Split struct symtab into two: struct symtab and compunit_symtab.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 /* Keep a registry of per-objfile data-pointers required by other GDB
57 modules. */
58
59 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile_pspace_info
65 {
66 struct obj_section **sections;
67 int num_sections;
68
69 /* Nonzero if object files have been added since the section map
70 was last updated. */
71 int new_objfiles_available;
72
73 /* Nonzero if the section map MUST be updated before use. */
74 int section_map_dirty;
75
76 /* Nonzero if section map updates should be inhibited if possible. */
77 int inhibit_updates;
78 };
79
80 /* Per-program-space data key. */
81 static const struct program_space_data *objfiles_pspace_data;
82
83 static void
84 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
85 {
86 struct objfile_pspace_info *info = arg;
87
88 xfree (info->sections);
89 xfree (info);
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XCNEW (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_data *objfiles_bfd_data;
115
116 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
117 NULL, and it already has a per-BFD storage object, use that.
118 Otherwise, allocate a new per-BFD storage object. If ABFD is not
119 NULL, the object is allocated on the BFD; otherwise it is allocated
120 on OBJFILE's obstack. Note that it is not safe to call this
121 multiple times for a given OBJFILE -- it can only be called when
122 allocating or re-initializing OBJFILE. */
123
124 static struct objfile_per_bfd_storage *
125 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
126 {
127 struct objfile_per_bfd_storage *storage = NULL;
128
129 if (abfd != NULL)
130 storage = bfd_data (abfd, objfiles_bfd_data);
131
132 if (storage == NULL)
133 {
134 /* If the object requires gdb to do relocations, we simply fall
135 back to not sharing data across users. These cases are rare
136 enough that this seems reasonable. */
137 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
138 {
139 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
140 set_bfd_data (abfd, objfiles_bfd_data, storage);
141 }
142 else
143 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
144 struct objfile_per_bfd_storage);
145
146 /* Look up the gdbarch associated with the BFD. */
147 if (abfd != NULL)
148 storage->gdbarch = gdbarch_from_bfd (abfd);
149
150 obstack_init (&storage->storage_obstack);
151 storage->filename_cache = bcache_xmalloc (NULL, NULL);
152 storage->macro_cache = bcache_xmalloc (NULL, NULL);
153 storage->language_of_main = language_unknown;
154 }
155
156 return storage;
157 }
158
159 /* Free STORAGE. */
160
161 static void
162 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
163 {
164 bcache_xfree (storage->filename_cache);
165 bcache_xfree (storage->macro_cache);
166 if (storage->demangled_names_hash)
167 htab_delete (storage->demangled_names_hash);
168 obstack_free (&storage->storage_obstack, 0);
169 }
170
171 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
172 cleanup function to the BFD registry. */
173
174 static void
175 objfile_bfd_data_free (struct bfd *unused, void *d)
176 {
177 free_objfile_per_bfd_storage (d);
178 }
179
180 /* See objfiles.h. */
181
182 void
183 set_objfile_per_bfd (struct objfile *objfile)
184 {
185 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
186 }
187
188 /* Set the objfile's per-BFD notion of the "main" name and
189 language. */
190
191 void
192 set_objfile_main_name (struct objfile *objfile,
193 const char *name, enum language lang)
194 {
195 if (objfile->per_bfd->name_of_main == NULL
196 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
197 objfile->per_bfd->name_of_main
198 = obstack_copy0 (&objfile->per_bfd->storage_obstack, name, strlen (name));
199 objfile->per_bfd->language_of_main = lang;
200 }
201
202 \f
203
204 /* Called via bfd_map_over_sections to build up the section table that
205 the objfile references. The objfile contains pointers to the start
206 of the table (objfile->sections) and to the first location after
207 the end of the table (objfile->sections_end). */
208
209 static void
210 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
211 struct objfile *objfile, int force)
212 {
213 struct obj_section *section;
214
215 if (!force)
216 {
217 flagword aflag;
218
219 aflag = bfd_get_section_flags (abfd, asect);
220 if (!(aflag & SEC_ALLOC))
221 return;
222 }
223
224 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
225 section->objfile = objfile;
226 section->the_bfd_section = asect;
227 section->ovly_mapped = 0;
228 }
229
230 static void
231 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
232 void *objfilep)
233 {
234 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
235 }
236
237 /* Builds a section table for OBJFILE.
238
239 Note that the OFFSET and OVLY_MAPPED in each table entry are
240 initialized to zero. */
241
242 void
243 build_objfile_section_table (struct objfile *objfile)
244 {
245 int count = gdb_bfd_count_sections (objfile->obfd);
246
247 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
248 count,
249 struct obj_section);
250 objfile->sections_end = (objfile->sections + count);
251 bfd_map_over_sections (objfile->obfd,
252 add_to_objfile_sections, (void *) objfile);
253
254 /* See gdb_bfd_section_index. */
255 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
256 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
257 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
258 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
259 }
260
261 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
262 allocate a new objfile struct, fill it in as best we can, link it
263 into the list of all known objfiles, and return a pointer to the
264 new objfile struct.
