* objfiles.c (objfile_relocate): When relocating ->sections, use
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Message to be printed before the error message, when an error occurs. */
53
54 extern char *error_pre_print;
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62
63 int mapped_symbol_files; /* Try to use mapped symbol files */
64
65 /* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69 static void
70 add_to_objfile_sections (abfd, asect, objfile_p_char)
71 bfd *abfd;
72 sec_ptr asect;
73 PTR objfile_p_char;
74 {
75 struct objfile *objfile = (struct objfile *) objfile_p_char;
76 struct obj_section section;
77 flagword aflag;
78
79 aflag = bfd_get_section_flags (abfd, asect);
80 if (!(aflag & SEC_ALLOC))
81 return;
82 if (0 == bfd_section_size (abfd, asect))
83 return;
84 section.offset = 0;
85 section.objfile = objfile;
86 section.the_bfd_section = asect;
87 section.addr = bfd_section_vma (abfd, asect);
88 section.endaddr = section.addr + bfd_section_size (abfd, asect);
89 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
90 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
91 }
92
93 /* Builds a section table for OBJFILE.
94 Returns 0 if OK, 1 on error (in which case bfd_error contains the
95 error). */
96
97 int
98 build_objfile_section_table (objfile)
99 struct objfile *objfile;
100 {
101 /* objfile->sections can be already set when reading a mapped symbol
102 file. I believe that we do need to rebuild the section table in
103 this case (we rebuild other things derived from the bfd), but we
104 can't free the old one (it's in the psymbol_obstack). So we just
105 waste some memory. */
106
107 objfile->sections_end = 0;
108 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
109 objfile->sections = (struct obj_section *)
110 obstack_finish (&objfile->psymbol_obstack);
111 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
112 return(0);
113 }
114
115 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
116 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
117 struct, fill it in as best we can, link it into the list of all known
118 objfiles, and return a pointer to the new objfile struct. */
119
120 struct objfile *
121 allocate_objfile (abfd, mapped)
122 bfd *abfd;
123 int mapped;
124 {
125 struct objfile *objfile = NULL;
126 struct objfile *last_one = NULL;
127
128 mapped |= mapped_symbol_files;
129
130 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
131 {
132
133 /* If we can support mapped symbol files, try to open/reopen the
134 mapped file that corresponds to the file from which we wish to
135 read symbols. If the objfile is to be mapped, we must malloc
136 the structure itself using the mmap version, and arrange that
137 all memory allocation for the objfile uses the mmap routines.
138 If we are reusing an existing mapped file, from which we get
139 our objfile pointer, we have to make sure that we update the
140 pointers to the alloc/free functions in the obstack, in case
141 these functions have moved within the current gdb. */
142
143 int fd;
144
145 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
146 mapped);
147 if (fd >= 0)
148 {
149 CORE_ADDR mapto;
150 PTR md;
151
152 if (((mapto = map_to_address ()) == 0) ||
153 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
154 {
155 close (fd);
156 }
157 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
158 {
159 /* Update memory corruption handler function addresses. */
160 init_malloc (md);
161 objfile -> md = md;
162 objfile -> mmfd = fd;
163 /* Update pointers to functions to *our* copies */
164 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
165 obstack_freefun (&objfile -> psymbol_obstack, mfree);
166 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
167 obstack_freefun (&objfile -> symbol_obstack, mfree);
168 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
169 obstack_freefun (&objfile -> type_obstack, mfree);
170 /* If already in objfile list, unlink it. */
171 unlink_objfile (objfile);
172 /* Forget things specific to a particular gdb, may have changed. */
173 objfile -> sf = NULL;
174 }
175 else
176 {
177
178 /* Set up to detect internal memory corruption. MUST be
179 done before the first malloc. See comments in
