Add section table to objfile struct. Use it for find_pc_section.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29
30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <fcntl.h>
33 #include <obstack.h>
34
35 /* Prototypes for local functions */
36
37 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
38
39 static int
40 open_existing_mapped_file PARAMS ((char *, long, int));
41
42 static int
43 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
44
45 static CORE_ADDR
46 map_to_address PARAMS ((void));
47
48 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
49
50 /* Message to be printed before the error message, when an error occurs. */
51
52 extern char *error_pre_print;
53
54 /* Externally visible variables that are owned by this module.
55 See declarations in objfile.h for more info. */
56
57 struct objfile *object_files; /* Linked list of all objfiles */
58 struct objfile *current_objfile; /* For symbol file being read in */
59 struct objfile *symfile_objfile; /* Main symbol table loaded from */
60
61 int mapped_symbol_files; /* Try to use mapped symbol files */
62
63 /* Locate all mappable sections of a BFD file.
64 objfile_p_char is a char * to get it through
65 bfd_map_over_sections; we cast it back to its proper type. */
66
67 static void
68 add_to_objfile_sections (abfd, asect, objfile_p_char)
69 bfd *abfd;
70 sec_ptr asect;
71 PTR objfile_p_char;
72 {
73 struct objfile *objfile = (struct objfile *) objfile_p_char;
74 struct obj_section section;
75 flagword aflag;
76
77 aflag = bfd_get_section_flags (abfd, asect);
78 /* FIXME, we need to handle BSS segment here...it alloc's but doesn't load */
79 if (!(aflag & SEC_LOAD))
80 return;
81 if (0 == bfd_section_size (abfd, asect))
82 return;
83 section.offset = 0;
84 section.sec_ptr = asect;
85 section.addr = bfd_section_vma (abfd, asect);
86 section.endaddr = section.addr + bfd_section_size (abfd, asect);
87 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
88 objfile->sections_end = (struct obj_section *) (((int) objfile->sections_end) + 1);
89 }
90
91 /* Builds a section table for OBJFILE.
92 Returns 0 if OK, 1 on error. */
93
94 static int
95 build_objfile_section_table (objfile)
96 struct objfile *objfile;
97 {
98 if (objfile->sections)
99 abort();
100
101 objfile->sections_end = 0;
102 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
103 objfile->sections = obstack_finish (&objfile->psymbol_obstack);
104 objfile->sections_end = objfile->sections + (int) objfile->sections_end;
105 return(0);
106 }
107
108 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
109 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
110 struct, fill it in as best we can, link it into the list of all known
111 objfiles, and return a pointer to the new objfile struct. */
112
113 struct objfile *
114 allocate_objfile (abfd, mapped)
115 bfd *abfd;
116 int mapped;
117 {
118 struct objfile *objfile = NULL;
119 int fd;
120 void *md;
121 CORE_ADDR mapto;
122
123 mapped |= mapped_symbol_files;
124
125 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
126
127 /* If we can support mapped symbol files, try to open/reopen the mapped file
128 that corresponds to the file from which we wish to read symbols. If the
129 objfile is to be mapped, we must malloc the structure itself using the
130 mmap version, and arrange that all memory allocation for the objfile uses
131 the mmap routines. If we are reusing an existing mapped file, from which
132 we get our objfile pointer, we have to make sure that we update the
133 pointers to the alloc/free functions in the obstack, in case these
134 functions have moved within the current gdb. */
135
136 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
137 mapped);
138 if (fd >= 0)
139 {
140 if (((mapto = map_to_address ()) == 0) ||
141 ((md = mmalloc_attach (fd, (void *) mapto)) == NULL))
142 {
143 close (fd);
144 }
145 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
146 {
147 /* Update memory corruption handler function addresses. */
148 init_malloc (md);
149 objfile -> md = md;
150 objfile -> mmfd = fd;
151 /* Update pointers to functions to *our* copies */
152 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
153 obstack_freefun (&objfile -> psymbol_obstack, mfree);
