Use a single, consistent representation for an empty minimal
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42
43 #include "breakpoint.h"
44
45 /* Prototypes for local functions */
46
47 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
48
49 #include "mmalloc.h"
50
51 static int open_existing_mapped_file (char *, long, int);
52
53 static int open_mapped_file (char *filename, long mtime, int flags);
54
55 static void *map_to_file (int);
56
57 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
58
59 static void add_to_objfile_sections (bfd *, sec_ptr, void *);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *object_files; /* Linked list of all objfiles */
65 struct objfile *current_objfile; /* For symbol file being read in */
66 struct objfile *symfile_objfile; /* Main symbol table loaded from */
67 struct objfile *rt_common_objfile; /* For runtime common symbols */
68
69 int mapped_symbol_files; /* Try to use mapped symbol files */
70
71 /* Locate all mappable sections of a BFD file.
72 objfile_p_char is a char * to get it through
73 bfd_map_over_sections; we cast it back to its proper type. */
74
75 #ifndef TARGET_KEEP_SECTION
76 #define TARGET_KEEP_SECTION(ASECT) 0
77 #endif
78
79 /* Called via bfd_map_over_sections to build up the section table that
80 the objfile references. The objfile contains pointers to the start
81 of the table (objfile->sections) and to the first location after
82 the end of the table (objfile->sections_end). */
83
84 static void
85 add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
86 {
87 struct objfile *objfile = (struct objfile *) objfile_p_char;
88 struct obj_section section;
89 flagword aflag;
90
91 aflag = bfd_get_section_flags (abfd, asect);
92
93 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
94 return;
95
96 if (0 == bfd_section_size (abfd, asect))
97 return;
98 section.offset = 0;
99 section.objfile = objfile;
100 section.the_bfd_section = asect;
101 section.ovly_mapped = 0;
102 section.addr = bfd_section_vma (abfd, asect);
103 section.endaddr = section.addr + bfd_section_size (abfd, asect);
104 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
105 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
106 }
107
108 /* Builds a section table for OBJFILE.
109 Returns 0 if OK, 1 on error (in which case bfd_error contains the
110 error).
111
112 Note that while we are building the table, which goes into the
113 psymbol obstack, we hijack the sections_end pointer to instead hold
114 a count of the number of sections. When bfd_map_over_sections
115 returns, this count is used to compute the pointer to the end of
116 the sections table, which then overwrites the count.
117
118 Also note that the OFFSET and OVLY_MAPPED in each table entry
119 are initialized to zero.
120
121 Also note that if anything else writes to the psymbol obstack while
122 we are building the table, we're pretty much hosed. */
123
124 int
125 build_objfile_section_table (struct objfile *objfile)
126 {
127 /* objfile->sections can be already set when reading a mapped symbol
128 file. I believe that we do need to rebuild the section table in
129 this case (we rebuild other things derived from the bfd), but we
130 can't free the old one (it's in the psymbol_obstack). So we just
131 waste some memory. */
132
133 objfile->sections_end = 0;
134 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
135 objfile->sections = (struct obj_section *)
136 obstack_finish (&objfile->psymbol_obstack);
137 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
138 return (0);
139 }
140
141 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
142 allocate a new objfile struct, fill it in as best we can, link it
143 into the list of all known objfiles, and return a pointer to the
144 new objfile struct.
145
146 The FLAGS word contains various bits (OBJF_*) that can be taken as
147 requests for specific operations, like trying to open a mapped
148 version of the objfile (OBJF_MAPPED). Other bits like
149 OBJF_SHARED are simply copied through to the new objfile flags
150 member. */
151
152 struct objfile *
153 allocate_objfile (bfd *abfd, int flags)
154 {
155 struct objfile *objfile = NULL;
156 struct objfile *last_one = NULL;
157
158 if (mapped_symbol_files)
159 flags |= OBJF_MAPPED;
160
161 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
162 if (abfd != NULL)
163 {
164
165 /* If we can support mapped symbol files, try to open/reopen the
166 mapped file that corresponds to the file from which we wish to
167 read symbols. If the objfile is to be mapped, we must malloc
168 the structure itself using the mmap version, and arrange that
169 all memory allocation for the objfile uses the mmap routines.
