1256 struct objfile_data_registration *registrations;
1257 unsigned num_registrations;
1258 };
1259
1260 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1261
1262 const struct objfile_data *
1263 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1264 void (*free) (struct objfile *, void *))
1265 {
1266 struct objfile_data_registration **curr;
1267
1268 /* Append new registration. */
1269 for (curr = &objfile_data_registry.registrations;
1270 *curr != NULL; curr = &(*curr)->next);
1271
1272 *curr = XMALLOC (struct objfile_data_registration);
1273 (*curr)->next = NULL;
1274 (*curr)->data = XMALLOC (struct objfile_data);
1275 (*curr)->data->index = objfile_data_registry.num_registrations++;
1276 (*curr)->data->save = save;
1277 (*curr)->data->free = free;
1278
1279 return (*curr)->data;
1280 }
1281
1282 const struct objfile_data *
1283 register_objfile_data (void)
1284 {
1285 return register_objfile_data_with_cleanup (NULL, NULL);
1286 }
1287
1288 static void
1289 objfile_alloc_data (struct objfile *objfile)
1290 {
1291 gdb_assert (objfile->data == NULL);
1292 objfile->num_data = objfile_data_registry.num_registrations;
1293 objfile->data = XCALLOC (objfile->num_data, void *);
1294 }
1295
1296 static void
1297 objfile_free_data (struct objfile *objfile)
1298 {
1299 gdb_assert (objfile->data != NULL);
1300 clear_objfile_data (objfile);
1301 xfree (objfile->data);
1302 objfile->data = NULL;
1303 }
1304
1305 void
1306 clear_objfile_data (struct objfile *objfile)
1307 {
1308 struct objfile_data_registration *registration;
1309 int i;
1310
1311 gdb_assert (objfile->data != NULL);
1312
1313 /* Process all the save handlers. */
1314
1315 for (registration = objfile_data_registry.registrations, i = 0;
1316 i < objfile->num_data;
1317 registration = registration->next, i++)
1318 if (objfile->data[i] != NULL && registration->data->save != NULL)
1319 registration->data->save (objfile, objfile->data[i]);
1320
1321 /* Now process all the free handlers. */
1322
1323 for (registration = objfile_data_registry.registrations, i = 0;
1324 i < objfile->num_data;
1325 registration = registration->next, i++)
1326 if (objfile->data[i] != NULL && registration->data->free != NULL)
1327 registration->data->free (objfile, objfile->data[i]);
1328
1329 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1330 }
1331
1332 void
1333 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1334 void *value)
1335 {
1336 gdb_assert (data->index < objfile->num_data);
1337 objfile->data[data->index] = value;
1338 }
1339
1340 void *
1341 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1342 {
1343 gdb_assert (data->index < objfile->num_data);
1344 return objfile->data[data->index];
1345 }
1346
1347 /* Set objfiles_changed_p so section map will be rebuilt next time it
1348 is used. Called by reread_symbols. */
1349
1350 void
1351 objfiles_changed (void)
1352 {
1353 /* Rebuild section map next time we need it. */
1354 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1355 }
1356
1357 /* Add reference to ABFD. Returns ABFD. */
1358 struct bfd *
1359 gdb_bfd_ref (struct bfd *abfd)
1360 {
1361 int *p_refcount = bfd_usrdata (abfd);
1362
1363 if (p_refcount != NULL)
1364 {
1365 *p_refcount += 1;
1366 return abfd;
1367 }
1368
1369 p_refcount = xmalloc (sizeof (*p_refcount));
1370 *p_refcount = 1;
1371 bfd_usrdata (abfd) = p_refcount;
1372
1373 return abfd;
1374 }
1375
1376 /* Unreference and possibly close ABFD. */
1377 void
1378 gdb_bfd_unref (struct bfd *abfd)
1379 {
1380 int *p_refcount;
1381 char *name;
1382
1383 if (abfd == NULL)
1384 return;
1385
1386 p_refcount = bfd_usrdata (abfd);
1387
1388 /* Valid range for p_refcount: a pointer to int counter, which has a
1389 value of 1 (single owner) or 2 (shared). */
1390 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1391
1392 *p_refcount -= 1;
1393 if (*p_refcount > 0)
1394 return;
1395
1396 xfree (p_refcount);
1397 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1398
1399 name = bfd_get_filename (abfd);
1400 if (!bfd_close (abfd))
1401 warning (_("cannot close \"%s\": %s"),
1402 name, bfd_errmsg (bfd_get_error ()));
1403 xfree (name);
1404 }
1405
1406 /* Provide a prototype to silence -Wmissing-prototypes. */
1407 extern initialize_file_ftype _initialize_objfiles;
1408
1409 void
1410 _initialize_objfiles (void)
1411 {
1412 objfiles_pspace_data
1413 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1414 }
This page took 0.057556 seconds and 5 git commands to generate.