Add casts to memory allocation related calls
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 /* Keep a registry of per-objfile data-pointers required by other GDB
57 modules. */
58
59 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile_pspace_info
65 {
66 struct obj_section **sections;
67 int num_sections;
68
69 /* Nonzero if object files have been added since the section map
70 was last updated. */
71 int new_objfiles_available;
72
73 /* Nonzero if the section map MUST be updated before use. */
74 int section_map_dirty;
75
76 /* Nonzero if section map updates should be inhibited if possible. */
77 int inhibit_updates;
78 };
79
80 /* Per-program-space data key. */
81 static const struct program_space_data *objfiles_pspace_data;
82
83 static void
84 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
85 {
86 struct objfile_pspace_info *info = arg;
87
88 xfree (info->sections);
89 xfree (info);
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XCNEW (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_data *objfiles_bfd_data;
115
116 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
117 NULL, and it already has a per-BFD storage object, use that.
118 Otherwise, allocate a new per-BFD storage object. If ABFD is not
119 NULL, the object is allocated on the BFD; otherwise it is allocated
120 on OBJFILE's obstack. Note that it is not safe to call this
121 multiple times for a given OBJFILE -- it can only be called when
122 allocating or re-initializing OBJFILE. */
123
124 static struct objfile_per_bfd_storage *
125 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
126 {
127 struct objfile_per_bfd_storage *storage = NULL;
128
129 if (abfd != NULL)
130 storage = bfd_data (abfd, objfiles_bfd_data);
131
132 if (storage == NULL)
133 {
134 /* If the object requires gdb to do relocations, we simply fall
135 back to not sharing data across users. These cases are rare
136 enough that this seems reasonable. */
137 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
138 {
139 storage
140 = ((struct objfile_per_bfd_storage *)
141 bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage)));
142 set_bfd_data (abfd, objfiles_bfd_data, storage);
143 }
144 else
145 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
146 struct objfile_per_bfd_storage);
147
148 /* Look up the gdbarch associated with the BFD. */
149 if (abfd != NULL)
150 storage->gdbarch = gdbarch_from_bfd (abfd);
151
152 obstack_init (&storage->storage_obstack);
153 storage->filename_cache = bcache_xmalloc (NULL, NULL);
154 storage->macro_cache = bcache_xmalloc (NULL, NULL);
155 storage->language_of_main = language_unknown;
156 }
157
158 return storage;
159 }
160
161 /* Free STORAGE. */
162
163 static void
164 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
165 {
166 bcache_xfree (storage->filename_cache);
167 bcache_xfree (storage->macro_cache);
168 if (storage->demangled_names_hash)
169 htab_delete (storage->demangled_names_hash);
170 obstack_free (&storage->storage_obstack, 0);
171 }
172
173 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
174 cleanup function to the BFD registry. */
175
176 static void
177 objfile_bfd_data_free (struct bfd *unused, void *d)
178 {
179 free_objfile_per_bfd_storage (d);
180 }
181
182 /* See objfiles.h. */
183
184 void
185 set_objfile_per_bfd (struct objfile *objfile)
186 {
187 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
188 }
189
190 /* Set the objfile's per-BFD notion of the "main" name and
191 language. */
192
193 void
194 set_objfile_main_name (struct objfile *objfile,
195 const char *name, enum language lang)
196 {
197 if (objfile->per_bfd->name_of_main == NULL
198 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
199 objfile->per_bfd->name_of_main
200 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
201 strlen (name));
202 objfile->per_bfd->language_of_main = lang;
203 }
204
205 /* Helper structure to map blocks to static link properties in hash tables. */
206
207 struct static_link_htab_entry
208 {
209 const struct block *block;
210 const struct dynamic_prop *static_link;
211 };
212
213 /* Return a hash code for struct static_link_htab_entry *P. */
214
215 static hashval_t
216 static_link_htab_entry_hash (const void *p)
217 {
218 const struct static_link_htab_entry *e
219 = (const struct static_link_htab_entry *) p;
220
221 return htab_hash_pointer (e->block);
222 }
223
224 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
225 mappings for the same block. */
226
227 static int
228 static_link_htab_entry_eq (const void *p1, const void *p2)
229 {
230 const struct static_link_htab_entry *e1
231 = (const struct static_link_htab_entry *) p1;
232 const struct static_link_htab_entry *e2
233 = (const struct static_link_htab_entry *) p2;
234
235 return e1->block == e2->block;
236 }
237
238 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
239 Must not be called more than once for each BLOCK. */
240
241 void
242 objfile_register_static_link (struct objfile *objfile,
243 const struct block *block,
244 const struct dynamic_prop *static_link)
245 {
246 void **slot;
247 struct static_link_htab_entry lookup_entry;
248 struct static_link_htab_entry *entry;
249
250 if (objfile->static_links == NULL)
251 objfile->static_links = htab_create_alloc
252 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
253 xcalloc, xfree);
254
255 /* Create a slot for the mapping, make sure it's the first mapping for this
256 block and then create the mapping itself. */
257 lookup_entry.block = block;
258 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
259 gdb_assert (*slot == NULL);
260
261 entry = (struct static_link_htab_entry *) obstack_alloc
262 (&objfile->objfile_obstack, sizeof (*entry));
263 entry->block = block;
264 entry->static_link = static_link;
265 *slot = (void *) entry;
266 }
267
268 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
269 none was found. */
270
271 const struct dynamic_prop *
272 objfile_lookup_static_link (struct objfile *objfile,
273 const struct block *block)
274 {
275 struct static_link_htab_entry *entry;
276 struct static_link_htab_entry lookup_entry;
277
278 if (objfile->static_links == NULL)
279 return NULL;
280 lookup_entry.block = block;
281 entry
282 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
283 &lookup_entry);
284 if (entry == NULL)
285 return NULL;
286
287 gdb_assert (entry->block == block);
288 return entry->static_link;
289 }
290
291 \f
292
293 /* Called via bfd_map_over_sections to build up the section table that
294 the objfile references. The objfile contains pointers to the start
295 of the table (objfile->sections) and to the first location after
296 the end of the table (objfile->sections_end). */
297
298 static void
299 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
300 struct objfile *objfile, int force)
301 {
302 struct obj_section *section;
303
304 if (!force)
305 {
306 flagword aflag;
307
308 aflag = bfd_get_section_flags (abfd, asect);
309 if (!(aflag & SEC_ALLOC))
310 return;
311 }
312
313 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
314 section->objfile = objfile;
315 section->the_bfd_section = asect;
316 section->ovly_mapped = 0;
317 }
318
319 static void
320 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
321 void *objfilep)
322 {
323 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
324 }
325
326 /* Builds a section table for OBJFILE.