170 If we are reusing an existing mapped file, from which we get
171 our objfile pointer, we have to make sure that we update the
172 pointers to the alloc/free functions in the obstack, in case
173 these functions have moved within the current gdb. */
174
175 int fd;
176
177 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
178 flags);
179 if (fd >= 0)
180 {
181 void *md;
182
183 if ((md = map_to_file (fd)) == NULL)
184 {
185 close (fd);
186 }
187 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
188 {
189 /* Update memory corruption handler function addresses. */
190 init_malloc (md);
191 objfile->md = md;
192 objfile->mmfd = fd;
193 /* Update pointers to functions to *our* copies */
194 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
195 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
196 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
197 obstack_freefun (&objfile->macro_cache.cache, xmfree);
198 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
199 obstack_freefun (&objfile->psymbol_obstack, xmfree);
200 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
201 obstack_freefun (&objfile->symbol_obstack, xmfree);
202 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
203 obstack_freefun (&objfile->type_obstack, xmfree);
204 /* If already in objfile list, unlink it. */
205 unlink_objfile (objfile);
206 /* Forget things specific to a particular gdb, may have changed. */
207 objfile->sf = NULL;
208 }
209 else
210 {
211
212 /* Set up to detect internal memory corruption. MUST be
213 done before the first malloc. See comments in
214 init_malloc() and mmcheck(). */
215
216 init_malloc (md);
217
218 objfile = (struct objfile *)
219 xmmalloc (md, sizeof (struct objfile));
220 memset (objfile, 0, sizeof (struct objfile));
221 objfile->md = md;
222 objfile->mmfd = fd;
223 objfile->flags |= OBJF_MAPPED;
224 mmalloc_setkey (objfile->md, 0, objfile);
225 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
226 0, 0, xmmalloc, xmfree,
227 objfile->md);
228 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
229 0, 0, xmmalloc, xmfree,
230 objfile->md);
231 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
232 0, 0, xmmalloc, xmfree,
233 objfile->md);
234 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
235 0, 0, xmmalloc, xmfree,
236 objfile->md);
237 obstack_specify_allocation_with_arg (&objfile->type_obstack,
238 0, 0, xmmalloc, xmfree,
239 objfile->md);
240 }
241 }
242
243 if ((flags & OBJF_MAPPED) && (objfile == NULL))
244 {
245 warning ("symbol table for '%s' will not be mapped",
246 bfd_get_filename (abfd));
247 flags &= ~OBJF_MAPPED;
248 }
249 }
250 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
251
252 if (flags & OBJF_MAPPED)
253 {
254 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
255
256 /* Turn off the global flag so we don't try to do mapped symbol tables
257 any more, which shuts up gdb unless the user specifically gives the
258 "mapped" keyword again. */
259
260 mapped_symbol_files = 0;
261 flags &= ~OBJF_MAPPED;
262 }
263
264 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
265
266 /* If we don't support mapped symbol files, didn't ask for the file to be
267 mapped, or failed to open the mapped file for some reason, then revert
268 back to an unmapped objfile. */
269
270 if (objfile == NULL)
271 {
272 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
273 memset (objfile, 0, sizeof (struct objfile));
274 objfile->md = NULL;
275 objfile->psymbol_cache = bcache_xmalloc ();
276 objfile->macro_cache = bcache_xmalloc ();
277 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
278 xfree);
279 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
280 xfree);
281 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
282 xfree);
283 flags &= ~OBJF_MAPPED;
284
285 terminate_minimal_symbol_table (objfile);
286 }
287
288 /* Update the per-objfile information that comes from the bfd, ensuring
289 that any data that is reference is saved in the per-objfile data
290 region. */
291
292 objfile->obfd = abfd;
293 if (objfile->name != NULL)
294 {
295 xmfree (objfile->md, objfile->name);
296 }
297 if (abfd != NULL)
298 {
299 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
300 objfile->mtime = bfd_get_mtime (abfd);
301
302 /* Build section table. */
303
304 if (build_objfile_section_table (objfile))
305 {
306 error ("Can't find the file sections in `%s': %s",
307 objfile->name, bfd_errmsg (bfd_get_error ()));
308 }
309 }
310
311 /* Initialize the section indexes for this objfile, so that we can
312 later detect if they are used w/o being properly assigned to. */
313
314 objfile->sect_index_text = -1;
315 objfile->sect_index_data = -1;
316 objfile->sect_index_bss = -1;
317 objfile->sect_index_rodata = -1;
318
319 /* Add this file onto the tail of the linked list of other such files. */
320
321 objfile->next = NULL;
322 if (object_files == NULL)
323 object_files = objfile;
324 else
325 {
326 for (last_one = object_files;
327 last_one->next;
328 last_one = last_one->next);
329 last_one->next = objfile;
330 }
331
332 /* Save passed in flag bits. */
333 objfile->flags |= flags;
334
335 return (objfile);
336 }
337
338
339 /* Create the terminating entry of OBJFILE's minimal symbol table.
