* elfread.c (record_minimal_symbol_and_info): Guess the section to
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30
31 #include <sys/types.h>
32 #include <sys/stat.h>
33 #include <fcntl.h>
34 #include <obstack.h>
35
36 /* Prototypes for local functions */
37
38 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
39
40 static int
41 open_existing_mapped_file PARAMS ((char *, long, int));
42
43 static int
44 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
45
46 static CORE_ADDR
47 map_to_address PARAMS ((void));
48
49 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
50
51 /* Message to be printed before the error message, when an error occurs. */
52
53 extern char *error_pre_print;
54
55 /* Externally visible variables that are owned by this module.
56 See declarations in objfile.h for more info. */
57
58 struct objfile *object_files; /* Linked list of all objfiles */
59 struct objfile *current_objfile; /* For symbol file being read in */
60 struct objfile *symfile_objfile; /* Main symbol table loaded from */
61
62 int mapped_symbol_files; /* Try to use mapped symbol files */
63
64 /* Locate all mappable sections of a BFD file.
65 objfile_p_char is a char * to get it through
66 bfd_map_over_sections; we cast it back to its proper type. */
67
68 static void
69 add_to_objfile_sections (abfd, asect, objfile_p_char)
70 bfd *abfd;
71 sec_ptr asect;
72 PTR objfile_p_char;
73 {
74 struct objfile *objfile = (struct objfile *) objfile_p_char;
75 struct obj_section section;
76 flagword aflag;
77
78 aflag = bfd_get_section_flags (abfd, asect);
79 /* FIXME, we need to handle BSS segment here...it alloc's but doesn't load */
80 if (!(aflag & SEC_LOAD))
81 return;
82 if (0 == bfd_section_size (abfd, asect))
83 return;
84 section.offset = 0;
85 section.objfile = objfile;
86 section.sec_ptr = asect;
87 section.addr = bfd_section_vma (abfd, asect);
88 section.endaddr = section.addr + bfd_section_size (abfd, asect);
89 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
90 objfile->sections_end = (struct obj_section *) (((int) objfile->sections_end) + 1);
91 }
92
93 /* Builds a section table for OBJFILE.
94 Returns 0 if OK, 1 on error. */
95
96 static int
97 build_objfile_section_table (objfile)
98 struct objfile *objfile;
99 {
100 if (objfile->sections)
101 abort();
102
103 objfile->sections_end = 0;
104 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
105 objfile->sections = (struct obj_section *)
106 obstack_finish (&objfile->psymbol_obstack);
107 objfile->sections_end = objfile->sections + (int) objfile->sections_end;
108 return(0);
109 }
110
111 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
112 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
113 struct, fill it in as best we can, link it into the list of all known
114 objfiles, and return a pointer to the new objfile struct. */
115
116 struct objfile *
117 allocate_objfile (abfd, mapped)
118 bfd *abfd;
119 int mapped;
120 {
121 struct objfile *objfile = NULL;
122 int fd;
123 void *md;
124 CORE_ADDR mapto;
125
126 mapped |= mapped_symbol_files;
127
128 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
129
130 /* If we can support mapped symbol files, try to open/reopen the mapped file
131 that corresponds to the file from which we wish to read symbols. If the
132 objfile is to be mapped, we must malloc the structure itself using the
133 mmap version, and arrange that all memory allocation for the objfile uses
134 the mmap routines. If we are reusing an existing mapped file, from which
135 we get our objfile pointer, we have to make sure that we update the
136 pointers to the alloc/free functions in the obstack, in case these
137 functions have moved within the current gdb. */
138
139 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
140 mapped);
141 if (fd >= 0)
142 {
143 if (((mapto = map_to_address ()) == 0) ||
144 ((md = mmalloc_attach (fd, (void *) mapto)) == NULL))
145 {
146 close (fd);
147 }
148 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
149 {
150 /* Update memory corruption handler function addresses. */
151 init_malloc (md);
152 objfile -> md = md;
153 objfile -> mmfd = fd;
154 /* Update pointers to functions to *our* copies */
155 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