180 init_malloc() and mmcheck(). */
181
182 init_malloc (md);
183
184 objfile = (struct objfile *)
185 xmmalloc (md, sizeof (struct objfile));
186 memset (objfile, 0, sizeof (struct objfile));
187 objfile -> md = md;
188 objfile -> mmfd = fd;
189 objfile -> flags |= OBJF_MAPPED;
190 mmalloc_setkey (objfile -> md, 0, objfile);
191 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
192 0, 0, xmmalloc, mfree,
193 objfile -> md);
194 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
198 0, 0, xmmalloc, mfree,
199 objfile -> md);
200 }
201 }
202
203 if (mapped && (objfile == NULL))
204 {
205 warning ("symbol table for '%s' will not be mapped",
206 bfd_get_filename (abfd));
207 }
208 }
209 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
210
211 if (mapped)
212 {
213 warning ("this version of gdb does not support mapped symbol tables.");
214
215 /* Turn off the global flag so we don't try to do mapped symbol tables
216 any more, which shuts up gdb unless the user specifically gives the
217 "mapped" keyword again. */
218
219 mapped_symbol_files = 0;
220 }
221
222 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
223
224 /* If we don't support mapped symbol files, didn't ask for the file to be
225 mapped, or failed to open the mapped file for some reason, then revert
226 back to an unmapped objfile. */
227
228 if (objfile == NULL)
229 {
230 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
231 memset (objfile, 0, sizeof (struct objfile));
232 objfile -> md = NULL;
233 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
234 free);
235 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
236 free);
237 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
238 free);
239 }
240
241 /* Update the per-objfile information that comes from the bfd, ensuring
242 that any data that is reference is saved in the per-objfile data
243 region. */
244
245 objfile -> obfd = abfd;
246 if (objfile -> name != NULL)
247 {
248 mfree (objfile -> md, objfile -> name);
249 }
250 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
251 objfile -> mtime = bfd_get_mtime (abfd);
252
253 /* Build section table. */
254
255 if (build_objfile_section_table (objfile))
256 {
257 error ("Can't find the file sections in `%s': %s",
258 objfile -> name, bfd_errmsg (bfd_get_error ()));
259 }
260
261 /* Add this file onto the tail of the linked list of other such files. */
262
263 objfile -> next = NULL;
264 if (object_files == NULL)
265 object_files = objfile;
266 else
267 {
268 for (last_one = object_files;
269 last_one -> next;
270 last_one = last_one -> next);
271 last_one -> next = objfile;
272 }
273 return (objfile);
274 }
275
276 /* Put OBJFILE at the front of the list. */
277
278 void
279 objfile_to_front (objfile)
280 struct objfile *objfile;
281 {
282 struct objfile **objp;
283 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
284 {
285 if (*objp == objfile)
286 {
287 /* Unhook it from where it is. */
288 *objp = objfile->next;
289 /* Put it in the front. */
290 objfile->next = object_files;
291 object_files = objfile;
292 break;
293 }
294 }
295 }
296
297 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
298 list.
299
300 It is not a bug, or error, to call this function if OBJFILE is not known
301 to be in the current list. This is done in the case of mapped objfiles,
302 for example, just to ensure that the mapped objfile doesn't appear twice
303 in the list. Since the list is threaded, linking in a mapped objfile
304 twice would create a circular list.
305
306 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
307 unlinking it, just to ensure that we have completely severed any linkages
308 between the OBJFILE and the list. */
309
310 void
311 unlink_objfile (objfile)
312 struct objfile *objfile;
313 {
314 struct objfile** objpp;
315
316 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
317 {
318 if (*objpp == objfile)
319 {
320 *objpp = (*objpp) -> next;
321 objfile -> next = NULL;
322 break;
323 }
324 }
325 }
326
327
328 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
329 that as much as possible is allocated on the symbol_obstack and
330 psymbol_obstack, so that the memory can be efficiently freed.