327
328 Note that the OFFSET and OVLY_MAPPED in each table entry are
329 initialized to zero. */
330
331 void
332 build_objfile_section_table (struct objfile *objfile)
333 {
334 int count = gdb_bfd_count_sections (objfile->obfd);
335
336 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
337 count,
338 struct obj_section);
339 objfile->sections_end = (objfile->sections + count);
340 bfd_map_over_sections (objfile->obfd,
341 add_to_objfile_sections, (void *) objfile);
342
343 /* See gdb_bfd_section_index. */
344 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
345 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
346 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
347 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
348 }
349
350 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
351 allocate a new objfile struct, fill it in as best we can, link it
352 into the list of all known objfiles, and return a pointer to the
353 new objfile struct.
354
355 NAME should contain original non-canonicalized filename or other
356 identifier as entered by user. If there is no better source use
357 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
358 NAME content is copied into returned objfile.
359
360 The FLAGS word contains various bits (OBJF_*) that can be taken as
361 requests for specific operations. Other bits like OBJF_SHARED are
362 simply copied through to the new objfile flags member. */
363
364 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
365 by jv-lang.c, to create an artificial objfile used to hold
366 information about dynamically-loaded Java classes. Unfortunately,
367 that branch of this function doesn't get tested very frequently, so
368 it's prone to breakage. (E.g. at one time the name was set to NULL
369 in that situation, which broke a loop over all names in the dynamic
370 library loader.) If you change this function, please try to leave
371 things in a consistent state even if abfd is NULL. */
372
373 struct objfile *
374 allocate_objfile (bfd *abfd, const char *name, int flags)
375 {
376 struct objfile *objfile;
377 char *expanded_name;
378
379 objfile = XCNEW (struct objfile);
380 objfile->psymbol_cache = psymbol_bcache_init ();
381 /* We could use obstack_specify_allocation here instead, but
382 gdb_obstack.h specifies the alloc/dealloc functions. */
383 obstack_init (&objfile->objfile_obstack);
384
385 objfile_alloc_data (objfile);
386
387 if (name == NULL)
388 {
389 gdb_assert (abfd == NULL);
390 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
391 expanded_name = xstrdup ("<<anonymous objfile>>");
392 }
393 else if ((flags & OBJF_NOT_FILENAME) != 0
394 || is_target_filename (name))
395 expanded_name = xstrdup (name);
396 else
397 expanded_name = gdb_abspath (name);
398 objfile->original_name
399 = (char *) obstack_copy0 (&objfile->objfile_obstack,
400 expanded_name,
401 strlen (expanded_name));
402 xfree (expanded_name);
403
404 /* Update the per-objfile information that comes from the bfd, ensuring
405 that any data that is reference is saved in the per-objfile data
406 region. */
407
408 objfile->obfd = abfd;
409 gdb_bfd_ref (abfd);
410 if (abfd != NULL)
411 {
412 objfile->mtime = bfd_get_mtime (abfd);
413
414 /* Build section table. */
415 build_objfile_section_table (objfile);
416 }
417
418 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
419 objfile->pspace = current_program_space;
420
421 terminate_minimal_symbol_table (objfile);
422
423 /* Initialize the section indexes for this objfile, so that we can
424 later detect if they are used w/o being properly assigned to. */
425
426 objfile->sect_index_text = -1;
427 objfile->sect_index_data = -1;
428 objfile->sect_index_bss = -1;
429 objfile->sect_index_rodata = -1;
430
431 /* Add this file onto the tail of the linked list of other such files. */
432
433 objfile->next = NULL;
434 if (object_files == NULL)
435 object_files = objfile;
436 else
437 {
438 struct objfile *last_one;
439
440 for (last_one = object_files;
441 last_one->next;
442 last_one = last_one->next);
443 last_one->next = objfile;
444 }
445
446 /* Save passed in flag bits. */
447 objfile->flags |= flags;
448
449 /* Rebuild section map next time we need it. */
450 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
451
452 return objfile;
453 }
454
455 /* Retrieve the gdbarch associated with OBJFILE. */
456
457 struct gdbarch *
458 get_objfile_arch (const struct objfile *objfile)
459 {
460 return objfile->per_bfd->gdbarch;
461 }
462
463 /* If there is a valid and known entry point, function fills *ENTRY_P with it
464 and returns non-zero; otherwise it returns zero. */
465
466 int
467 entry_point_address_query (CORE_ADDR *entry_p)
468 {
469 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
470 return 0;
471
472 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
473 + ANOFFSET (symfile_objfile->section_offsets,
474 symfile_objfile->per_bfd->ei.the_bfd_section_index));
475
476 return 1;
477 }
478
479 /* Get current entry point address. Call error if it is not known. */
480
481 CORE_ADDR
482 entry_point_address (void)
483 {
484 CORE_ADDR retval;
485
486 if (!entry_point_address_query (&retval))
487 error (_("Entry point address is not known."));
488
489 return retval;
490 }
491
492 /* Iterator on PARENT and every separate debug objfile of PARENT.