156 obstack_freefun (&objfile -> psymbol_obstack, mfree);
157 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
158 obstack_freefun (&objfile -> symbol_obstack, mfree);
159 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
160 obstack_freefun (&objfile -> type_obstack, mfree);
161 /* If already in objfile list, unlink it. */
162 unlink_objfile (objfile);
163 /* Forget things specific to a particular gdb, may have changed. */
164 objfile -> sf = NULL;
165 }
166 else
167 {
168 /* Set up to detect internal memory corruption. MUST be done before
169 the first malloc. See comments in init_malloc() and mmcheck(). */
170 init_malloc (md);
171 objfile = (struct objfile *) xmmalloc (md, sizeof (struct objfile));
172 memset (objfile, 0, sizeof (struct objfile));
173 objfile -> md = md;
174 objfile -> mmfd = fd;
175 objfile -> flags |= OBJF_MAPPED;
176 mmalloc_setkey (objfile -> md, 0, objfile);
177 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
178 0, 0, xmmalloc, mfree,
179 objfile -> md);
180 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
181 0, 0, xmmalloc, mfree,
182 objfile -> md);
183 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
184 0, 0, xmmalloc, mfree,
185 objfile -> md);
186 }
187 }
188
189 if (mapped && (objfile == NULL))
190 {
191 warning ("symbol table for '%s' will not be mapped",
192 bfd_get_filename (abfd));
193 }
194
195 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
196
197 if (mapped)
198 {
199 warning ("this version of gdb does not support mapped symbol tables.");
200
201 /* Turn off the global flag so we don't try to do mapped symbol tables
202 any more, which shuts up gdb unless the user specifically gives the
203 "mapped" keyword again. */
204
205 mapped_symbol_files = 0;
206 }
207
208 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
209
210 /* If we don't support mapped symbol files, didn't ask for the file to be
211 mapped, or failed to open the mapped file for some reason, then revert
212 back to an unmapped objfile. */
213
214 if (objfile == NULL)
215 {
216 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
217 memset (objfile, 0, sizeof (struct objfile));
218 objfile -> md = NULL;
219 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
220 free);
221 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
222 free);
223 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
224 free);
225 }
226
227 /* Update the per-objfile information that comes from the bfd, ensuring
228 that any data that is reference is saved in the per-objfile data
229 region. */
230
231 objfile -> obfd = abfd;
232 if (objfile -> name != NULL)
233 {
234 mfree (objfile -> md, objfile -> name);
235 }
236 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
237 objfile -> mtime = bfd_get_mtime (abfd);
238
239 /* Build section table. */
240
241 if (build_objfile_section_table (objfile))
242 {
243 error ("Can't find the file sections in `%s': %s",
244 objfile -> name, bfd_errmsg (bfd_error));
245 }
246
247 /* Push this file onto the head of the linked list of other such files. */
248
249 objfile -> next = object_files;
250 object_files = objfile;
251
252 return (objfile);
253 }
254
255 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
256 list.
257
258 It is not a bug, or error, to call this function if OBJFILE is not known
259 to be in the current list. This is done in the case of mapped objfiles,
260 for example, just to ensure that the mapped objfile doesn't appear twice
261 in the list. Since the list is threaded, linking in a mapped objfile
262 twice would create a circular list.
263
264 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
265 unlinking it, just to ensure that we have completely severed any linkages
266 between the OBJFILE and the list. */
267
268 void
269 unlink_objfile (objfile)
270 struct objfile *objfile;
271 {
272 struct objfile** objpp;
273
274 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
275 {
276 if (*objpp == objfile)
277 {
278 *objpp = (*objpp) -> next;
279 objfile -> next = NULL;
280 break;
281 }
282 }
283 }
284
285
286 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
287 that as much as possible is allocated on the symbol_obstack and
288 psymbol_obstack, so that the memory can be efficiently freed.