331
332 Things which we do NOT free because they are not in malloc'd memory
333 or not in memory specific to the objfile include:
334
335 objfile -> sf
336
337 FIXME: If the objfile is using reusable symbol information (via mmalloc),
338 then we need to take into account the fact that more than one process
339 may be using the symbol information at the same time (when mmalloc is
340 extended to support cooperative locking). When more than one process
341 is using the mapped symbol info, we need to be more careful about when
342 we free objects in the reusable area. */
343
344 void
345 free_objfile (objfile)
346 struct objfile *objfile;
347 {
348 /* First do any symbol file specific actions required when we are
349 finished with a particular symbol file. Note that if the objfile
350 is using reusable symbol information (via mmalloc) then each of
351 these routines is responsible for doing the correct thing, either
352 freeing things which are valid only during this particular gdb
353 execution, or leaving them to be reused during the next one. */
354
355 if (objfile -> sf != NULL)
356 {
357 (*objfile -> sf -> sym_finish) (objfile);
358 }
359
360 /* We always close the bfd. */
361
362 if (objfile -> obfd != NULL)
363 {
364 char *name = bfd_get_filename (objfile->obfd);
365 if (!bfd_close (objfile -> obfd))
366 warning ("cannot close \"%s\": %s",
367 name, bfd_errmsg (bfd_get_error ()));
368 free (name);
369 }
370
371 /* Remove it from the chain of all objfiles. */
372
373 unlink_objfile (objfile);
374
375 /* Before the symbol table code was redone to make it easier to
376 selectively load and remove information particular to a specific
377 linkage unit, gdb used to do these things whenever the monolithic
378 symbol table was blown away. How much still needs to be done
379 is unknown, but we play it safe for now and keep each action until
380 it is shown to be no longer needed. */
381
382 #if defined (CLEAR_SOLIB)
383 CLEAR_SOLIB ();
384 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
385 the to_sections for a core file might refer to those bfd's. So
386 detach any core file. */
387 {
388 struct target_ops *t = find_core_target ();
389 if (t != NULL)
390 (t->to_detach) (NULL, 0);
391 }
392 #endif
393 /* I *think* all our callers call clear_symtab_users. If so, no need
394 to call this here. */
395 clear_pc_function_cache ();
396
397 /* The last thing we do is free the objfile struct itself for the
398 non-reusable case, or detach from the mapped file for the reusable
399 case. Note that the mmalloc_detach or the mfree is the last thing
400 we can do with this objfile. */
401
402 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
403
404 if (objfile -> flags & OBJF_MAPPED)
405 {
406 /* Remember the fd so we can close it. We can't close it before
407 doing the detach, and after the detach the objfile is gone. */
408 int mmfd;
409
410 mmfd = objfile -> mmfd;
411 mmalloc_detach (objfile -> md);
412 objfile = NULL;
413 close (mmfd);
414 }
415
416 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
417
418 /* If we still have an objfile, then either we don't support reusable
419 objfiles or this one was not reusable. So free it normally. */
420
421 if (objfile != NULL)
422 {
423 if (objfile -> name != NULL)
424 {
425 mfree (objfile -> md, objfile -> name);
426 }
427 if (objfile->global_psymbols.list)
428 mfree (objfile->md, objfile->global_psymbols.list);
429 if (objfile->static_psymbols.list)
430 mfree (objfile->md, objfile->static_psymbols.list);
431 /* Free the obstacks for non-reusable objfiles */
432 obstack_free (&objfile -> psymbol_obstack, 0);
433 obstack_free (&objfile -> symbol_obstack, 0);
434 obstack_free (&objfile -> type_obstack, 0);
435 mfree (objfile -> md, objfile);
436 objfile = NULL;
437 }
438 }
439
440
441 /* Free all the object files at once and clean up their users. */
442
443 void
444 free_all_objfiles ()
445 {
446 struct objfile *objfile, *temp;
447
448 ALL_OBJFILES_SAFE (objfile, temp)
449 {
450 free_objfile (objfile);
451 }
452 clear_symtab_users ();
453 }
454 \f
455 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
456 entries in new_offsets. */
457 void
458 objfile_relocate (objfile, new_offsets)