154 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
155 obstack_freefun (&objfile -> symbol_obstack, mfree);
156 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
157 obstack_freefun (&objfile -> type_obstack, mfree);
158 /* If already in objfile list, unlink it. */
159 unlink_objfile (objfile);
160 /* Forget things specific to a particular gdb, may have changed. */
161 objfile -> sf = NULL;
162 }
163 else
164 {
165 /* Set up to detect internal memory corruption. MUST be done before
166 the first malloc. See comments in init_malloc() and mmcheck(). */
167 init_malloc (md);
168 objfile = (struct objfile *) xmmalloc (md, sizeof (struct objfile));
169 memset (objfile, 0, sizeof (struct objfile));
170 objfile -> md = md;
171 objfile -> mmfd = fd;
172 objfile -> flags |= OBJF_MAPPED;
173 mmalloc_setkey (objfile -> md, 0, objfile);
174 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
175 0, 0, xmmalloc, mfree,
176 objfile -> md);
177 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
178 0, 0, xmmalloc, mfree,
179 objfile -> md);
180 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
181 0, 0, xmmalloc, mfree,
182 objfile -> md);
183 }
184 }
185
186 if (mapped && (objfile == NULL))
187 {
188 warning ("symbol table for '%s' will not be mapped",
189 bfd_get_filename (abfd));
190 }
191
192 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
193
194 if (mapped)
195 {
196 warning ("this version of gdb does not support mapped symbol tables.");
197
198 /* Turn off the global flag so we don't try to do mapped symbol tables
199 any more, which shuts up gdb unless the user specifically gives the
200 "mapped" keyword again. */
201
202 mapped_symbol_files = 0;
203 }
204
205 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
206
207 /* If we don't support mapped symbol files, didn't ask for the file to be
208 mapped, or failed to open the mapped file for some reason, then revert
209 back to an unmapped objfile. */
210
211 if (objfile == NULL)
212 {
213 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
214 memset (objfile, 0, sizeof (struct objfile));
215 objfile -> md = NULL;
216 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
217 free);
218 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
219 free);
220 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
221 free);
222 }
223
224 /* Update the per-objfile information that comes from the bfd, ensuring
225 that any data that is reference is saved in the per-objfile data
226 region. */
227
228 objfile -> obfd = abfd;
229 if (objfile -> name != NULL)
230 {
231 mfree (objfile -> md, objfile -> name);
232 }
233 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
234 objfile -> mtime = bfd_get_mtime (abfd);
235
236 /* Build section table. */
237
238 if (build_objfile_section_table (objfile))
239 {
240 error ("Can't find the file sections in `%s': %s",
241 objfile -> name, bfd_errmsg (bfd_error));
242 }
243
244 /* Push this file onto the head of the linked list of other such files. */
245
246 objfile -> next = object_files;
247 object_files = objfile;
248
249 return (objfile);
250 }
251
252 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
253 list.
254
255 It is not a bug, or error, to call this function if OBJFILE is not known
256 to be in the current list. This is done in the case of mapped objfiles,
257 for example, just to ensure that the mapped objfile doesn't appear twice
258 in the list. Since the list is threaded, linking in a mapped objfile
259 twice would create a circular list.
260
261 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
262 unlinking it, just to ensure that we have completely severed any linkages
263 between the OBJFILE and the list. */
264
265 void
266 unlink_objfile (objfile)
267 struct objfile *objfile;
268 {
269 struct objfile** objpp;
270
271 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
272 {
273 if (*objpp == objfile)
274 {
275 *objpp = (*objpp) -> next;
276 objfile -> next = NULL;
277 break;
278 }
279 }
280 }
281
282
283 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
284 that as much as possible is allocated on the symbol_obstack and
285 psymbol_obstack, so that the memory can be efficiently freed.