493 The usage pattern is:
494 for (objfile = parent;
495 objfile;
496 objfile = objfile_separate_debug_iterate (parent, objfile))
497 ...
498 */
499
500 struct objfile *
501 objfile_separate_debug_iterate (const struct objfile *parent,
502 const struct objfile *objfile)
503 {
504 struct objfile *res;
505
506 /* If any, return the first child. */
507 res = objfile->separate_debug_objfile;
508 if (res)
509 return res;
510
511 /* Common case where there is no separate debug objfile. */
512 if (objfile == parent)
513 return NULL;
514
515 /* Return the brother if any. Note that we don't iterate on brothers of
516 the parents. */
517 res = objfile->separate_debug_objfile_link;
518 if (res)
519 return res;
520
521 for (res = objfile->separate_debug_objfile_backlink;
522 res != parent;
523 res = res->separate_debug_objfile_backlink)
524 {
525 gdb_assert (res != NULL);
526 if (res->separate_debug_objfile_link)
527 return res->separate_debug_objfile_link;
528 }
529 return NULL;
530 }
531
532 /* Put one object file before a specified on in the global list.
533 This can be used to make sure an object file is destroyed before
534 another when using ALL_OBJFILES_SAFE to free all objfiles. */
535 void
536 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
537 {
538 struct objfile **objp;
539
540 unlink_objfile (objfile);
541
542 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
543 {
544 if (*objp == before_this)
545 {
546 objfile->next = *objp;
547 *objp = objfile;
548 return;
549 }
550 }
551
552 internal_error (__FILE__, __LINE__,
553 _("put_objfile_before: before objfile not in list"));
554 }
555
556 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
557 list.
558
559 It is not a bug, or error, to call this function if OBJFILE is not known
560 to be in the current list. This is done in the case of mapped objfiles,
561 for example, just to ensure that the mapped objfile doesn't appear twice
562 in the list. Since the list is threaded, linking in a mapped objfile
563 twice would create a circular list.
564
565 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
566 unlinking it, just to ensure that we have completely severed any linkages
567 between the OBJFILE and the list. */
568
569 void
570 unlink_objfile (struct objfile *objfile)
571 {
572 struct objfile **objpp;
573
574 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
575 {
576 if (*objpp == objfile)
577 {
578 *objpp = (*objpp)->next;
579 objfile->next = NULL;
580 return;
581 }
582 }
583
584 internal_error (__FILE__, __LINE__,
585 _("unlink_objfile: objfile already unlinked"));
586 }
587
588 /* Add OBJFILE as a separate debug objfile of PARENT. */
589
590 void
591 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
592 {
593 gdb_assert (objfile && parent);
594
595 /* Must not be already in a list. */
596 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
597 gdb_assert (objfile->separate_debug_objfile_link == NULL);
598 gdb_assert (objfile->separate_debug_objfile == NULL);
599 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
600 gdb_assert (parent->separate_debug_objfile_link == NULL);
601
602 objfile->separate_debug_objfile_backlink = parent;
603 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
604 parent->separate_debug_objfile = objfile;
605
606 /* Put the separate debug object before the normal one, this is so that
607 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
608 put_objfile_before (objfile, parent);
609 }
610
611 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
612 itself. */
613
614 void
615 free_objfile_separate_debug (struct objfile *objfile)
616 {
617 struct objfile *child;
618
619 for (child = objfile->separate_debug_objfile; child;)
620 {
621 struct objfile *next_child = child->separate_debug_objfile_link;
622 free_objfile (child);
623 child = next_child;
624 }
625 }
626
627 /* Destroy an objfile and all the symtabs and psymtabs under it. */
628
629 void
630 free_objfile (struct objfile *objfile)
631 {
632 /* First notify observers that this objfile is about to be freed. */
633 observer_notify_free_objfile (objfile);
634
635 /* Free all separate debug objfiles. */
636 free_objfile_separate_debug (objfile);
637
638 if (objfile->separate_debug_objfile_backlink)
639 {
640 /* We freed the separate debug file, make sure the base objfile
641 doesn't reference it. */
642 struct objfile *child;
643
644 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
645
646 if (child == objfile)
647 {
648 /* OBJFILE is the first child. */
649 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
650 objfile->separate_debug_objfile_link;
651 }
652 else
653 {
654 /* Find OBJFILE in the list. */
655 while (1)
656 {
657 if (child->separate_debug_objfile_link == objfile)
658 {
659 child->separate_debug_objfile_link =
660 objfile->separate_debug_objfile_link;
661 break;
662 }
663 child = child->separate_debug_objfile_link;
664 gdb_assert (child);
665 }
666 }
667 }
668
669 /* Remove any references to this objfile in the global value
670 lists. */
671 preserve_values (objfile);
672
673 /* It still may reference data modules have associated with the objfile and
674 the symbol file data. */
675 forget_cached_source_info_for_objfile (objfile);
676
677 breakpoint_free_objfile (objfile);
678 btrace_free_objfile (objfile);
679
680 /* First do any symbol file specific actions required when we are
681 finished with a particular symbol file. Note that if the objfile
682 is using reusable symbol information (via mmalloc) then each of
683 these routines is responsible for doing the correct thing, either
684 freeing things which are valid only during this particular gdb
685 execution, or leaving them to be reused during the next one. */
686
687 if (objfile->sf != NULL)
688 {
689 (*objfile->sf->sym_finish) (objfile);
690 }
691
692 /* Discard any data modules have associated with the objfile. The function
693 still may reference objfile->obfd. */
694 objfile_free_data (objfile);
695
696 if (objfile->obfd)
697 gdb_bfd_unref (objfile->obfd);
698 else
699 free_objfile_per_bfd_storage (objfile->per_bfd);
700
701 /* Remove it from the chain of all objfiles. */
702
703 unlink_objfile (objfile);
704
705 if (objfile == symfile_objfile)
706 symfile_objfile = NULL;
707
708 /* Before the symbol table code was redone to make it easier to
709 selectively load and remove information particular to a specific
710 linkage unit, gdb used to do these things whenever the monolithic
711 symbol table was blown away. How much still needs to be done
712 is unknown, but we play it safe for now and keep each action until
713 it is shown to be no longer needed. */
714
715 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
716 for example), so we need to call this here. */
717 clear_pc_function_cache ();
718
719 /* Clear globals which might have pointed into a removed objfile.