459 struct objfile *objfile;
460 struct section_offsets *new_offsets;
461 {
462 struct section_offsets *delta = (struct section_offsets *) alloca
463 (sizeof (struct section_offsets)
464 + objfile->num_sections * sizeof (delta->offsets));
465
466 {
467 int i;
468 int something_changed = 0;
469 for (i = 0; i < objfile->num_sections; ++i)
470 {
471 ANOFFSET (delta, i) =
472 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
473 if (ANOFFSET (delta, i) != 0)
474 something_changed = 1;
475 }
476 if (!something_changed)
477 return;
478 }
479
480 /* OK, get all the symtabs. */
481 {
482 struct symtab *s;
483
484 ALL_OBJFILE_SYMTABS (objfile, s)
485 {
486 struct linetable *l;
487 struct blockvector *bv;
488 int i;
489
490 /* First the line table. */
491 l = LINETABLE (s);
492 if (l)
493 {
494 for (i = 0; i < l->nitems; ++i)
495 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
496 }
497
498 /* Don't relocate a shared blockvector more than once. */
499 if (!s->primary)
500 continue;
501
502 bv = BLOCKVECTOR (s);
503 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
504 {
505 struct block *b;
506 int j;
507
508 b = BLOCKVECTOR_BLOCK (bv, i);
509 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
510 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
511
512 for (j = 0; j < BLOCK_NSYMS (b); ++j)
513 {
514 struct symbol *sym = BLOCK_SYM (b, j);
515 /* The RS6000 code from which this was taken skipped
516 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
517 But I'm leaving out that test, on the theory that
518 they can't possibly pass the tests below. */
519 if ((SYMBOL_CLASS (sym) == LOC_LABEL
520 || SYMBOL_CLASS (sym) == LOC_STATIC)
521 && SYMBOL_SECTION (sym) >= 0)
522 {
523 SYMBOL_VALUE_ADDRESS (sym) +=
524 ANOFFSET (delta, SYMBOL_SECTION (sym));
525 }
526 #ifdef MIPS_EFI_SYMBOL_NAME
527 /* Relocate Extra Function Info for ecoff. */
528
529 else
530 if (SYMBOL_CLASS (sym) == LOC_CONST
531 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
532 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
533 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
534 #endif
535 }
536 }
537 }
538 }
539
540 {
541 struct partial_symtab *p;
542
543 ALL_OBJFILE_PSYMTABS (objfile, p)
544 {
545 /* FIXME: specific to symbol readers which use gdb-stabs.h.
546 We can only get away with it since objfile_relocate is only
547 used on XCOFF, which lacks psymtabs, and for gdb-stabs.h
548 targets. */
549 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
550 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
551 }
552 }
553
554 {
555 struct partial_symbol *psym;
556
557 for (psym = objfile->global_psymbols.list;
558 psym < objfile->global_psymbols.next;
559 psym++)
560 if (SYMBOL_SECTION (psym) >= 0)
561 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
562 for (psym = objfile->static_psymbols.list;
563 psym < objfile->static_psymbols.next;
564 psym++)
565 if (SYMBOL_SECTION (psym) >= 0)
566 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
567 }
568
569 {
570 struct minimal_symbol *msym;
571 ALL_OBJFILE_MSYMBOLS (objfile, msym)
572 if (SYMBOL_SECTION (msym) >= 0)
573 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
574 }
575 /* Relocating different sections by different amounts may cause the symbols
576 to be out of order. */
577 msymbols_sort (objfile);
578
579 {
580 int i;
581 for (i = 0; i < objfile->num_sections; ++i)
582 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
583 }
584
585 {
586 struct obj_section *s;
587 bfd *abfd;
588
589 abfd = objfile->obfd;
590
591 for (s = objfile->sections;
592 s < objfile->sections_end; ++s)
593 {
594 flagword flags;
595
596 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
597
598 if (flags & SEC_CODE)
599 {
600 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
601 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
602 }
603 else if (flags & (SEC_DATA | SEC_LOAD))
604 {
605 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
606 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
607 }
608 else if (flags & SEC_ALLOC)
609 {
610 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
611 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