289
290 Things which we do NOT free because they are not in malloc'd memory
291 or not in memory specific to the objfile include:
292
293 objfile -> sf
294
295 FIXME: If the objfile is using reusable symbol information (via mmalloc),
296 then we need to take into account the fact that more than one process
297 may be using the symbol information at the same time (when mmalloc is
298 extended to support cooperative locking). When more than one process
299 is using the mapped symbol info, we need to be more careful about when
300 we free objects in the reusable area. */
301
302 void
303 free_objfile (objfile)
304 struct objfile *objfile;
305 {
306 int mmfd;
307
308 /* First do any symbol file specific actions required when we are
309 finished with a particular symbol file. Note that if the objfile
310 is using reusable symbol information (via mmalloc) then each of
311 these routines is responsible for doing the correct thing, either
312 freeing things which are valid only during this particular gdb
313 execution, or leaving them to be reused during the next one. */
314
315 if (objfile -> sf != NULL)
316 {
317 (*objfile -> sf -> sym_finish) (objfile);
318 }
319
320 /* We always close the bfd. */
321
322 if (objfile -> obfd != NULL)
323 {
324 char *name = bfd_get_filename (objfile->obfd);
325 bfd_close (objfile -> obfd);
326 free (name);
327 }
328
329 /* Remove it from the chain of all objfiles. */
330
331 unlink_objfile (objfile);
332
333 /* Before the symbol table code was redone to make it easier to
334 selectively load and remove information particular to a specific
335 linkage unit, gdb used to do these things whenever the monolithic
336 symbol table was blown away. How much still needs to be done
337 is unknown, but we play it safe for now and keep each action until
338 it is shown to be no longer needed. */
339
340 #if defined (CLEAR_SOLIB)
341 CLEAR_SOLIB ();
342 #endif
343 clear_pc_function_cache ();
344
345 /* The last thing we do is free the objfile struct itself for the
346 non-reusable case, or detach from the mapped file for the reusable
347 case. Note that the mmalloc_detach or the mfree is the last thing
348 we can do with this objfile. */
349
350 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
351
352 if (objfile -> flags & OBJF_MAPPED)
353 {
354 /* Remember the fd so we can close it. We can't close it before
355 doing the detach, and after the detach the objfile is gone. */
356 mmfd = objfile -> mmfd;
357 mmalloc_detach (objfile -> md);
358 objfile = NULL;
359 close (mmfd);
360 }
361
362 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
363
364 /* If we still have an objfile, then either we don't support reusable
365 objfiles or this one was not reusable. So free it normally. */
366
367 if (objfile != NULL)
368 {
369 if (objfile -> name != NULL)
370 {
371 mfree (objfile -> md, objfile -> name);
372 }
373 if (objfile->global_psymbols.list)
374 mfree (objfile->md, objfile->global_psymbols.list);
375 if (objfile->static_psymbols.list)
376 mfree (objfile->md, objfile->static_psymbols.list);
377 /* Free the obstacks for non-reusable objfiles */
378 obstack_free (&objfile -> psymbol_obstack, 0);
379 obstack_free (&objfile -> symbol_obstack, 0);
380 obstack_free (&objfile -> type_obstack, 0);
381 mfree (objfile -> md, objfile);
382 objfile = NULL;
383 }
384 }
385
386
387 /* Free all the object files at once and clean up their users. */
388
389 void
390 free_all_objfiles ()
391 {
392 struct objfile *objfile, *temp;
393
394 ALL_OBJFILES_SAFE (objfile, temp)
395 {
396 free_objfile (objfile);
397 }
398 clear_symtab_users ();
399 }
400 \f
401 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
402 entries in new_offsets. */
403 void
404 objfile_relocate (objfile, new_offsets)
405 struct objfile *objfile;
406 struct section_offsets *new_offsets;
407 {
408 struct section_offsets *delta = (struct section_offsets *) alloca
409 (sizeof (struct section_offsets)
410 + objfile->num_sections * sizeof (delta->offsets));
411
412 {
413 int i;
414 int something_changed = 0;
415 for (i = 0; i < objfile->num_sections; ++i)
416 {
417 ANOFFSET (delta, i) =
418 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
419 if (ANOFFSET (delta, i) != 0)
420 something_changed = 1;
421 }
422 if (!something_changed)
423 return;
424 }
425
426 /* OK, get all the symtabs. */
427 {
428 struct symtab *s;
429
430 for (s = objfile->symtabs; s; s = s->next)
431 {
432 struct linetable *l;
433 struct blockvector *bv;
434 int i;
435
436 /* First the line table. */
437 l = LINETABLE (s);
438 if (l)
439 {
440 for (i = 0; i < l->nitems; ++i)
441 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
442 }
443
444 /* Don't relocate a shared blockvector more than once. */
445 if (!s->primary)
446 continue;
447