720 FIXME: It's not clear which of these are supposed to persist
721 between expressions and which ought to be reset each time. */
722 expression_context_block = NULL;
723 innermost_block = NULL;
724
725 /* Check to see if the current_source_symtab belongs to this objfile,
726 and if so, call clear_current_source_symtab_and_line. */
727
728 {
729 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
730
731 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
732 clear_current_source_symtab_and_line ();
733 }
734
735 if (objfile->global_psymbols.list)
736 xfree (objfile->global_psymbols.list);
737 if (objfile->static_psymbols.list)
738 xfree (objfile->static_psymbols.list);
739 /* Free the obstacks for non-reusable objfiles. */
740 psymbol_bcache_free (objfile->psymbol_cache);
741 obstack_free (&objfile->objfile_obstack, 0);
742
743 /* Rebuild section map next time we need it. */
744 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
745
746 /* Free the map for static links. There's no need to free static link
747 themselves since they were allocated on the objstack. */
748 if (objfile->static_links != NULL)
749 htab_delete (objfile->static_links);
750
751 /* The last thing we do is free the objfile struct itself. */
752 xfree (objfile);
753 }
754
755 static void
756 do_free_objfile_cleanup (void *obj)
757 {
758 free_objfile (obj);
759 }
760
761 struct cleanup *
762 make_cleanup_free_objfile (struct objfile *obj)
763 {
764 return make_cleanup (do_free_objfile_cleanup, obj);
765 }
766
767 /* Free all the object files at once and clean up their users. */
768
769 void
770 free_all_objfiles (void)
771 {
772 struct objfile *objfile, *temp;
773 struct so_list *so;
774
775 /* Any objfile referencewould become stale. */
776 for (so = master_so_list (); so; so = so->next)
777 gdb_assert (so->objfile == NULL);
778
779 ALL_OBJFILES_SAFE (objfile, temp)
780 {
781 free_objfile (objfile);
782 }
783 clear_symtab_users (0);
784 }
785 \f
786 /* A helper function for objfile_relocate1 that relocates a single
787 symbol. */
788
789 static void
790 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
791 struct section_offsets *delta)
792 {
793 fixup_symbol_section (sym, objfile);
794
795 /* The RS6000 code from which this was taken skipped
796 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
797 But I'm leaving out that test, on the theory that
798 they can't possibly pass the tests below. */
799 if ((SYMBOL_CLASS (sym) == LOC_LABEL
800 || SYMBOL_CLASS (sym) == LOC_STATIC)
801 && SYMBOL_SECTION (sym) >= 0)
802 {
803 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
804 }
805 }
806
807 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
808 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
809 Return non-zero iff any change happened. */
810
811 static int
812 objfile_relocate1 (struct objfile *objfile,
813 const struct section_offsets *new_offsets)
814 {
815 struct obj_section *s;
816 struct section_offsets *delta =
817 ((struct section_offsets *)
818 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
819
820 int i;
821 int something_changed = 0;
822
823 for (i = 0; i < objfile->num_sections; ++i)
824 {
825 delta->offsets[i] =
826 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
827 if (ANOFFSET (delta, i) != 0)
828 something_changed = 1;
829 }
830 if (!something_changed)
831 return 0;
832
833 /* OK, get all the symtabs. */
834 {
835 struct compunit_symtab *cust;
836 struct symtab *s;
837
838 ALL_OBJFILE_FILETABS (objfile, cust, s)
839 {
840 struct linetable *l;
841 int i;
842
843 /* First the line table. */
844 l = SYMTAB_LINETABLE (s);
845 if (l)
846 {
847 for (i = 0; i < l->nitems; ++i)
848 l->item[i].pc += ANOFFSET (delta,
849 COMPUNIT_BLOCK_LINE_SECTION
850 (cust));
851 }
852 }
853
854 ALL_OBJFILE_COMPUNITS (objfile, cust)
855 {
856 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
857 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
858
859 if (BLOCKVECTOR_MAP (bv))
860 addrmap_relocate (BLOCKVECTOR_MAP (bv),
861 ANOFFSET (delta, block_line_section));
862
863 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
864 {
865 struct block *b;
866 struct symbol *sym;
867 struct dict_iterator iter;
868
869 b = BLOCKVECTOR_BLOCK (bv, i);
870 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
871 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
872
873 /* We only want to iterate over the local symbols, not any
874 symbols in included symtabs. */
875 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
876 {
877 relocate_one_symbol (sym, objfile, delta);
878 }
879 }
880 }
881 }
882
883 /* Relocate isolated symbols. */
884 {
885 struct symbol *iter;
886
887 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
888 relocate_one_symbol (iter, objfile, delta);
889 }
890
891 if (objfile->psymtabs_addrmap)
892 addrmap_relocate (objfile->psymtabs_addrmap,
893 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
894
895 if (objfile->sf)
896 objfile->sf->qf->relocate (objfile, new_offsets, delta);
897
898 {
899 int i;
900
901 for (i = 0; i < objfile->num_sections; ++i)
902 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
903 }
904
905 /* Rebuild section map next time we need it. */
906 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
907
908 /* Update the table in exec_ops, used to read memory. */
909 ALL_OBJFILE_OSECTIONS (objfile, s)
910 {
911 int idx = s - objfile->sections;
912
913 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
914 obj_section_addr (s));
915 }
916
917 /* Data changed. */
918 return 1;