340 If OBJFILE->msymbols is zero, allocate a single entry from
341 OBJFILE->symbol_obstack; otherwise, just initialize
342 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
343 void
344 terminate_minimal_symbol_table (struct objfile *objfile)
345 {
346 if (! objfile->msymbols)
347 objfile->msymbols = ((struct minimal_symbol *)
348 obstack_alloc (&objfile->symbol_obstack,
349 sizeof (objfile->msymbols[0])));
350
351 {
352 struct minimal_symbol *m
353 = &objfile->msymbols[objfile->minimal_symbol_count];
354
355 memset (m, 0, sizeof (*m));
356 SYMBOL_NAME (m) = NULL;
357 SYMBOL_VALUE_ADDRESS (m) = 0;
358 MSYMBOL_INFO (m) = NULL;
359 MSYMBOL_TYPE (m) = mst_unknown;
360 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
361 }
362 }
363
364
365 /* Put one object file before a specified on in the global list.
366 This can be used to make sure an object file is destroyed before
367 another when using ALL_OBJFILES_SAFE to free all objfiles. */
368 void
369 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
370 {
371 struct objfile **objp;
372
373 unlink_objfile (objfile);
374
375 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
376 {
377 if (*objp == before_this)
378 {
379 objfile->next = *objp;
380 *objp = objfile;
381 return;
382 }
383 }
384
385 internal_error (__FILE__, __LINE__,
386 "put_objfile_before: before objfile not in list");
387 }
388
389 /* Put OBJFILE at the front of the list. */
390
391 void
392 objfile_to_front (struct objfile *objfile)
393 {
394 struct objfile **objp;
395 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
396 {
397 if (*objp == objfile)
398 {
399 /* Unhook it from where it is. */
400 *objp = objfile->next;
401 /* Put it in the front. */
402 objfile->next = object_files;
403 object_files = objfile;
404 break;
405 }
406 }
407 }
408
409 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
410 list.
411
412 It is not a bug, or error, to call this function if OBJFILE is not known
413 to be in the current list. This is done in the case of mapped objfiles,
414 for example, just to ensure that the mapped objfile doesn't appear twice
415 in the list. Since the list is threaded, linking in a mapped objfile
416 twice would create a circular list.
417
418 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
419 unlinking it, just to ensure that we have completely severed any linkages
420 between the OBJFILE and the list. */
421
422 void
423 unlink_objfile (struct objfile *objfile)
424 {
425 struct objfile **objpp;
426
427 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
428 {
429 if (*objpp == objfile)
430 {
431 *objpp = (*objpp)->next;
432 objfile->next = NULL;
433 return;
434 }
435 }
436
437 internal_error (__FILE__, __LINE__,
438 "unlink_objfile: objfile already unlinked");
439 }
440
441
442 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
443 that as much as possible is allocated on the symbol_obstack and
444 psymbol_obstack, so that the memory can be efficiently freed.