265
266 NAME should contain original non-canonicalized filename or other
267 identifier as entered by user. If there is no better source use
268 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
269 NAME content is copied into returned objfile.
270
271 The FLAGS word contains various bits (OBJF_*) that can be taken as
272 requests for specific operations. Other bits like OBJF_SHARED are
273 simply copied through to the new objfile flags member. */
274
275 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
276 by jv-lang.c, to create an artificial objfile used to hold
277 information about dynamically-loaded Java classes. Unfortunately,
278 that branch of this function doesn't get tested very frequently, so
279 it's prone to breakage. (E.g. at one time the name was set to NULL
280 in that situation, which broke a loop over all names in the dynamic
281 library loader.) If you change this function, please try to leave
282 things in a consistent state even if abfd is NULL. */
283
284 struct objfile *
285 allocate_objfile (bfd *abfd, const char *name, int flags)
286 {
287 struct objfile *objfile;
288 char *expanded_name;
289
290 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
291 objfile->psymbol_cache = psymbol_bcache_init ();
292 /* We could use obstack_specify_allocation here instead, but
293 gdb_obstack.h specifies the alloc/dealloc functions. */
294 obstack_init (&objfile->objfile_obstack);
295
296 objfile_alloc_data (objfile);
297
298 if (name == NULL)
299 {
300 gdb_assert (abfd == NULL);
301 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
302 expanded_name = xstrdup ("<<anonymous objfile>>");
303 }
304 else if ((flags & OBJF_NOT_FILENAME) != 0)
305 expanded_name = xstrdup (name);
306 else
307 expanded_name = gdb_abspath (name);
308 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
309 expanded_name,
310 strlen (expanded_name));
311 xfree (expanded_name);
312
313 /* Update the per-objfile information that comes from the bfd, ensuring
314 that any data that is reference is saved in the per-objfile data
315 region. */
316
317 /* Update the per-objfile information that comes from the bfd, ensuring
318 that any data that is reference is saved in the per-objfile data
319 region. */
320
321 objfile->obfd = abfd;
322 gdb_bfd_ref (abfd);
323 if (abfd != NULL)
324 {
325 objfile->mtime = bfd_get_mtime (abfd);
326
327 /* Build section table. */
328 build_objfile_section_table (objfile);
329 }
330
331 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
332 objfile->pspace = current_program_space;
333
334 terminate_minimal_symbol_table (objfile);
335
336 /* Initialize the section indexes for this objfile, so that we can
337 later detect if they are used w/o being properly assigned to. */
338
339 objfile->sect_index_text = -1;
340 objfile->sect_index_data = -1;
341 objfile->sect_index_bss = -1;
342 objfile->sect_index_rodata = -1;
343
344 /* Add this file onto the tail of the linked list of other such files. */
345
346 objfile->next = NULL;
347 if (object_files == NULL)
348 object_files = objfile;
349 else
350 {
351 struct objfile *last_one;
352
353 for (last_one = object_files;
354 last_one->next;
355 last_one = last_one->next);
356 last_one->next = objfile;
357 }
358
359 /* Save passed in flag bits. */
360 objfile->flags |= flags;
361
362 /* Rebuild section map next time we need it. */
363 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
364
365 return objfile;
366 }
367
368 /* Retrieve the gdbarch associated with OBJFILE. */
369
370 struct gdbarch *
371 get_objfile_arch (const struct objfile *objfile)
372 {
373 return objfile->per_bfd->gdbarch;
374 }
375
376 /* If there is a valid and known entry point, function fills *ENTRY_P with it
377 and returns non-zero; otherwise it returns zero. */
378
379 int
380 entry_point_address_query (CORE_ADDR *entry_p)
381 {
382 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
383 return 0;
384
385 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
386 + ANOFFSET (symfile_objfile->section_offsets,
387 symfile_objfile->per_bfd->ei.the_bfd_section_index));
388
389 return 1;
390 }
391
392 /* Get current entry point address. Call error if it is not known. */
393
394 CORE_ADDR
395 entry_point_address (void)
396 {
397 CORE_ADDR retval;
398
399 if (!entry_point_address_query (&retval))
400 error (_("Entry point address is not known."));
401
402 return retval;
403 }
404
405 /* Iterator on PARENT and every separate debug objfile of PARENT.
406 The usage pattern is:
407 for (objfile = parent;
408 objfile;
409 objfile = objfile_separate_debug_iterate (parent, objfile))
410 ...
411 */
412
413 struct objfile *
414 objfile_separate_debug_iterate (const struct objfile *parent,
415 const struct objfile *objfile)
416 {
417 struct objfile *res;
418
419 /* If any, return the first child. */
420 res = objfile->separate_debug_objfile;
421 if (res)
422 return res;
423
424 /* Common case where there is no separate debug objfile. */
425 if (objfile == parent)
426 return NULL;
427
428 /* Return the brother if any. Note that we don't iterate on brothers of
429 the parents. */
430 res = objfile->separate_debug_objfile_link;
431 if (res)
432 return res;
433
434 for (res = objfile->separate_debug_objfile_backlink;
435 res != parent;
436 res = res->separate_debug_objfile_backlink)
437 {
438 gdb_assert (res != NULL);
439 if (res->separate_debug_objfile_link)
440 return res->separate_debug_objfile_link;
441 }
442 return NULL;
443 }
444
445 /* Put one object file before a specified on in the global list.