448 bv = BLOCKVECTOR (s);
449 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
450 {
451 struct block *b;
452 int j;
453
454 b = BLOCKVECTOR_BLOCK (bv, i);
455 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
456 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
457
458 for (j = 0; j < BLOCK_NSYMS (b); ++j)
459 {
460 struct symbol *sym = BLOCK_SYM (b, j);
461 /* The RS6000 code from which this was taken skipped
462 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
463 But I'm leaving out that test, on the theory that
464 they can't possibly pass the tests below. */
465 if ((SYMBOL_CLASS (sym) == LOC_LABEL
466 || SYMBOL_CLASS (sym) == LOC_STATIC)
467 && SYMBOL_SECTION (sym) >= 0)
468 {
469 SYMBOL_VALUE_ADDRESS (sym) +=
470 ANOFFSET (delta, SYMBOL_SECTION (sym));
471 }
472 }
473 }
474 }
475 }
476
477 {
478 struct partial_symtab *p;
479
480 ALL_OBJFILE_PSYMTABS (objfile, p)
481 {
482 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
483 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
484 }
485 }
486
487 {
488 struct partial_symbol *psym;
489
490 for (psym = objfile->global_psymbols.list;
491 psym < objfile->global_psymbols.next;
492 psym++)
493 if (SYMBOL_SECTION (psym) >= 0)
494 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
495 for (psym = objfile->static_psymbols.list;
496 psym < objfile->static_psymbols.next;
497 psym++)
498 if (SYMBOL_SECTION (psym) >= 0)
499 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
500 }
501
502 {
503 struct minimal_symbol *msym;
504 ALL_OBJFILE_MSYMBOLS (objfile, msym)
505 if (SYMBOL_SECTION (msym) >= 0)
506 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
507 }
508
509 {
510 int i;
511 for (i = 0; i < objfile->num_sections; ++i)
512 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
513 }
514 }
515 \f
516 /* Many places in gdb want to test just to see if we have any partial
517 symbols available. This function returns zero if none are currently
518 available, nonzero otherwise. */
519
520 int
521 have_partial_symbols ()
522 {
523 struct objfile *ofp;
524
525 ALL_OBJFILES (ofp)
526 {
527 if (ofp -> psymtabs != NULL)
528 {
529 return 1;
530 }
531 }
532 return 0;
533 }
534
535 /* Many places in gdb want to test just to see if we have any full
536 symbols available. This function returns zero if none are currently
537 available, nonzero otherwise. */
538
539 int
540 have_full_symbols ()
541 {
542 struct objfile *ofp;
543
544 ALL_OBJFILES (ofp)
545 {
546 if (ofp -> symtabs != NULL)
547 {
548 return 1;
549 }
550 }
551 return 0;
552 }
553
554 /* Many places in gdb want to test just to see if we have any minimal
555 symbols available. This function returns zero if none are currently
556 available, nonzero otherwise. */
557
558 int
559 have_minimal_symbols ()
560 {
561 struct objfile *ofp;
562
563 ALL_OBJFILES (ofp)
564 {
565 if (ofp -> msymbols != NULL)
566 {
567 return 1;
568 }
569 }
570 return 0;
571 }
572
573 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
574
575 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
576 of the corresponding symbol file in MTIME, try to open an existing file
577 with the name SYMSFILENAME and verify it is more recent than the base
578 file by checking it's timestamp against MTIME.
579
580 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
581
582 If SYMSFILENAME does exist, but is out of date, we check to see if the
583 user has specified creation of a mapped file. If so, we don't issue
584 any warning message because we will be creating a new mapped file anyway,
585 overwriting the old one. If not, then we issue a warning message so that
586 the user will know why we aren't using this existing mapped symbol file.
587 In either case, we return -1.
588
589 If SYMSFILENAME does exist and is not out of date, but can't be opened for
590 some reason, then prints an appropriate system error message and returns -1.
591
592 Otherwise, returns the open file descriptor. */
593
594 static int
595 open_existing_mapped_file (symsfilename, mtime, mapped)
596 char *symsfilename;
597 long mtime;
598 int mapped;
599 {
600 int fd = -1;
601 struct stat sbuf;
602
603 if (stat (symsfilename, &sbuf) == 0)
604 {
605 if (sbuf.st_mtime < mtime)
606 {
607 if (!mapped)
608 {
609 warning ("mapped symbol file `%s' is out of date, ignored it",
610 symsfilename);
611 }
612 }
613 else if ((fd = open (symsfilename, O_RDWR)) < 0)
614 {
615 if (error_pre_print)
616 {
617 printf (error_pre_print);
618 }
619 print_sys_errmsg (symsfilename, errno);
620 }
621 }
622 return (fd);
623 }
624
625 /* Look for a mapped symbol file that corresponds to FILENAME and is more
626 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
627 use a mapped symbol file for this file, so create a new one if one does
628 not currently exist.