445
446 Things which we do NOT free because they are not in malloc'd memory
447 or not in memory specific to the objfile include:
448
449 objfile -> sf
450
451 FIXME: If the objfile is using reusable symbol information (via mmalloc),
452 then we need to take into account the fact that more than one process
453 may be using the symbol information at the same time (when mmalloc is
454 extended to support cooperative locking). When more than one process
455 is using the mapped symbol info, we need to be more careful about when
456 we free objects in the reusable area. */
457
458 void
459 free_objfile (struct objfile *objfile)
460 {
461 if (objfile->separate_debug_objfile)
462 {
463 free_objfile (objfile->separate_debug_objfile);
464 }
465
466 if (objfile->separate_debug_objfile_backlink)
467 {
468 /* We freed the separate debug file, make sure the base objfile
469 doesn't reference it. */
470 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
471 }
472
473 /* First do any symbol file specific actions required when we are
474 finished with a particular symbol file. Note that if the objfile
475 is using reusable symbol information (via mmalloc) then each of
476 these routines is responsible for doing the correct thing, either
477 freeing things which are valid only during this particular gdb
478 execution, or leaving them to be reused during the next one. */
479
480 if (objfile->sf != NULL)
481 {
482 (*objfile->sf->sym_finish) (objfile);
483 }
484
485 /* We always close the bfd. */
486
487 if (objfile->obfd != NULL)
488 {
489 char *name = bfd_get_filename (objfile->obfd);
490 if (!bfd_close (objfile->obfd))
491 warning ("cannot close \"%s\": %s",
492 name, bfd_errmsg (bfd_get_error ()));
493 xfree (name);
494 }
495
496 /* Remove it from the chain of all objfiles. */
497
498 unlink_objfile (objfile);
499
500 /* If we are going to free the runtime common objfile, mark it
501 as unallocated. */
502
503 if (objfile == rt_common_objfile)
504 rt_common_objfile = NULL;
505
506 /* Before the symbol table code was redone to make it easier to
507 selectively load and remove information particular to a specific
508 linkage unit, gdb used to do these things whenever the monolithic
509 symbol table was blown away. How much still needs to be done
510 is unknown, but we play it safe for now and keep each action until
511 it is shown to be no longer needed. */
512
513 /* I *think* all our callers call clear_symtab_users. If so, no need
514 to call this here. */
515 clear_pc_function_cache ();
516
517 /* The last thing we do is free the objfile struct itself for the
518 non-reusable case, or detach from the mapped file for the
519 reusable case. Note that the mmalloc_detach or the xmfree() is
520 the last thing we can do with this objfile. */
521
522 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
523
524 if (objfile->flags & OBJF_MAPPED)
525 {
526 /* Remember the fd so we can close it. We can't close it before
527 doing the detach, and after the detach the objfile is gone. */
528 int mmfd;
529
530 mmfd = objfile->mmfd;
531 mmalloc_detach (objfile->md);
532 objfile = NULL;
533 close (mmfd);
534 }
535
536 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
537
538 /* If we still have an objfile, then either we don't support reusable
539 objfiles or this one was not reusable. So free it normally. */
540
541 if (objfile != NULL)
542 {
543 if (objfile->name != NULL)
544 {
545 xmfree (objfile->md, objfile->name);
546 }
547 if (objfile->global_psymbols.list)
548 xmfree (objfile->md, objfile->global_psymbols.list);
549 if (objfile->static_psymbols.list)
550 xmfree (objfile->md, objfile->static_psymbols.list);
551 /* Free the obstacks for non-reusable objfiles */
552 bcache_xfree (objfile->psymbol_cache);
553 bcache_xfree (objfile->macro_cache);
554 obstack_free (&objfile->psymbol_obstack, 0);
555 obstack_free (&objfile->symbol_obstack, 0);
556 obstack_free (&objfile->type_obstack, 0);
557 xmfree (objfile->md, objfile);
558 objfile = NULL;
559 }
560 }
561
562 static void
563 do_free_objfile_cleanup (void *obj)
564 {
565 free_objfile (obj);
566 }
567
568 struct cleanup *
569 make_cleanup_free_objfile (struct objfile *obj)
570 {
571 return make_cleanup (do_free_objfile_cleanup, obj);
572 }
573
574 /* Free all the object files at once and clean up their users. */
575
576 void
577 free_all_objfiles (void)
578 {
579 struct objfile *objfile, *temp;
580
581 ALL_OBJFILES_SAFE (objfile, temp)
582 {
583 free_objfile (objfile);
584 }
585 clear_symtab_users ();
586 }
587 \f
588 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
589 entries in new_offsets. */
590 void
591 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
592 {
593 struct section_offsets *delta =
594 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
595
596 {
597 int i;
598 int something_changed = 0;
599 for (i = 0; i < objfile->num_sections; ++i)
600 {
601 delta->offsets[i] =
602 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
603 if (ANOFFSET (delta, i) != 0)
604 something_changed = 1;
605 }
606 if (!something_changed)
607 return;
608 }
609
610 /* OK, get all the symtabs. */
611 {
612 struct symtab *s;