446 This can be used to make sure an object file is destroyed before
447 another when using ALL_OBJFILES_SAFE to free all objfiles. */
448 void
449 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
450 {
451 struct objfile **objp;
452
453 unlink_objfile (objfile);
454
455 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
456 {
457 if (*objp == before_this)
458 {
459 objfile->next = *objp;
460 *objp = objfile;
461 return;
462 }
463 }
464
465 internal_error (__FILE__, __LINE__,
466 _("put_objfile_before: before objfile not in list"));
467 }
468
469 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
470 list.
471
472 It is not a bug, or error, to call this function if OBJFILE is not known
473 to be in the current list. This is done in the case of mapped objfiles,
474 for example, just to ensure that the mapped objfile doesn't appear twice
475 in the list. Since the list is threaded, linking in a mapped objfile
476 twice would create a circular list.
477
478 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
479 unlinking it, just to ensure that we have completely severed any linkages
480 between the OBJFILE and the list. */
481
482 void
483 unlink_objfile (struct objfile *objfile)
484 {
485 struct objfile **objpp;
486
487 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
488 {
489 if (*objpp == objfile)
490 {
491 *objpp = (*objpp)->next;
492 objfile->next = NULL;
493 return;
494 }
495 }
496
497 internal_error (__FILE__, __LINE__,
498 _("unlink_objfile: objfile already unlinked"));
499 }
500
501 /* Add OBJFILE as a separate debug objfile of PARENT. */
502
503 void
504 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
505 {
506 gdb_assert (objfile && parent);
507
508 /* Must not be already in a list. */
509 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
510 gdb_assert (objfile->separate_debug_objfile_link == NULL);
511 gdb_assert (objfile->separate_debug_objfile == NULL);
512 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
513 gdb_assert (parent->separate_debug_objfile_link == NULL);
514
515 objfile->separate_debug_objfile_backlink = parent;
516 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
517 parent->separate_debug_objfile = objfile;
518
519 /* Put the separate debug object before the normal one, this is so that
520 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
521 put_objfile_before (objfile, parent);
522 }
523
524 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
525 itself. */
526
527 void
528 free_objfile_separate_debug (struct objfile *objfile)
529 {
530 struct objfile *child;
531
532 for (child = objfile->separate_debug_objfile; child;)
533 {
534 struct objfile *next_child = child->separate_debug_objfile_link;
535 free_objfile (child);
536 child = next_child;
537 }
538 }
539
540 /* Destroy an objfile and all the symtabs and psymtabs under it. */
541
542 void
543 free_objfile (struct objfile *objfile)
544 {
545 /* First notify observers that this objfile is about to be freed. */
546 observer_notify_free_objfile (objfile);
547
548 /* Free all separate debug objfiles. */
549 free_objfile_separate_debug (objfile);
550
551 if (objfile->separate_debug_objfile_backlink)
552 {
553 /* We freed the separate debug file, make sure the base objfile
554 doesn't reference it. */
555 struct objfile *child;
556
557 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
558
559 if (child == objfile)
560 {
561 /* OBJFILE is the first child. */
562 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
563 objfile->separate_debug_objfile_link;
564 }
565 else
566 {
567 /* Find OBJFILE in the list. */
568 while (1)
569 {
570 if (child->separate_debug_objfile_link == objfile)
571 {
572 child->separate_debug_objfile_link =
573 objfile->separate_debug_objfile_link;
574 break;
575 }
576 child = child->separate_debug_objfile_link;
577 gdb_assert (child);
578 }
579 }
580 }
581
582 /* Remove any references to this objfile in the global value
583 lists. */
584 preserve_values (objfile);
585
586 /* It still may reference data modules have associated with the objfile and
587 the symbol file data. */
588 forget_cached_source_info_for_objfile (objfile);
589
590 breakpoint_free_objfile (objfile);
591 btrace_free_objfile (objfile);
592
593 /* First do any symbol file specific actions required when we are
594 finished with a particular symbol file. Note that if the objfile
595 is using reusable symbol information (via mmalloc) then each of
596 these routines is responsible for doing the correct thing, either
597 freeing things which are valid only during this particular gdb
598 execution, or leaving them to be reused during the next one. */
599
600 if (objfile->sf != NULL)
601 {
602 (*objfile->sf->sym_finish) (objfile);
603 }
604
605 /* Discard any data modules have associated with the objfile. The function
606 still may reference objfile->obfd. */
607 objfile_free_data (objfile);
608
609 if (objfile->obfd)
610 gdb_bfd_unref (objfile->obfd);
611 else
612 free_objfile_per_bfd_storage (objfile->per_bfd);
613
614 /* Remove it from the chain of all objfiles. */
615
616 unlink_objfile (objfile);
617
618 if (objfile == symfile_objfile)
619 symfile_objfile = NULL;
620
621 /* Before the symbol table code was redone to make it easier to
622 selectively load and remove information particular to a specific
623 linkage unit, gdb used to do these things whenever the monolithic
624 symbol table was blown away. How much still needs to be done
625 is unknown, but we play it safe for now and keep each action until
626 it is shown to be no longer needed. */
627
628 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
629 for example), so we need to call this here. */
630 clear_pc_function_cache ();
631
632 /* Clear globals which might have pointed into a removed objfile.