629
630 If found, then return an open file descriptor for the file, otherwise
631 return -1.
632
633 This routine is responsible for implementing the policy that generates
634 the name of the mapped symbol file from the name of a file containing
635 symbols that gdb would like to read. Currently this policy is to append
636 ".syms" to the name of the file.
637
638 This routine is also responsible for implementing the policy that
639 determines where the mapped symbol file is found (the search path).
640 This policy is that when reading an existing mapped file, a file of
641 the correct name in the current directory takes precedence over a
642 file of the correct name in the same directory as the symbol file.
643 When creating a new mapped file, it is always created in the current
644 directory. This helps to minimize the chances of a user unknowingly
645 creating big mapped files in places like /bin and /usr/local/bin, and
646 allows a local copy to override a manually installed global copy (in
647 /bin for example). */
648
649 static int
650 open_mapped_file (filename, mtime, mapped)
651 char *filename;
652 long mtime;
653 int mapped;
654 {
655 int fd;
656 char *symsfilename;
657
658 /* First try to open an existing file in the current directory, and
659 then try the directory where the symbol file is located. */
660
661 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
662 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
663 {
664 free (symsfilename);
665 symsfilename = concat (filename, ".syms", (char *) NULL);
666 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
667 }
668
669 /* If we don't have an open file by now, then either the file does not
670 already exist, or the base file has changed since it was created. In
671 either case, if the user has specified use of a mapped file, then
672 create a new mapped file, truncating any existing one. If we can't
673 create one, print a system error message saying why we can't.
674
675 By default the file is rw for everyone, with the user's umask taking
676 care of turning off the permissions the user wants off. */
677
678 if ((fd < 0) && mapped)
679 {
680 free (symsfilename);
681 symsfilename = concat ("./", basename (filename), ".syms",
682 (char *) NULL);
683 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
684 {
685 if (error_pre_print)
686 {
687 printf (error_pre_print);
688 }
689 print_sys_errmsg (symsfilename, errno);
690 }
691 }
692
693 free (symsfilename);
694 return (fd);
695 }
696
697 /* Return the base address at which we would like the next objfile's
698 mapped data to start.
699
700 For now, we use the kludge that the configuration specifies a base
701 address to which it is safe to map the first mmalloc heap, and an
702 increment to add to this address for each successive heap. There are
703 a lot of issues to deal with here to make this work reasonably, including:
704
705 Avoid memory collisions with existing mapped address spaces
706
707 Reclaim address spaces when their mmalloc heaps are unmapped
708
709 When mmalloc heaps are shared between processes they have to be
710 mapped at the same addresses in each
711
712 Once created, a mmalloc heap that is to be mapped back in must be
713 mapped at the original address. I.E. each objfile will expect to
714 be remapped at it's original address. This becomes a problem if
715 the desired address is already in use.
716
717 etc, etc, etc.
718
719 */
720
721
722 static CORE_ADDR
723 map_to_address ()
724 {
725
726 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
727
728 static CORE_ADDR next = MMAP_BASE_ADDRESS;
729 CORE_ADDR mapto = next;
730
731 next += MMAP_INCREMENT;
732 return (mapto);
733
734 #else
735
736 return (0);
737
738 #endif
739
740 }
741
742 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
743
744 /* Returns a section whose range includes PC or NULL if none found. */
745
746 struct obj_section *
747 find_pc_section(pc)
748 CORE_ADDR pc;
749 {
750 struct obj_section *s;
751 struct objfile *objfile;
752
753 ALL_OBJFILES (objfile)
754 for (s = objfile->sections; s < objfile->sections_end; ++s)
755 if (s->addr <= pc
756 && pc < s->endaddr)
757 return(s);
758
759 return(NULL);
760 }
This page took 0.044793 seconds and 5 git commands to generate.