613
614 ALL_OBJFILE_SYMTABS (objfile, s)
615 {
616 struct linetable *l;
617 struct blockvector *bv;
618 int i;
619
620 /* First the line table. */
621 l = LINETABLE (s);
622 if (l)
623 {
624 for (i = 0; i < l->nitems; ++i)
625 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
626 }
627
628 /* Don't relocate a shared blockvector more than once. */
629 if (!s->primary)
630 continue;
631
632 bv = BLOCKVECTOR (s);
633 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
634 {
635 struct block *b;
636 struct symbol *sym;
637 int j;
638
639 b = BLOCKVECTOR_BLOCK (bv, i);
640 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
641 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
642
643 ALL_BLOCK_SYMBOLS (b, j, sym)
644 {
645 fixup_symbol_section (sym, objfile);
646
647 /* The RS6000 code from which this was taken skipped
648 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
649 But I'm leaving out that test, on the theory that
650 they can't possibly pass the tests below. */
651 if ((SYMBOL_CLASS (sym) == LOC_LABEL
652 || SYMBOL_CLASS (sym) == LOC_STATIC
653 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
654 && SYMBOL_SECTION (sym) >= 0)
655 {
656 SYMBOL_VALUE_ADDRESS (sym) +=
657 ANOFFSET (delta, SYMBOL_SECTION (sym));
658 }
659 #ifdef MIPS_EFI_SYMBOL_NAME
660 /* Relocate Extra Function Info for ecoff. */
661
662 else if (SYMBOL_CLASS (sym) == LOC_CONST
663 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
664 && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
665 ecoff_relocate_efi (sym, ANOFFSET (delta,
666 s->block_line_section));
667 #endif
668 }
669 }
670 }
671 }
672
673 {
674 struct partial_symtab *p;
675
676 ALL_OBJFILE_PSYMTABS (objfile, p)
677 {
678 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
679 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
680 }
681 }
682
683 {
684 struct partial_symbol **psym;
685
686 for (psym = objfile->global_psymbols.list;
687 psym < objfile->global_psymbols.next;
688 psym++)
689 {
690 fixup_psymbol_section (*psym, objfile);
691 if (SYMBOL_SECTION (*psym) >= 0)
692 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
693 SYMBOL_SECTION (*psym));
694 }
695 for (psym = objfile->static_psymbols.list;
696 psym < objfile->static_psymbols.next;
697 psym++)
698 {
699 fixup_psymbol_section (*psym, objfile);
700 if (SYMBOL_SECTION (*psym) >= 0)
701 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
702 SYMBOL_SECTION (*psym));
703 }
704 }
705
706 {
707 struct minimal_symbol *msym;
708 ALL_OBJFILE_MSYMBOLS (objfile, msym)
709 if (SYMBOL_SECTION (msym) >= 0)
710 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
711 }
712 /* Relocating different sections by different amounts may cause the symbols
713 to be out of order. */
714 msymbols_sort (objfile);
715
716 {
717 int i;
718 for (i = 0; i < objfile->num_sections; ++i)
719 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
720 }
721
722 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
723 {
724 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
725 only as a fallback. */
726 struct obj_section *s;
727 s = find_pc_section (objfile->ei.entry_point);
728 if (s)
729 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
730 else
731 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
732 }
733
734 {
735 struct obj_section *s;
736 bfd *abfd;
737
738 abfd = objfile->obfd;
739
740 ALL_OBJFILE_OSECTIONS (objfile, s)
741 {
742 int idx = s->the_bfd_section->index;
743
744 s->addr += ANOFFSET (delta, idx);
745 s->endaddr += ANOFFSET (delta, idx);
746 }
747 }
748
749 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
750 {
751 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
752 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
753 }
754
755 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
756 {
757 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
758 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
759 }
760
761 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
762 {
763 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
764 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
765 }
766
767 /* Relocate breakpoints as necessary, after things are relocated. */
768 breakpoint_re_set ();
769 }
770 \f
771 /* Many places in gdb want to test just to see if we have any partial
772 symbols available. This function returns zero if none are currently
773 available, nonzero otherwise. */
774
775 int
776 have_partial_symbols (void)
777 {
778 struct objfile *ofp;
779
780 ALL_OBJFILES (ofp)
781 {
782 if (ofp->psymtabs != NULL)
783 {
784 return 1;
785 }
786 }
787 return 0;
788 }
789
790 /* Many places in gdb want to test just to see if we have any full
791 symbols available. This function returns zero if none are currently
792 available, nonzero otherwise. */
793
794 int
795 have_full_symbols (void)
796 {
797 struct objfile *ofp;
798
799 ALL_OBJFILES (ofp)
800 {
801 if (ofp->symtabs != NULL)
802 {
803 return 1;
804 }
805 }
806 return 0;
807 }
808
809
810 /* This operations deletes all objfile entries that represent solibs that
811 weren't explicitly loaded by the user, via e.g., the add-symbol-file
812 command.