633 FIXME: It's not clear which of these are supposed to persist
634 between expressions and which ought to be reset each time. */
635 expression_context_block = NULL;
636 innermost_block = NULL;
637
638 /* Check to see if the current_source_symtab belongs to this objfile,
639 and if so, call clear_current_source_symtab_and_line. */
640
641 {
642 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
643
644 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
645 clear_current_source_symtab_and_line ();
646 }
647
648 if (objfile->global_psymbols.list)
649 xfree (objfile->global_psymbols.list);
650 if (objfile->static_psymbols.list)
651 xfree (objfile->static_psymbols.list);
652 /* Free the obstacks for non-reusable objfiles. */
653 psymbol_bcache_free (objfile->psymbol_cache);
654 obstack_free (&objfile->objfile_obstack, 0);
655
656 /* Rebuild section map next time we need it. */
657 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
658
659 /* The last thing we do is free the objfile struct itself. */
660 xfree (objfile);
661 }
662
663 static void
664 do_free_objfile_cleanup (void *obj)
665 {
666 free_objfile (obj);
667 }
668
669 struct cleanup *
670 make_cleanup_free_objfile (struct objfile *obj)
671 {
672 return make_cleanup (do_free_objfile_cleanup, obj);
673 }
674
675 /* Free all the object files at once and clean up their users. */
676
677 void
678 free_all_objfiles (void)
679 {
680 struct objfile *objfile, *temp;
681 struct so_list *so;
682
683 /* Any objfile referencewould become stale. */
684 for (so = master_so_list (); so; so = so->next)
685 gdb_assert (so->objfile == NULL);
686
687 ALL_OBJFILES_SAFE (objfile, temp)
688 {
689 free_objfile (objfile);
690 }
691 clear_symtab_users (0);
692 }
693 \f
694 /* A helper function for objfile_relocate1 that relocates a single
695 symbol. */
696
697 static void
698 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
699 struct section_offsets *delta)
700 {
701 fixup_symbol_section (sym, objfile);
702
703 /* The RS6000 code from which this was taken skipped
704 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
705 But I'm leaving out that test, on the theory that
706 they can't possibly pass the tests below. */
707 if ((SYMBOL_CLASS (sym) == LOC_LABEL
708 || SYMBOL_CLASS (sym) == LOC_STATIC)
709 && SYMBOL_SECTION (sym) >= 0)
710 {
711 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
712 }
713 }
714
715 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
716 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
717 Return non-zero iff any change happened. */
718
719 static int
720 objfile_relocate1 (struct objfile *objfile,
721 const struct section_offsets *new_offsets)
722 {
723 struct obj_section *s;
724 struct section_offsets *delta =
725 ((struct section_offsets *)
726 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
727
728 int i;
729 int something_changed = 0;
730
731 for (i = 0; i < objfile->num_sections; ++i)
732 {
733 delta->offsets[i] =
734 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
735 if (ANOFFSET (delta, i) != 0)
736 something_changed = 1;
737 }
738 if (!something_changed)
739 return 0;
740
741 /* OK, get all the symtabs. */
742 {
743 struct compunit_symtab *cust;
744 struct symtab *s;
745
746 ALL_OBJFILE_FILETABS (objfile, cust, s)
747 {
748 struct linetable *l;
749 int i;
750
751 /* First the line table. */
752 l = SYMTAB_LINETABLE (s);
753 if (l)
754 {
755 for (i = 0; i < l->nitems; ++i)
756 l->item[i].pc += ANOFFSET (delta,
757 COMPUNIT_BLOCK_LINE_SECTION
758 (cust));
759 }
760 }
761
762 ALL_OBJFILE_COMPUNITS (objfile, cust)
763 {
764 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
765 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
766
767 if (BLOCKVECTOR_MAP (bv))
768 addrmap_relocate (BLOCKVECTOR_MAP (bv),
769 ANOFFSET (delta, block_line_section));
770
771 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
772 {
773 struct block *b;
774 struct symbol *sym;
775 struct dict_iterator iter;
776
777 b = BLOCKVECTOR_BLOCK (bv, i);
778 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
779 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
780
781 /* We only want to iterate over the local symbols, not any
782 symbols in included symtabs. */
783 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
784 {
785 relocate_one_symbol (sym, objfile, delta);
786 }
787 }
788 }
789 }
790
791 /* Relocate isolated symbols. */
792 {
793 struct symbol *iter;
794
795 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
796 relocate_one_symbol (iter, objfile, delta);
797 }
798
799 if (objfile->psymtabs_addrmap)
800 addrmap_relocate (objfile->psymtabs_addrmap,
801 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
802
803 if (objfile->sf)
804 objfile->sf->qf->relocate (objfile, new_offsets, delta);
805
806 {
807 int i;
808
809 for (i = 0; i < objfile->num_sections; ++i)
810 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
811 }
812
813 /* Rebuild section map next time we need it. */
814 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
815
816 /* Update the table in exec_ops, used to read memory. */
817 ALL_OBJFILE_OSECTIONS (objfile, s)
818 {
819 int idx = s - objfile->sections;
820
821 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
822 obj_section_addr (s));
823 }
824
825 /* Data changed. */
826 return 1;