919 }
920
921 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
922 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
923
924 The number and ordering of sections does differ between the two objfiles.
925 Only their names match. Also the file offsets will differ (objfile being
926 possibly prelinked but separate_debug_objfile is probably not prelinked) but
927 the in-memory absolute address as specified by NEW_OFFSETS must match both
928 files. */
929
930 void
931 objfile_relocate (struct objfile *objfile,
932 const struct section_offsets *new_offsets)
933 {
934 struct objfile *debug_objfile;
935 int changed = 0;
936
937 changed |= objfile_relocate1 (objfile, new_offsets);
938
939 for (debug_objfile = objfile->separate_debug_objfile;
940 debug_objfile;
941 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
942 {
943 struct section_addr_info *objfile_addrs;
944 struct section_offsets *new_debug_offsets;
945 struct cleanup *my_cleanups;
946
947 objfile_addrs = build_section_addr_info_from_objfile (objfile);
948 my_cleanups = make_cleanup (xfree, objfile_addrs);
949
950 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
951 relative ones must be already created according to debug_objfile. */
952
953 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
954
955 gdb_assert (debug_objfile->num_sections
956 == gdb_bfd_count_sections (debug_objfile->obfd));
957 new_debug_offsets =
958 ((struct section_offsets *)
959 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections)));
960 make_cleanup (xfree, new_debug_offsets);
961 relative_addr_info_to_section_offsets (new_debug_offsets,
962 debug_objfile->num_sections,
963 objfile_addrs);
964
965 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
966
967 do_cleanups (my_cleanups);
968 }
969
970 /* Relocate breakpoints as necessary, after things are relocated. */
971 if (changed)
972 breakpoint_re_set ();
973 }
974
975 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
976 not touched here.
977 Return non-zero iff any change happened. */
978
979 static int
980 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
981 {
982 struct section_offsets *new_offsets =
983 ((struct section_offsets *)
984 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
985 int i;
986
987 for (i = 0; i < objfile->num_sections; ++i)
988 new_offsets->offsets[i] = slide;
989
990 return objfile_relocate1 (objfile, new_offsets);
991 }
992
993 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
994 SEPARATE_DEBUG_OBJFILEs. */
995
996 void
997 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
998 {
999 struct objfile *debug_objfile;
1000 int changed = 0;
1001
1002 changed |= objfile_rebase1 (objfile, slide);
1003
1004 for (debug_objfile = objfile->separate_debug_objfile;
1005 debug_objfile;
1006 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
1007 changed |= objfile_rebase1 (debug_objfile, slide);
1008
1009 /* Relocate breakpoints as necessary, after things are relocated. */
1010 if (changed)
1011 breakpoint_re_set ();
1012 }
1013 \f
1014 /* Return non-zero if OBJFILE has partial symbols. */
1015
1016 int
1017 objfile_has_partial_symbols (struct objfile *objfile)
1018 {
1019 if (!objfile->sf)
1020 return 0;
1021
1022 /* If we have not read psymbols, but we have a function capable of reading
1023 them, then that is an indication that they are in fact available. Without
1024 this function the symbols may have been already read in but they also may
1025 not be present in this objfile. */
1026 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1027 && objfile->sf->sym_read_psymbols != NULL)
1028 return 1;
1029
1030 return objfile->sf->qf->has_symbols (objfile);
1031 }
1032
1033 /* Return non-zero if OBJFILE has full symbols. */
1034
1035 int
1036 objfile_has_full_symbols (struct objfile *objfile)
1037 {
1038 return objfile->compunit_symtabs != NULL;
1039 }
1040
1041 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1042 or through a separate debug file. */
1043
1044 int
1045 objfile_has_symbols (struct objfile *objfile)
1046 {
1047 struct objfile *o;
1048
1049 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1050 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1051 return 1;
1052 return 0;
1053 }
1054
1055
1056 /* Many places in gdb want to test just to see if we have any partial
1057 symbols available. This function returns zero if none are currently
1058 available, nonzero otherwise. */
1059
1060 int
1061 have_partial_symbols (void)
1062 {
1063 struct objfile *ofp;
1064
1065 ALL_OBJFILES (ofp)
1066 {
1067 if (objfile_has_partial_symbols (ofp))
1068 return 1;
1069 }
1070 return 0;
1071 }
1072
1073 /* Many places in gdb want to test just to see if we have any full
1074 symbols available. This function returns zero if none are currently
1075 available, nonzero otherwise. */
1076
1077 int
1078 have_full_symbols (void)
1079 {
1080 struct objfile *ofp;
1081
1082 ALL_OBJFILES (ofp)
1083 {
1084 if (objfile_has_full_symbols (ofp))
1085 return 1;
1086 }
1087 return 0;
1088 }
1089
1090
1091 /* This operations deletes all objfile entries that represent solibs that