813 */
814 void
815 objfile_purge_solibs (void)
816 {
817 struct objfile *objf;
818 struct objfile *temp;
819
820 ALL_OBJFILES_SAFE (objf, temp)
821 {
822 /* We assume that the solib package has been purged already, or will
823 be soon.
824 */
825 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
826 free_objfile (objf);
827 }
828 }
829
830
831 /* Many places in gdb want to test just to see if we have any minimal
832 symbols available. This function returns zero if none are currently
833 available, nonzero otherwise. */
834
835 int
836 have_minimal_symbols (void)
837 {
838 struct objfile *ofp;
839
840 ALL_OBJFILES (ofp)
841 {
842 if (ofp->minimal_symbol_count > 0)
843 {
844 return 1;
845 }
846 }
847 return 0;
848 }
849
850 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
851
852 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
853 of the corresponding symbol file in MTIME, try to open an existing file
854 with the name SYMSFILENAME and verify it is more recent than the base
855 file by checking it's timestamp against MTIME.
856
857 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
858
859 If SYMSFILENAME does exist, but is out of date, we check to see if the
860 user has specified creation of a mapped file. If so, we don't issue
861 any warning message because we will be creating a new mapped file anyway,
862 overwriting the old one. If not, then we issue a warning message so that
863 the user will know why we aren't using this existing mapped symbol file.
864 In either case, we return -1.
865
866 If SYMSFILENAME does exist and is not out of date, but can't be opened for
867 some reason, then prints an appropriate system error message and returns -1.
868
869 Otherwise, returns the open file descriptor. */
870
871 static int
872 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
873 {
874 int fd = -1;
875 struct stat sbuf;
876
877 if (stat (symsfilename, &sbuf) == 0)
878 {
879 if (sbuf.st_mtime < mtime)
880 {
881 if (!(flags & OBJF_MAPPED))
882 {
883 warning ("mapped symbol file `%s' is out of date, ignored it",
884 symsfilename);
885 }
886 }
887 else if ((fd = open (symsfilename, O_RDWR)) < 0)
888 {
889 if (error_pre_print)
890 {
891 printf_unfiltered (error_pre_print);
892 }
893 print_sys_errmsg (symsfilename, errno);
894 }
895 }
896 return (fd);
897 }
898
899 /* Look for a mapped symbol file that corresponds to FILENAME and is more
900 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
901 use a mapped symbol file for this file, so create a new one if one does
902 not currently exist.
903
904 If found, then return an open file descriptor for the file, otherwise
905 return -1.
906
907 This routine is responsible for implementing the policy that generates
908 the name of the mapped symbol file from the name of a file containing
909 symbols that gdb would like to read. Currently this policy is to append
910 ".syms" to the name of the file.
911
912 This routine is also responsible for implementing the policy that
913 determines where the mapped symbol file is found (the search path).
914 This policy is that when reading an existing mapped file, a file of
915 the correct name in the current directory takes precedence over a
916 file of the correct name in the same directory as the symbol file.