827 }
828
829 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
830 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
831
832 The number and ordering of sections does differ between the two objfiles.
833 Only their names match. Also the file offsets will differ (objfile being
834 possibly prelinked but separate_debug_objfile is probably not prelinked) but
835 the in-memory absolute address as specified by NEW_OFFSETS must match both
836 files. */
837
838 void
839 objfile_relocate (struct objfile *objfile,
840 const struct section_offsets *new_offsets)
841 {
842 struct objfile *debug_objfile;
843 int changed = 0;
844
845 changed |= objfile_relocate1 (objfile, new_offsets);
846
847 for (debug_objfile = objfile->separate_debug_objfile;
848 debug_objfile;
849 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
850 {
851 struct section_addr_info *objfile_addrs;
852 struct section_offsets *new_debug_offsets;
853 struct cleanup *my_cleanups;
854
855 objfile_addrs = build_section_addr_info_from_objfile (objfile);
856 my_cleanups = make_cleanup (xfree, objfile_addrs);
857
858 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
859 relative ones must be already created according to debug_objfile. */
860
861 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
862
863 gdb_assert (debug_objfile->num_sections
864 == gdb_bfd_count_sections (debug_objfile->obfd));
865 new_debug_offsets =
866 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
867 make_cleanup (xfree, new_debug_offsets);
868 relative_addr_info_to_section_offsets (new_debug_offsets,
869 debug_objfile->num_sections,
870 objfile_addrs);
871
872 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
873
874 do_cleanups (my_cleanups);
875 }
876
877 /* Relocate breakpoints as necessary, after things are relocated. */
878 if (changed)
879 breakpoint_re_set ();
880 }
881
882 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
883 not touched here.
884 Return non-zero iff any change happened. */
885
886 static int
887 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
888 {
889 struct section_offsets *new_offsets =
890 ((struct section_offsets *)
891 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
892 int i;
893
894 for (i = 0; i < objfile->num_sections; ++i)
895 new_offsets->offsets[i] = slide;
896
897 return objfile_relocate1 (objfile, new_offsets);
898 }
899
900 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
901 SEPARATE_DEBUG_OBJFILEs. */
902
903 void
904 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
905 {
906 struct objfile *debug_objfile;
907 int changed = 0;
908
909 changed |= objfile_rebase1 (objfile, slide);
910
911 for (debug_objfile = objfile->separate_debug_objfile;
912 debug_objfile;
913 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
914 changed |= objfile_rebase1 (debug_objfile, slide);
915
916 /* Relocate breakpoints as necessary, after things are relocated. */
917 if (changed)
918 breakpoint_re_set ();
919 }
920 \f
921 /* Return non-zero if OBJFILE has partial symbols. */
922
923 int
924 objfile_has_partial_symbols (struct objfile *objfile)
925 {
926 if (!objfile->sf)
927 return 0;
928
929 /* If we have not read psymbols, but we have a function capable of reading
930 them, then that is an indication that they are in fact available. Without
931 this function the symbols may have been already read in but they also may
932 not be present in this objfile. */
933 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
934 && objfile->sf->sym_read_psymbols != NULL)
935 return 1;
936
937 return objfile->sf->qf->has_symbols (objfile);
938 }
939
940 /* Return non-zero if OBJFILE has full symbols. */
941
942 int
943 objfile_has_full_symbols (struct objfile *objfile)
944 {
945 return objfile->compunit_symtabs != NULL;
946 }
947
948 /* Return non-zero if OBJFILE has full or partial symbols, either directly
949 or through a separate debug file. */
950
951 int
952 objfile_has_symbols (struct objfile *objfile)
953 {
954 struct objfile *o;
955
956 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
957 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
958 return 1;
959 return 0;
960 }
961
962
963 /* Many places in gdb want to test just to see if we have any partial
964 symbols available. This function returns zero if none are currently
965 available, nonzero otherwise. */
966
967 int
968 have_partial_symbols (void)
969 {
970 struct objfile *ofp;
971
972 ALL_OBJFILES (ofp)
973 {
974 if (objfile_has_partial_symbols (ofp))
975 return 1;
976 }
977 return 0;
978 }
979
980 /* Many places in gdb want to test just to see if we have any full
981 symbols available. This function returns zero if none are currently
982 available, nonzero otherwise. */
983
984 int
985 have_full_symbols (void)
986 {
987 struct objfile *ofp;
988
989 ALL_OBJFILES (ofp)
990 {
991 if (objfile_has_full_symbols (ofp))
992 return 1;
993 }
994 return 0;
995 }
996
997
998 /* This operations deletes all objfile entries that represent solibs that
999 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1000 command. */
1001
1002 void
1003 objfile_purge_solibs (void)
1004 {
1005 struct objfile *objf;
1006 struct objfile *temp;
1007
1008 ALL_OBJFILES_SAFE (objf, temp)
1009 {
1010 /* We assume that the solib package has been purged already, or will
1011 be soon. */
1012
1013 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1014 free_objfile (objf);
1015 }
1016 }
1017
1018
1019 /* Many places in gdb want to test just to see if we have any minimal
1020 symbols available. This function returns zero if none are currently
1021 available, nonzero otherwise. */
1022
1023 int
1024 have_minimal_symbols (void)
1025 {
1026 struct objfile *ofp;
1027
1028 ALL_OBJFILES (ofp)
1029 {
1030 if (ofp->per_bfd->minimal_symbol_count > 0)
1031 {
1032 return 1;
1033 }
1034 }
1035 return 0;
1036 }
1037
1038 /* Qsort comparison function. */
1039
1040 static int
1041 qsort_cmp (const void *a, const void *b)
1042 {
1043 const struct obj_section *sect1 = *(const struct obj_section **) a;
1044 const struct obj_section *sect2 = *(const struct obj_section **) b;
1045 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1046 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1047
1048 if (sect1_addr < sect2_addr)
1049 return -1;
1050 else if (sect1_addr > sect2_addr)
1051 return 1;