1092 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1093 command. */
1094
1095 void
1096 objfile_purge_solibs (void)
1097 {
1098 struct objfile *objf;
1099 struct objfile *temp;
1100
1101 ALL_OBJFILES_SAFE (objf, temp)
1102 {
1103 /* We assume that the solib package has been purged already, or will
1104 be soon. */
1105
1106 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1107 free_objfile (objf);
1108 }
1109 }
1110
1111
1112 /* Many places in gdb want to test just to see if we have any minimal
1113 symbols available. This function returns zero if none are currently
1114 available, nonzero otherwise. */
1115
1116 int
1117 have_minimal_symbols (void)
1118 {
1119 struct objfile *ofp;
1120
1121 ALL_OBJFILES (ofp)
1122 {
1123 if (ofp->per_bfd->minimal_symbol_count > 0)
1124 {
1125 return 1;
1126 }
1127 }
1128 return 0;
1129 }
1130
1131 /* Qsort comparison function. */
1132
1133 static int
1134 qsort_cmp (const void *a, const void *b)
1135 {
1136 const struct obj_section *sect1 = *(const struct obj_section **) a;
1137 const struct obj_section *sect2 = *(const struct obj_section **) b;
1138 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1139 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1140
1141 if (sect1_addr < sect2_addr)
1142 return -1;
1143 else if (sect1_addr > sect2_addr)
1144 return 1;
1145 else
1146 {
1147 /* Sections are at the same address. This could happen if
1148 A) we have an objfile and a separate debuginfo.
1149 B) we are confused, and have added sections without proper relocation,
1150 or something like that. */
1151
1152 const struct objfile *const objfile1 = sect1->objfile;
1153 const struct objfile *const objfile2 = sect2->objfile;
1154
1155 if (objfile1->separate_debug_objfile == objfile2
1156 || objfile2->separate_debug_objfile == objfile1)
1157 {
1158 /* Case A. The ordering doesn't matter: separate debuginfo files
1159 will be filtered out later. */
1160
1161 return 0;
1162 }
1163
1164 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1165 triage. This section could be slow (since we iterate over all
1166 objfiles in each call to qsort_cmp), but this shouldn't happen
1167 very often (GDB is already in a confused state; one hopes this
1168 doesn't happen at all). If you discover that significant time is
1169 spent in the loops below, do 'set complaints 100' and examine the
1170 resulting complaints. */
1171
1172 if (objfile1 == objfile2)
1173 {
1174 /* Both sections came from the same objfile. We are really confused.
1175 Sort on sequence order of sections within the objfile. */
1176
1177 const struct obj_section *osect;
1178
1179 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1180 if (osect == sect1)
1181 return -1;
1182 else if (osect == sect2)
1183 return 1;
1184
1185 /* We should have found one of the sections before getting here. */
1186 gdb_assert_not_reached ("section not found");
1187 }
1188 else
1189 {
1190 /* Sort on sequence number of the objfile in the chain. */
1191
1192 const struct objfile *objfile;
1193
1194 ALL_OBJFILES (objfile)
1195 if (objfile == objfile1)
1196 return -1;
1197 else if (objfile == objfile2)
1198 return 1;
1199
1200 /* We should have found one of the objfiles before getting here. */
1201 gdb_assert_not_reached ("objfile not found");
1202 }
1203 }
1204
1205 /* Unreachable. */
1206 gdb_assert_not_reached ("unexpected code path");
1207 return 0;
1208 }
1209
1210 /* Select "better" obj_section to keep. We prefer the one that came from
1211 the real object, rather than the one from separate debuginfo.
1212 Most of the time the two sections are exactly identical, but with
1213 prelinking the .rel.dyn section in the real object may have different
1214 size. */
1215
1216 static struct obj_section *
1217 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1218 {
1219 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1220 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1221 || (b->objfile->separate_debug_objfile == a->objfile));
1222 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1223 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1224
1225 if (a->objfile->separate_debug_objfile != NULL)
1226 return a;
1227 return b;
1228 }
1229
1230 /* Return 1 if SECTION should be inserted into the section map.
1231 We want to insert only non-overlay and non-TLS section. */
1232
1233 static int
1234 insert_section_p (const struct bfd *abfd,
1235 const struct bfd_section *section)
1236 {
1237 const bfd_vma lma = bfd_section_lma (abfd, section);
1238
1239 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1240 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1241 /* This is an overlay section. IN_MEMORY check is needed to avoid
1242 discarding sections from the "system supplied DSO" (aka vdso)
1243 on some Linux systems (e.g. Fedora 11). */
1244 return 0;
1245 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1246 /* This is a TLS section. */
1247 return 0;
1248
1249 return 1;
1250 }
1251
1252 /* Filter out overlapping sections where one section came from the real
1253 objfile, and the other from a separate debuginfo file.