917 When creating a new mapped file, it is always created in the current
918 directory. This helps to minimize the chances of a user unknowingly
919 creating big mapped files in places like /bin and /usr/local/bin, and
920 allows a local copy to override a manually installed global copy (in
921 /bin for example). */
922
923 static int
924 open_mapped_file (char *filename, long mtime, int flags)
925 {
926 int fd;
927 char *symsfilename;
928
929 /* First try to open an existing file in the current directory, and
930 then try the directory where the symbol file is located. */
931
932 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
933 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
934 {
935 xfree (symsfilename);
936 symsfilename = concat (filename, ".syms", (char *) NULL);
937 fd = open_existing_mapped_file (symsfilename, mtime, flags);
938 }
939
940 /* If we don't have an open file by now, then either the file does not
941 already exist, or the base file has changed since it was created. In
942 either case, if the user has specified use of a mapped file, then
943 create a new mapped file, truncating any existing one. If we can't
944 create one, print a system error message saying why we can't.
945
946 By default the file is rw for everyone, with the user's umask taking
947 care of turning off the permissions the user wants off. */
948
949 if ((fd < 0) && (flags & OBJF_MAPPED))
950 {
951 xfree (symsfilename);
952 symsfilename = concat ("./", lbasename (filename), ".syms",
953 (char *) NULL);
954 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
955 {
956 if (error_pre_print)
957 {
958 printf_unfiltered (error_pre_print);
959 }
960 print_sys_errmsg (symsfilename, errno);
961 }
962 }
963
964 xfree (symsfilename);
965 return (fd);
966 }
967
968 static void *
969 map_to_file (int fd)
970 {
971 void *md;
972 CORE_ADDR mapto;
973
974 md = mmalloc_attach (fd, 0);
975 if (md != NULL)
976 {
977 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
978 md = mmalloc_detach (md);
979 if (md != NULL)
980 {
981 /* FIXME: should figure out why detach failed */
982 md = NULL;
983 }
984 else if (mapto != (CORE_ADDR) NULL)
985 {
986 /* This mapping file needs to be remapped at "mapto" */
987 md = mmalloc_attach (fd, mapto);
988 }
989 else
990 {
991 /* This is a freshly created mapping file. */
992 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
993 if (mapto != 0)
994 {
995 /* To avoid reusing the freshly created mapping file, at the
996 address selected by mmap, we must truncate it before trying
997 to do an attach at the address we want. */
998 ftruncate (fd, 0);
999 md = mmalloc_attach (fd, mapto);
1000 if (md != NULL)
1001 {
1002 mmalloc_setkey (md, 1, mapto);
1003 }
1004 }
1005 }
1006 }
1007 return (md);
1008 }
1009
1010 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
1011
1012 /* Returns a section whose range includes PC and SECTION,
1013 or NULL if none found. Note the distinction between the return type,
1014 struct obj_section (which is defined in gdb), and the input type
1015 struct sec (which is a bfd-defined data type). The obj_section
1016 contains a pointer to the bfd struct sec section. */
1017
1018 struct obj_section *
1019 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
1020 {
1021 struct obj_section *s;
1022 struct objfile *objfile;
1023
1024 ALL_OBJSECTIONS (objfile, s)
1025 if ((section == 0 || section == s->the_bfd_section) &&
1026 s->addr <= pc && pc < s->endaddr)
1027 return (s);
1028
1029 return (NULL);
1030 }
1031
1032 /* Returns a section whose range includes PC or NULL if none found.
1033 Backward compatibility, no section. */
1034
1035 struct obj_section *
1036 find_pc_section (CORE_ADDR pc)
1037 {
1038 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1039 }
1040
1041
1042 /* In SVR4, we recognize a trampoline by it's section name.
1043 That is, if the pc is in a section named ".plt" then we are in
1044 a trampoline. */
1045
1046 int
1047 in_plt_section (CORE_ADDR pc, char *name)
1048 {
1049 struct obj_section *s;
1050 int retval = 0;
1051
1052 s = find_pc_section (pc);
1053
1054 retval = (s != NULL
1055 && s->the_bfd_section->name != NULL
1056 && STREQ (s->the_bfd_section->name, ".plt"));
1057 return (retval);
1058 }
1059
1060 /* Return nonzero if NAME is in the import list of OBJFILE. Else
1061 return zero. */
1062
1063 int
1064 is_in_import_list (char *name, struct objfile *objfile)
1065 {
1066 register int i;
1067
1068 if (!objfile || !name || !*name)
1069 return 0;
1070
1071 for (i = 0; i < objfile->import_list_size; i++)
1072 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1073 return 1;
1074 return 0;
1075 }
1076
This page took 0.050926 seconds and 5 git commands to generate.