286
287 Things which we do NOT free because they are not in malloc'd memory
288 or not in memory specific to the objfile include:
289
290 objfile -> sf
291
292 FIXME: If the objfile is using reusable symbol information (via mmalloc),
293 then we need to take into account the fact that more than one process
294 may be using the symbol information at the same time (when mmalloc is
295 extended to support cooperative locking). When more than one process
296 is using the mapped symbol info, we need to be more careful about when
297 we free objects in the reusable area. */
298
299 void
300 free_objfile (objfile)
301 struct objfile *objfile;
302 {
303 int mmfd;
304
305 /* First do any symbol file specific actions required when we are
306 finished with a particular symbol file. Note that if the objfile
307 is using reusable symbol information (via mmalloc) then each of
308 these routines is responsible for doing the correct thing, either
309 freeing things which are valid only during this particular gdb
310 execution, or leaving them to be reused during the next one. */
311
312 if (objfile -> sf != NULL)
313 {
314 (*objfile -> sf -> sym_finish) (objfile);
315 }
316
317 /* We always close the bfd. */
318
319 if (objfile -> obfd != NULL)
320 {
321 char *name = bfd_get_filename (objfile->obfd);
322 bfd_close (objfile -> obfd);
323 free (name);
324 }
325
326 /* Remove it from the chain of all objfiles. */
327
328 unlink_objfile (objfile);
329
330 /* Before the symbol table code was redone to make it easier to
331 selectively load and remove information particular to a specific
332 linkage unit, gdb used to do these things whenever the monolithic
333 symbol table was blown away. How much still needs to be done
334 is unknown, but we play it safe for now and keep each action until
335 it is shown to be no longer needed. */
336
337 clear_symtab_users_once ();
338 #if defined (CLEAR_SOLIB)
339 CLEAR_SOLIB ();
340 #endif
341 clear_pc_function_cache ();
342
343 /* The last thing we do is free the objfile struct itself for the
344 non-reusable case, or detach from the mapped file for the reusable
345 case. Note that the mmalloc_detach or the mfree is the last thing
346 we can do with this objfile. */
347
348 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
349
350 if (objfile -> flags & OBJF_MAPPED)
351 {
352 /* Remember the fd so we can close it. We can't close it before
353 doing the detach, and after the detach the objfile is gone. */
354 mmfd = objfile -> mmfd;
355 mmalloc_detach (objfile -> md);
356 objfile = NULL;
357 close (mmfd);
358 }
359
360 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
361
362 /* If we still have an objfile, then either we don't support reusable
363 objfiles or this one was not reusable. So free it normally. */
364
365 if (objfile != NULL)
366 {
367 if (objfile -> name != NULL)
368 {
369 mfree (objfile -> md, objfile -> name);
370 }
371 if (objfile->global_psymbols.list)
372 mfree (objfile->md, objfile->global_psymbols.list);
373 if (objfile->static_psymbols.list)
374 mfree (objfile->md, objfile->static_psymbols.list);
375 /* Free the obstacks for non-reusable objfiles */
376 obstack_free (&objfile -> psymbol_obstack, 0);
377 obstack_free (&objfile -> symbol_obstack, 0);
378 obstack_free (&objfile -> type_obstack, 0);
379 mfree (objfile -> md, objfile);
380 objfile = NULL;
381 }
382 }
383
384
385 /* Free all the object files at once. */
386
387 void
388 free_all_objfiles ()
389 {
390 struct objfile *objfile, *temp;
391
392 ALL_OBJFILES_SAFE (objfile, temp)
393 {
394 free_objfile (objfile);
395 }
396 }
397 \f
398 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
399 entries in new_offsets. */
400 void
401 objfile_relocate (objfile, new_offsets)
402 struct objfile *objfile;
403 struct section_offsets *new_offsets;
404 {
405 struct section_offsets *delta = (struct section_offsets *) alloca
406 (sizeof (struct section_offsets)
407 + objfile->num_sections * sizeof (delta->offsets));
408
409 {
410 int i;
411 int something_changed = 0;
412 for (i = 0; i < objfile->num_sections; ++i)
413 {
414 ANOFFSET (delta, i) =
415 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
416 if (ANOFFSET (delta, i) != 0)
417 something_changed = 1;
418 }
419 if (!something_changed)
420 return;
421 }
422
423 /* OK, get all the symtabs. */
424 {
425 struct symtab *s;
426
427 for (s = objfile->symtabs; s; s = s->next)
428 {
429 struct linetable *l;