1052 else
1053 {
1054 /* Sections are at the same address. This could happen if
1055 A) we have an objfile and a separate debuginfo.
1056 B) we are confused, and have added sections without proper relocation,
1057 or something like that. */
1058
1059 const struct objfile *const objfile1 = sect1->objfile;
1060 const struct objfile *const objfile2 = sect2->objfile;
1061
1062 if (objfile1->separate_debug_objfile == objfile2
1063 || objfile2->separate_debug_objfile == objfile1)
1064 {
1065 /* Case A. The ordering doesn't matter: separate debuginfo files
1066 will be filtered out later. */
1067
1068 return 0;
1069 }
1070
1071 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1072 triage. This section could be slow (since we iterate over all
1073 objfiles in each call to qsort_cmp), but this shouldn't happen
1074 very often (GDB is already in a confused state; one hopes this
1075 doesn't happen at all). If you discover that significant time is
1076 spent in the loops below, do 'set complaints 100' and examine the
1077 resulting complaints. */
1078
1079 if (objfile1 == objfile2)
1080 {
1081 /* Both sections came from the same objfile. We are really confused.
1082 Sort on sequence order of sections within the objfile. */
1083
1084 const struct obj_section *osect;
1085
1086 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1087 if (osect == sect1)
1088 return -1;
1089 else if (osect == sect2)
1090 return 1;
1091
1092 /* We should have found one of the sections before getting here. */
1093 gdb_assert_not_reached ("section not found");
1094 }
1095 else
1096 {
1097 /* Sort on sequence number of the objfile in the chain. */
1098
1099 const struct objfile *objfile;
1100
1101 ALL_OBJFILES (objfile)
1102 if (objfile == objfile1)
1103 return -1;
1104 else if (objfile == objfile2)
1105 return 1;
1106
1107 /* We should have found one of the objfiles before getting here. */
1108 gdb_assert_not_reached ("objfile not found");
1109 }
1110 }
1111
1112 /* Unreachable. */
1113 gdb_assert_not_reached ("unexpected code path");
1114 return 0;
1115 }
1116
1117 /* Select "better" obj_section to keep. We prefer the one that came from
1118 the real object, rather than the one from separate debuginfo.
1119 Most of the time the two sections are exactly identical, but with
1120 prelinking the .rel.dyn section in the real object may have different
1121 size. */
1122
1123 static struct obj_section *
1124 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1125 {
1126 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1127 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1128 || (b->objfile->separate_debug_objfile == a->objfile));
1129 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1130 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1131
1132 if (a->objfile->separate_debug_objfile != NULL)
1133 return a;
1134 return b;
1135 }
1136
1137 /* Return 1 if SECTION should be inserted into the section map.
1138 We want to insert only non-overlay and non-TLS section. */
1139
1140 static int
1141 insert_section_p (const struct bfd *abfd,
1142 const struct bfd_section *section)
1143 {
1144 const bfd_vma lma = bfd_section_lma (abfd, section);
1145
1146 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1147 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1148 /* This is an overlay section. IN_MEMORY check is needed to avoid
1149 discarding sections from the "system supplied DSO" (aka vdso)
1150 on some Linux systems (e.g. Fedora 11). */
1151 return 0;
1152 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1153 /* This is a TLS section. */
1154 return 0;
1155
1156 return 1;
1157 }
1158
1159 /* Filter out overlapping sections where one section came from the real
1160 objfile, and the other from a separate debuginfo file.