1254 Return the size of table after redundant sections have been eliminated. */
1255
1256 static int
1257 filter_debuginfo_sections (struct obj_section **map, int map_size)
1258 {
1259 int i, j;
1260
1261 for (i = 0, j = 0; i < map_size - 1; i++)
1262 {
1263 struct obj_section *const sect1 = map[i];
1264 struct obj_section *const sect2 = map[i + 1];
1265 const struct objfile *const objfile1 = sect1->objfile;
1266 const struct objfile *const objfile2 = sect2->objfile;
1267 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1268 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1269
1270 if (sect1_addr == sect2_addr
1271 && (objfile1->separate_debug_objfile == objfile2
1272 || objfile2->separate_debug_objfile == objfile1))
1273 {
1274 map[j++] = preferred_obj_section (sect1, sect2);
1275 ++i;
1276 }
1277 else
1278 map[j++] = sect1;
1279 }
1280
1281 if (i < map_size)
1282 {
1283 gdb_assert (i == map_size - 1);
1284 map[j++] = map[i];
1285 }
1286
1287 /* The map should not have shrunk to less than half the original size. */
1288 gdb_assert (map_size / 2 <= j);
1289
1290 return j;
1291 }
1292
1293 /* Filter out overlapping sections, issuing a warning if any are found.
1294 Overlapping sections could really be overlay sections which we didn't
1295 classify as such in insert_section_p, or we could be dealing with a
1296 corrupt binary. */
1297
1298 static int
1299 filter_overlapping_sections (struct obj_section **map, int map_size)
1300 {
1301 int i, j;
1302
1303 for (i = 0, j = 0; i < map_size - 1; )
1304 {
1305 int k;
1306
1307 map[j++] = map[i];
1308 for (k = i + 1; k < map_size; k++)
1309 {
1310 struct obj_section *const sect1 = map[i];
1311 struct obj_section *const sect2 = map[k];
1312 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1313 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1314 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1315
1316 gdb_assert (sect1_addr <= sect2_addr);
1317
1318 if (sect1_endaddr <= sect2_addr)
1319 break;
1320 else
1321 {
1322 /* We have an overlap. Report it. */
1323
1324 struct objfile *const objf1 = sect1->objfile;
1325 struct objfile *const objf2 = sect2->objfile;
1326
1327 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1328 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1329
1330 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1331
1332 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1333
1334 complaint (&symfile_complaints,
1335 _("unexpected overlap between:\n"
1336 " (A) section `%s' from `%s' [%s, %s)\n"
1337 " (B) section `%s' from `%s' [%s, %s).\n"
1338 "Will ignore section B"),
1339 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1340 paddress (gdbarch, sect1_addr),
1341 paddress (gdbarch, sect1_endaddr),
1342 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1343 paddress (gdbarch, sect2_addr),
1344 paddress (gdbarch, sect2_endaddr));
1345 }
1346 }
1347 i = k;
1348 }
1349
1350 if (i < map_size)
1351 {
1352 gdb_assert (i == map_size - 1);
1353 map[j++] = map[i];
1354 }
1355
1356 return j;
1357 }
1358
1359
1360 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1361 TLS, overlay and overlapping sections. */
1362
1363 static void
1364 update_section_map (struct program_space *pspace,
1365 struct obj_section ***pmap, int *pmap_size)
1366 {
1367 struct objfile_pspace_info *pspace_info;
1368 int alloc_size, map_size, i;
1369 struct obj_section *s, **map;
1370 struct objfile *objfile;
1371
1372 pspace_info = get_objfile_pspace_data (pspace);
1373 gdb_assert (pspace_info->section_map_dirty != 0
1374 || pspace_info->new_objfiles_available != 0);
1375
1376 map = *pmap;
1377 xfree (map);
1378
1379 alloc_size = 0;
1380 ALL_PSPACE_OBJFILES (pspace, objfile)
1381 ALL_OBJFILE_OSECTIONS (objfile, s)
1382 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1383 alloc_size += 1;
1384
1385 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1386 if (alloc_size == 0)
1387 {
1388 *pmap = NULL;
1389 *pmap_size = 0;
1390 return;
1391 }
1392
1393 map = XNEWVEC (struct obj_section *, alloc_size);
1394
1395 i = 0;
1396 ALL_PSPACE_OBJFILES (pspace, objfile)
1397 ALL_OBJFILE_OSECTIONS (objfile, s)
1398 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1399 map[i++] = s;
1400
1401 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1402 map_size = filter_debuginfo_sections(map, alloc_size);
1403 map_size = filter_overlapping_sections(map, map_size);
1404
1405 if (map_size < alloc_size)
1406 /* Some sections were eliminated. Trim excess space. */
1407 map = XRESIZEVEC (struct obj_section *, map, map_size);
1408 else
1409 gdb_assert (alloc_size == map_size);
1410
1411 *pmap = map;
1412 *pmap_size = map_size;
1413 }
1414
1415 /* Bsearch comparison function. */
1416
1417 static int
1418 bsearch_cmp (const void *key, const void *elt)
1419 {
1420 const CORE_ADDR pc = *(CORE_ADDR *) key;
1421 const struct obj_section *section = *(const struct obj_section **) elt;
1422
1423 if (pc < obj_section_addr (section))
1424 return -1;
1425 if (pc < obj_section_endaddr (section))
1426 return 0;
1427 return 1;
1428 }
1429
1430 /* Returns a section whose range includes PC or NULL if none found. */
1431
1432 struct obj_section *
1433 find_pc_section (CORE_ADDR pc)
1434 {
1435 struct objfile_pspace_info *pspace_info;