430 struct blockvector *bv;
431 int i;
432
433 /* First the line table. */
434 l = LINETABLE (s);
435 if (l)
436 {
437 for (i = 0; i < l->nitems; ++i)
438 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
439 }
440
441 /* Don't relocate a shared blockvector more than once. */
442 if (!s->primary)
443 continue;
444
445 bv = BLOCKVECTOR (s);
446 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
447 {
448 struct block *b;
449 int j;
450
451 b = BLOCKVECTOR_BLOCK (bv, i);
452 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
453 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
454
455 for (j = 0; j < BLOCK_NSYMS (b); ++j)
456 {
457 struct symbol *sym = BLOCK_SYM (b, j);
458 /* The RS6000 code from which this was taken skipped
459 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
460 But I'm leaving out that test, on the theory that
461 they can't possibly pass the tests below. */
462 if ((SYMBOL_CLASS (sym) == LOC_LABEL
463 || SYMBOL_CLASS (sym) == LOC_STATIC)
464 && SYMBOL_SECTION (sym) >= 0)
465 {
466 SYMBOL_VALUE_ADDRESS (sym) +=
467 ANOFFSET (delta, SYMBOL_SECTION (sym));
468 }
469 }
470 }
471 }
472 }
473
474 {
475 struct minimal_symbol *msym;
476 ALL_OBJFILE_MSYMBOLS (objfile, msym)
477 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
478 }
479
480 {
481 int i;
482 for (i = 0; i < objfile->num_sections; ++i)
483 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
484 }
485 }
486 \f
487 /* Many places in gdb want to test just to see if we have any partial
488 symbols available. This function returns zero if none are currently
489 available, nonzero otherwise. */
490
491 int
492 have_partial_symbols ()
493 {
494 struct objfile *ofp;
495
496 ALL_OBJFILES (ofp)
497 {
498 if (ofp -> psymtabs != NULL)
499 {
500 return 1;
501 }
502 }
503 return 0;
504 }
505
506 /* Many places in gdb want to test just to see if we have any full
507 symbols available. This function returns zero if none are currently
508 available, nonzero otherwise. */
509
510 int
511 have_full_symbols ()
512 {
513 struct objfile *ofp;
514
515 ALL_OBJFILES (ofp)
516 {
517 if (ofp -> symtabs != NULL)
518 {
519 return 1;
520 }
521 }
522 return 0;
523 }
524
525 /* Many places in gdb want to test just to see if we have any minimal
526 symbols available. This function returns zero if none are currently
527 available, nonzero otherwise. */
528
529 int
530 have_minimal_symbols ()
531 {
532 struct objfile *ofp;
533
534 ALL_OBJFILES (ofp)
535 {
536 if (ofp -> msymbols != NULL)
537 {
538 return 1;
539 }
540 }
541 return 0;
542 }
543
544 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
545
546 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
547 of the corresponding symbol file in MTIME, try to open an existing file
548 with the name SYMSFILENAME and verify it is more recent than the base
549 file by checking it's timestamp against MTIME.
550
551 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
552
553 If SYMSFILENAME does exist, but is out of date, we check to see if the
554 user has specified creation of a mapped file. If so, we don't issue
555 any warning message because we will be creating a new mapped file anyway,
556 overwriting the old one. If not, then we issue a warning message so that
557 the user will know why we aren't using this existing mapped symbol file.
558 In either case, we return -1.
559
560 If SYMSFILENAME does exist and is not out of date, but can't be opened for
561 some reason, then prints an appropriate system error message and returns -1.
562
563 Otherwise, returns the open file descriptor. */
564
565 static int
566 open_existing_mapped_file (symsfilename, mtime, mapped)
567 char *symsfilename;
568 long mtime;
569 int mapped;
570 {
571 int fd = -1;
572 struct stat sbuf;
573
574 if (stat (symsfilename, &sbuf) == 0)
575 {
576 if (sbuf.st_mtime < mtime)
577 {
578 if (!mapped)
579 {
580 warning ("mapped symbol file `%s' is out of date, ignored it",
581 symsfilename);
582 }
583 }
584 else if ((fd = open (symsfilename, O_RDWR)) < 0)
585 {
586 if (error_pre_print)
587 {
588 printf (error_pre_print);
589 }
590 print_sys_errmsg (symsfilename, errno);
591 }
592 }
593 return (fd);
594 }
595
596 /* Look for a mapped symbol file that corresponds to FILENAME and is more
597 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
598 use a mapped symbol file for this file, so create a new one if one does
599 not currently exist.