1161 Return the size of table after redundant sections have been eliminated. */
1162
1163 static int
1164 filter_debuginfo_sections (struct obj_section **map, int map_size)
1165 {
1166 int i, j;
1167
1168 for (i = 0, j = 0; i < map_size - 1; i++)
1169 {
1170 struct obj_section *const sect1 = map[i];
1171 struct obj_section *const sect2 = map[i + 1];
1172 const struct objfile *const objfile1 = sect1->objfile;
1173 const struct objfile *const objfile2 = sect2->objfile;
1174 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1175 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1176
1177 if (sect1_addr == sect2_addr
1178 && (objfile1->separate_debug_objfile == objfile2
1179 || objfile2->separate_debug_objfile == objfile1))
1180 {
1181 map[j++] = preferred_obj_section (sect1, sect2);
1182 ++i;
1183 }
1184 else
1185 map[j++] = sect1;
1186 }
1187
1188 if (i < map_size)
1189 {
1190 gdb_assert (i == map_size - 1);
1191 map[j++] = map[i];
1192 }
1193
1194 /* The map should not have shrunk to less than half the original size. */
1195 gdb_assert (map_size / 2 <= j);
1196
1197 return j;
1198 }
1199
1200 /* Filter out overlapping sections, issuing a warning if any are found.
1201 Overlapping sections could really be overlay sections which we didn't
1202 classify as such in insert_section_p, or we could be dealing with a
1203 corrupt binary. */
1204
1205 static int
1206 filter_overlapping_sections (struct obj_section **map, int map_size)
1207 {
1208 int i, j;
1209
1210 for (i = 0, j = 0; i < map_size - 1; )
1211 {
1212 int k;
1213
1214 map[j++] = map[i];
1215 for (k = i + 1; k < map_size; k++)
1216 {
1217 struct obj_section *const sect1 = map[i];
1218 struct obj_section *const sect2 = map[k];
1219 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1220 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1221 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1222
1223 gdb_assert (sect1_addr <= sect2_addr);
1224
1225 if (sect1_endaddr <= sect2_addr)
1226 break;
1227 else
1228 {
1229 /* We have an overlap. Report it. */
1230
1231 struct objfile *const objf1 = sect1->objfile;
1232 struct objfile *const objf2 = sect2->objfile;
1233
1234 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1235 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1236
1237 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1238
1239 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1240
1241 complaint (&symfile_complaints,
1242 _("unexpected overlap between:\n"
1243 " (A) section `%s' from `%s' [%s, %s)\n"
1244 " (B) section `%s' from `%s' [%s, %s).\n"
1245 "Will ignore section B"),
1246 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1247 paddress (gdbarch, sect1_addr),
1248 paddress (gdbarch, sect1_endaddr),
1249 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1250 paddress (gdbarch, sect2_addr),
1251 paddress (gdbarch, sect2_endaddr));
1252 }
1253 }
1254 i = k;
1255 }
1256
1257 if (i < map_size)
1258 {
1259 gdb_assert (i == map_size - 1);
1260 map[j++] = map[i];
1261 }
1262
1263 return j;
1264 }
1265
1266
1267 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1268 TLS, overlay and overlapping sections. */
1269
1270 static void
1271 update_section_map (struct program_space *pspace,
1272 struct obj_section ***pmap, int *pmap_size)
1273 {
1274 struct objfile_pspace_info *pspace_info;
1275 int alloc_size, map_size, i;
1276 struct obj_section *s, **map;
1277 struct objfile *objfile;
1278
1279 pspace_info = get_objfile_pspace_data (pspace);
1280 gdb_assert (pspace_info->section_map_dirty != 0
1281 || pspace_info->new_objfiles_available != 0);
1282
1283 map = *pmap;
1284 xfree (map);
1285
1286 alloc_size = 0;
1287 ALL_PSPACE_OBJFILES (pspace, objfile)
1288 ALL_OBJFILE_OSECTIONS (objfile, s)
1289 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1290 alloc_size += 1;
1291
1292 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1293 if (alloc_size == 0)
1294 {
1295 *pmap = NULL;
1296 *pmap_size = 0;
1297 return;
1298 }
1299
1300 map = xmalloc (alloc_size * sizeof (*map));
1301
1302 i = 0;
1303 ALL_PSPACE_OBJFILES (pspace, objfile)
1304 ALL_OBJFILE_OSECTIONS (objfile, s)
1305 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1306 map[i++] = s;
1307
1308 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1309 map_size = filter_debuginfo_sections(map, alloc_size);
1310 map_size = filter_overlapping_sections(map, map_size);
1311
1312 if (map_size < alloc_size)
1313 /* Some sections were eliminated. Trim excess space. */
1314 map = xrealloc (map, map_size * sizeof (*map));
1315 else
1316 gdb_assert (alloc_size == map_size);
1317
1318 *pmap = map;
1319 *pmap_size = map_size;
1320 }
1321
1322 /* Bsearch comparison function. */
1323
1324 static int
1325 bsearch_cmp (const void *key, const void *elt)
1326 {
1327 const CORE_ADDR pc = *(CORE_ADDR *) key;
1328 const struct obj_section *section = *(const struct obj_section **) elt;
1329
1330 if (pc < obj_section_addr (section))