612 }
613 }
614 }
615
616 if (objfile->ei.entry_point != ~0)
617 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
618
619 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
620 {
621 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
622 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
623 }
624
625 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
626 {
627 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
628 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
629 }
630
631 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
632 {
633 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
634 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
635 }
636 }
637 \f
638 /* Many places in gdb want to test just to see if we have any partial
639 symbols available. This function returns zero if none are currently
640 available, nonzero otherwise. */
641
642 int
643 have_partial_symbols ()
644 {
645 struct objfile *ofp;
646
647 ALL_OBJFILES (ofp)
648 {
649 if (ofp -> psymtabs != NULL)
650 {
651 return 1;
652 }
653 }
654 return 0;
655 }
656
657 /* Many places in gdb want to test just to see if we have any full
658 symbols available. This function returns zero if none are currently
659 available, nonzero otherwise. */
660
661 int
662 have_full_symbols ()
663 {
664 struct objfile *ofp;
665
666 ALL_OBJFILES (ofp)
667 {
668 if (ofp -> symtabs != NULL)
669 {
670 return 1;
671 }
672 }
673 return 0;
674 }
675
676 /* Many places in gdb want to test just to see if we have any minimal
677 symbols available. This function returns zero if none are currently
678 available, nonzero otherwise. */
679
680 int
681 have_minimal_symbols ()
682 {
683 struct objfile *ofp;
684
685 ALL_OBJFILES (ofp)
686 {
687 if (ofp -> msymbols != NULL)
688 {
689 return 1;
690 }
691 }
692 return 0;
693 }
694
695 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
696
697 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
698 of the corresponding symbol file in MTIME, try to open an existing file
699 with the name SYMSFILENAME and verify it is more recent than the base
700 file by checking it's timestamp against MTIME.
701
702 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
703
704 If SYMSFILENAME does exist, but is out of date, we check to see if the
705 user has specified creation of a mapped file. If so, we don't issue
706 any warning message because we will be creating a new mapped file anyway,
707 overwriting the old one. If not, then we issue a warning message so that
708 the user will know why we aren't using this existing mapped symbol file.
709 In either case, we return -1.
710
711 If SYMSFILENAME does exist and is not out of date, but can't be opened for
712 some reason, then prints an appropriate system error message and returns -1.
713
714 Otherwise, returns the open file descriptor. */
715
716 static int
717 open_existing_mapped_file (symsfilename, mtime, mapped)
718 char *symsfilename;
719 long mtime;
720 int mapped;
721 {
722 int fd = -1;
723 struct stat sbuf;
724
725 if (stat (symsfilename, &sbuf) == 0)
726 {
727 if (sbuf.st_mtime < mtime)
728 {
729 if (!mapped)
730 {
731 warning ("mapped symbol file `%s' is out of date, ignored it",
732 symsfilename);
733 }
734 }
735 else if ((fd = open (symsfilename, O_RDWR)) < 0)
736 {
737 if (error_pre_print)
738 {
739 printf_unfiltered (error_pre_print);
740 }
741 print_sys_errmsg (symsfilename, errno);
742 }
743 }
744 return (fd);
745 }
746
747 /* Look for a mapped symbol file that corresponds to FILENAME and is more
748 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
749 use a mapped symbol file for this file, so create a new one if one does
750 not currently exist.
751
752 If found, then return an open file descriptor for the file, otherwise
753 return -1.
754
755 This routine is responsible for implementing the policy that generates
756 the name of the mapped symbol file from the name of a file containing
757 symbols that gdb would like to read. Currently this policy is to append
758 ".syms" to the name of the file.
759
760 This routine is also responsible for implementing the policy that
761 determines where the mapped symbol file is found (the search path).