600
601 If found, then return an open file descriptor for the file, otherwise
602 return -1.
603
604 This routine is responsible for implementing the policy that generates
605 the name of the mapped symbol file from the name of a file containing
606 symbols that gdb would like to read. Currently this policy is to append
607 ".syms" to the name of the file.
608
609 This routine is also responsible for implementing the policy that
610 determines where the mapped symbol file is found (the search path).
611 This policy is that when reading an existing mapped file, a file of
612 the correct name in the current directory takes precedence over a
613 file of the correct name in the same directory as the symbol file.
614 When creating a new mapped file, it is always created in the current
615 directory. This helps to minimize the chances of a user unknowingly
616 creating big mapped files in places like /bin and /usr/local/bin, and
617 allows a local copy to override a manually installed global copy (in
618 /bin for example). */
619
620 static int
621 open_mapped_file (filename, mtime, mapped)
622 char *filename;
623 long mtime;
624 int mapped;
625 {
626 int fd;
627 char *symsfilename;
628
629 /* First try to open an existing file in the current directory, and
630 then try the directory where the symbol file is located. */
631
632 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
633 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
634 {
635 free (symsfilename);
636 symsfilename = concat (filename, ".syms", (char *) NULL);
637 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
638 }
639
640 /* If we don't have an open file by now, then either the file does not
641 already exist, or the base file has changed since it was created. In
642 either case, if the user has specified use of a mapped file, then
643 create a new mapped file, truncating any existing one. If we can't
644 create one, print a system error message saying why we can't.
645
646 By default the file is rw for everyone, with the user's umask taking
647 care of turning off the permissions the user wants off. */
648
649 if ((fd < 0) && mapped)
650 {
651 free (symsfilename);
652 symsfilename = concat ("./", basename (filename), ".syms",
653 (char *) NULL);
654 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
655 {
656 if (error_pre_print)
657 {
658 printf (error_pre_print);
659 }
660 print_sys_errmsg (symsfilename, errno);
661 }
662 }
663
664 free (symsfilename);
665 return (fd);
666 }
667
668 /* Return the base address at which we would like the next objfile's
669 mapped data to start.
670
671 For now, we use the kludge that the configuration specifies a base
672 address to which it is safe to map the first mmalloc heap, and an
673 increment to add to this address for each successive heap. There are
674 a lot of issues to deal with here to make this work reasonably, including:
675
676 Avoid memory collisions with existing mapped address spaces
677
678 Reclaim address spaces when their mmalloc heaps are unmapped
679
680 When mmalloc heaps are shared between processes they have to be
681 mapped at the same addresses in each
682
683 Once created, a mmalloc heap that is to be mapped back in must be
684 mapped at the original address. I.E. each objfile will expect to
685 be remapped at it's original address. This becomes a problem if
686 the desired address is already in use.
687
688 etc, etc, etc.
689
690 */
691
692
693 static CORE_ADDR
694 map_to_address ()
695 {
696
697 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
698
699 static CORE_ADDR next = MMAP_BASE_ADDRESS;
700 CORE_ADDR mapto = next;
701
702 next += MMAP_INCREMENT;
703 return (mapto);
704
705 #else
706
707 return (0);
708
709 #endif
710
711 }
712
713 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
714
715 /* Returns a section whose range includes PC or NULL if none found. */
716
717 sec_ptr
718 find_pc_section(pc)
719 CORE_ADDR pc;
720 {
721 struct obj_section *s;
722 struct objfile *objfile;
723
724 ALL_OBJFILES (objfile)
725 for (s = objfile->sections; s < objfile->sections_end; ++s)
726 if (s->addr <= pc
727 && pc < s->endaddr)
728 return(s->sec_ptr);
729
730 return(NULL);
731 }
This page took 0.04349 seconds and 5 git commands to generate.