1331 return -1;
1332 if (pc < obj_section_endaddr (section))
1333 return 0;
1334 return 1;
1335 }
1336
1337 /* Returns a section whose range includes PC or NULL if none found. */
1338
1339 struct obj_section *
1340 find_pc_section (CORE_ADDR pc)
1341 {
1342 struct objfile_pspace_info *pspace_info;
1343 struct obj_section *s, **sp;
1344
1345 /* Check for mapped overlay section first. */
1346 s = find_pc_mapped_section (pc);
1347 if (s)
1348 return s;
1349
1350 pspace_info = get_objfile_pspace_data (current_program_space);
1351 if (pspace_info->section_map_dirty
1352 || (pspace_info->new_objfiles_available
1353 && !pspace_info->inhibit_updates))
1354 {
1355 update_section_map (current_program_space,
1356 &pspace_info->sections,
1357 &pspace_info->num_sections);
1358
1359 /* Don't need updates to section map until objfiles are added,
1360 removed or relocated. */
1361 pspace_info->new_objfiles_available = 0;
1362 pspace_info->section_map_dirty = 0;
1363 }
1364
1365 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1366 bsearch be non-NULL. */
1367 if (pspace_info->sections == NULL)
1368 {
1369 gdb_assert (pspace_info->num_sections == 0);
1370 return NULL;
1371 }
1372
1373 sp = (struct obj_section **) bsearch (&pc,
1374 pspace_info->sections,
1375 pspace_info->num_sections,
1376 sizeof (*pspace_info->sections),
1377 bsearch_cmp);
1378 if (sp != NULL)
1379 return *sp;
1380 return NULL;
1381 }
1382
1383
1384 /* Return non-zero if PC is in a section called NAME. */
1385
1386 int
1387 pc_in_section (CORE_ADDR pc, char *name)
1388 {
1389 struct obj_section *s;
1390 int retval = 0;
1391
1392 s = find_pc_section (pc);
1393
1394 retval = (s != NULL
1395 && s->the_bfd_section->name != NULL
1396 && strcmp (s->the_bfd_section->name, name) == 0);
1397 return (retval);
1398 }
1399 \f
1400
1401 /* Set section_map_dirty so section map will be rebuilt next time it
1402 is used. Called by reread_symbols. */
1403
1404 void
1405 objfiles_changed (void)
1406 {
1407 /* Rebuild section map next time we need it. */
1408 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1409 }
1410
1411 /* See comments in objfiles.h. */
1412
1413 void
1414 inhibit_section_map_updates (struct program_space *pspace)
1415 {
1416 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1417 }
1418
1419 /* See comments in objfiles.h. */
1420
1421 void
1422 resume_section_map_updates (struct program_space *pspace)
1423 {
1424 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1425 }
1426
1427 /* See comments in objfiles.h. */
1428
1429 void
1430 resume_section_map_updates_cleanup (void *arg)
1431 {
1432 resume_section_map_updates (arg);
1433 }
1434
1435 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1436 otherwise. */
1437
1438 int
1439 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1440 {
1441 struct obj_section *osect;
1442
1443 if (objfile == NULL)
1444 return 0;
1445
1446 ALL_OBJFILE_OSECTIONS (objfile, osect)
1447 {
1448 if (section_is_overlay (osect) && !section_is_mapped (osect))
1449 continue;
1450
1451 if (obj_section_addr (osect) <= addr
1452 && addr < obj_section_endaddr (osect))
1453 return 1;
1454 }
1455 return 0;
1456 }
1457
1458 int
1459 shared_objfile_contains_address_p (struct program_space *pspace,
1460 CORE_ADDR address)
1461 {
1462 struct objfile *objfile;
1463
1464 ALL_PSPACE_OBJFILES (pspace, objfile)
1465 {
1466 if ((objfile->flags & OBJF_SHARED) != 0
1467 && is_addr_in_objfile (address, objfile))
1468 return 1;
1469 }
1470
1471 return 0;
1472 }
1473
1474 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1475 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1476 searching the objfiles in the order they are stored internally,
1477 ignoring CURRENT_OBJFILE.
1478
1479 On most platorms, it should be close enough to doing the best
1480 we can without some knowledge specific to the architecture. */
1481
1482 void
1483 default_iterate_over_objfiles_in_search_order
1484 (struct gdbarch *gdbarch,
1485 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1486 void *cb_data, struct objfile *current_objfile)
1487 {
1488 int stop = 0;
1489 struct objfile *objfile;
1490
1491 ALL_OBJFILES (objfile)
1492 {
1493 stop = cb (objfile, cb_data);
1494 if (stop)
1495 return;
1496 }
1497 }
1498
1499 /* Return canonical name for OBJFILE. */
1500
1501 const char *
1502 objfile_name (const struct objfile *objfile)
1503 {
1504 if (objfile->obfd != NULL)
1505 return bfd_get_filename (objfile->obfd);
1506
1507 return objfile->original_name;
1508 }
1509
1510 /* Provide a prototype to silence -Wmissing-prototypes. */
1511 extern initialize_file_ftype _initialize_objfiles;
1512
1513 void
1514 _initialize_objfiles (void)
1515 {
1516 objfiles_pspace_data
1517 = register_program_space_data_with_cleanup (NULL,
1518 objfiles_pspace_data_cleanup);
1519
1520 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1521 objfile_bfd_data_free);
1522 }
This page took 0.061039 seconds and 5 git commands to generate.