762 This policy is that when reading an existing mapped file, a file of
763 the correct name in the current directory takes precedence over a
764 file of the correct name in the same directory as the symbol file.
765 When creating a new mapped file, it is always created in the current
766 directory. This helps to minimize the chances of a user unknowingly
767 creating big mapped files in places like /bin and /usr/local/bin, and
768 allows a local copy to override a manually installed global copy (in
769 /bin for example). */
770
771 static int
772 open_mapped_file (filename, mtime, mapped)
773 char *filename;
774 long mtime;
775 int mapped;
776 {
777 int fd;
778 char *symsfilename;
779
780 /* First try to open an existing file in the current directory, and
781 then try the directory where the symbol file is located. */
782
783 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
784 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
785 {
786 free (symsfilename);
787 symsfilename = concat (filename, ".syms", (char *) NULL);
788 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
789 }
790
791 /* If we don't have an open file by now, then either the file does not
792 already exist, or the base file has changed since it was created. In
793 either case, if the user has specified use of a mapped file, then
794 create a new mapped file, truncating any existing one. If we can't
795 create one, print a system error message saying why we can't.
796
797 By default the file is rw for everyone, with the user's umask taking
798 care of turning off the permissions the user wants off. */
799
800 if ((fd < 0) && mapped)
801 {
802 free (symsfilename);
803 symsfilename = concat ("./", basename (filename), ".syms",
804 (char *) NULL);
805 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
806 {
807 if (error_pre_print)
808 {
809 printf_unfiltered (error_pre_print);
810 }
811 print_sys_errmsg (symsfilename, errno);
812 }
813 }
814
815 free (symsfilename);
816 return (fd);
817 }
818
819 /* Return the base address at which we would like the next objfile's
820 mapped data to start.
821
822 For now, we use the kludge that the configuration specifies a base
823 address to which it is safe to map the first mmalloc heap, and an
824 increment to add to this address for each successive heap. There are
825 a lot of issues to deal with here to make this work reasonably, including:
826
827 Avoid memory collisions with existing mapped address spaces
828
829 Reclaim address spaces when their mmalloc heaps are unmapped
830
831 When mmalloc heaps are shared between processes they have to be
832 mapped at the same addresses in each
833
834 Once created, a mmalloc heap that is to be mapped back in must be
835 mapped at the original address. I.E. each objfile will expect to
836 be remapped at it's original address. This becomes a problem if
837 the desired address is already in use.
838
839 etc, etc, etc.
840
841 */
842
843
844 static CORE_ADDR
845 map_to_address ()
846 {
847
848 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
849
850 static CORE_ADDR next = MMAP_BASE_ADDRESS;
851 CORE_ADDR mapto = next;
852
853 next += MMAP_INCREMENT;
854 return (mapto);
855
856 #else
857
858 return (0);
859
860 #endif
861
862 }
863
864 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
865
866 /* Returns a section whose range includes PC or NULL if none found. */
867
868 struct obj_section *
869 find_pc_section(pc)
870 CORE_ADDR pc;
871 {
872 struct obj_section *s;
873 struct objfile *objfile;
874
875 ALL_OBJFILES (objfile)
876 for (s = objfile->sections; s < objfile->sections_end; ++s)
877 if (s->addr <= pc
878 && pc < s->endaddr)
879 return(s);
880
881 return(NULL);
882 }
883
884 /* In SVR4, we recognize a trampoline by it's section name.
885 That is, if the pc is in a section named ".plt" then we are in
886 a trampoline. */
887
888 int
889 in_plt_section(pc, name)
890 CORE_ADDR pc;
891 char *name;
892 {
893 struct obj_section *s;
894 int retval = 0;
895
896 s = find_pc_section(pc);
897
898 retval = (s != NULL
899 && s->the_bfd_section->name != NULL
900 && STREQ (s->the_bfd_section->name, ".plt"));
901 return(retval);
902 }
This page took 0.051051 seconds and 5 git commands to generate.