1436 struct obj_section *s, **sp;
1437
1438 /* Check for mapped overlay section first. */
1439 s = find_pc_mapped_section (pc);
1440 if (s)
1441 return s;
1442
1443 pspace_info = get_objfile_pspace_data (current_program_space);
1444 if (pspace_info->section_map_dirty
1445 || (pspace_info->new_objfiles_available
1446 && !pspace_info->inhibit_updates))
1447 {
1448 update_section_map (current_program_space,
1449 &pspace_info->sections,
1450 &pspace_info->num_sections);
1451
1452 /* Don't need updates to section map until objfiles are added,
1453 removed or relocated. */
1454 pspace_info->new_objfiles_available = 0;
1455 pspace_info->section_map_dirty = 0;
1456 }
1457
1458 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1459 bsearch be non-NULL. */
1460 if (pspace_info->sections == NULL)
1461 {
1462 gdb_assert (pspace_info->num_sections == 0);
1463 return NULL;
1464 }
1465
1466 sp = (struct obj_section **) bsearch (&pc,
1467 pspace_info->sections,
1468 pspace_info->num_sections,
1469 sizeof (*pspace_info->sections),
1470 bsearch_cmp);
1471 if (sp != NULL)
1472 return *sp;
1473 return NULL;
1474 }
1475
1476
1477 /* Return non-zero if PC is in a section called NAME. */
1478
1479 int
1480 pc_in_section (CORE_ADDR pc, char *name)
1481 {
1482 struct obj_section *s;
1483 int retval = 0;
1484
1485 s = find_pc_section (pc);
1486
1487 retval = (s != NULL
1488 && s->the_bfd_section->name != NULL
1489 && strcmp (s->the_bfd_section->name, name) == 0);
1490 return (retval);
1491 }
1492 \f
1493
1494 /* Set section_map_dirty so section map will be rebuilt next time it
1495 is used. Called by reread_symbols. */
1496
1497 void
1498 objfiles_changed (void)
1499 {
1500 /* Rebuild section map next time we need it. */
1501 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1502 }
1503
1504 /* See comments in objfiles.h. */
1505
1506 void
1507 inhibit_section_map_updates (struct program_space *pspace)
1508 {
1509 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1510 }
1511
1512 /* See comments in objfiles.h. */
1513
1514 void
1515 resume_section_map_updates (struct program_space *pspace)
1516 {
1517 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1518 }
1519
1520 /* See comments in objfiles.h. */
1521
1522 void
1523 resume_section_map_updates_cleanup (void *arg)
1524 {
1525 resume_section_map_updates (arg);
1526 }
1527
1528 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1529 otherwise. */
1530
1531 int
1532 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1533 {
1534 struct obj_section *osect;
1535
1536 if (objfile == NULL)
1537 return 0;
1538
1539 ALL_OBJFILE_OSECTIONS (objfile, osect)
1540 {
1541 if (section_is_overlay (osect) && !section_is_mapped (osect))
1542 continue;
1543
1544 if (obj_section_addr (osect) <= addr
1545 && addr < obj_section_endaddr (osect))
1546 return 1;
1547 }
1548 return 0;
1549 }
1550
1551 int
1552 shared_objfile_contains_address_p (struct program_space *pspace,
1553 CORE_ADDR address)
1554 {
1555 struct objfile *objfile;
1556
1557 ALL_PSPACE_OBJFILES (pspace, objfile)
1558 {
1559 if ((objfile->flags & OBJF_SHARED) != 0
1560 && is_addr_in_objfile (address, objfile))
1561 return 1;
1562 }
1563
1564 return 0;
1565 }
1566
1567 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1568 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1569 searching the objfiles in the order they are stored internally,
1570 ignoring CURRENT_OBJFILE.
1571
1572 On most platorms, it should be close enough to doing the best
1573 we can without some knowledge specific to the architecture. */
1574
1575 void
1576 default_iterate_over_objfiles_in_search_order
1577 (struct gdbarch *gdbarch,
1578 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1579 void *cb_data, struct objfile *current_objfile)
1580 {
1581 int stop = 0;
1582 struct objfile *objfile;
1583
1584 ALL_OBJFILES (objfile)
1585 {
1586 stop = cb (objfile, cb_data);
1587 if (stop)
1588 return;
1589 }
1590 }
1591
1592 /* See objfiles.h. */
1593
1594 const char *
1595 objfile_name (const struct objfile *objfile)
1596 {
1597 if (objfile->obfd != NULL)
1598 return bfd_get_filename (objfile->obfd);
1599
1600 return objfile->original_name;
1601 }
1602
1603 /* See objfiles.h. */
1604
1605 const char *
1606 objfile_filename (const struct objfile *objfile)
1607 {
1608 if (objfile->obfd != NULL)
1609 return bfd_get_filename (objfile->obfd);
1610
1611 return NULL;
1612 }
1613
1614 /* See objfiles.h. */
1615
1616 const char *
1617 objfile_debug_name (const struct objfile *objfile)
1618 {
1619 return lbasename (objfile->original_name);
1620 }
1621
1622 /* See objfiles.h. */
1623
1624 const char *
1625 objfile_flavour_name (struct objfile *objfile)
1626 {
1627 if (objfile->obfd != NULL)
1628 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1629 return NULL;
1630 }
1631
1632 /* Provide a prototype to silence -Wmissing-prototypes. */
1633 extern initialize_file_ftype _initialize_objfiles;
1634
1635 void
1636 _initialize_objfiles (void)
1637 {
1638 objfiles_pspace_data
1639 = register_program_space_data_with_cleanup (NULL,
1640 objfiles_pspace_data_cleanup);
1641
1642 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1643 objfile_bfd_data_free);
1644 }
This page took 0.066583 seconds and 5 git commands to generate.