In objfile_relocate(), don't assume that offsets associated with one
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32
33 #include <sys/types.h>
34 #include "gdb_stat.h"
35 #include <fcntl.h>
36 #include "obstack.h"
37 #include "gdb_string.h"
38
39 #include "breakpoint.h"
40
41 /* Prototypes for local functions */
42
43 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
45 static int open_existing_mapped_file (char *, long, int);
46
47 static int open_mapped_file (char *filename, long mtime, int flags);
48
49 static PTR map_to_file (int);
50
51 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
52
53 static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
54
55 /* Externally visible variables that are owned by this module.
56 See declarations in objfile.h for more info. */
57
58 struct objfile *object_files; /* Linked list of all objfiles */
59 struct objfile *current_objfile; /* For symbol file being read in */
60 struct objfile *symfile_objfile; /* Main symbol table loaded from */
61 struct objfile *rt_common_objfile; /* For runtime common symbols */
62
63 int mapped_symbol_files; /* Try to use mapped symbol files */
64
65 /* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69 #ifndef TARGET_KEEP_SECTION
70 #define TARGET_KEEP_SECTION(ASECT) 0
71 #endif
72
73 /* Called via bfd_map_over_sections to build up the section table that
74 the objfile references. The objfile contains pointers to the start
75 of the table (objfile->sections) and to the first location after
76 the end of the table (objfile->sections_end). */
77
78 static void
79 add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
80 {
81 struct objfile *objfile = (struct objfile *) objfile_p_char;
82 struct obj_section section;
83 flagword aflag;
84
85 aflag = bfd_get_section_flags (abfd, asect);
86
87 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
88 return;
89
90 if (0 == bfd_section_size (abfd, asect))
91 return;
92 section.offset = 0;
93 section.objfile = objfile;
94 section.the_bfd_section = asect;
95 section.ovly_mapped = 0;
96 section.addr = bfd_section_vma (abfd, asect);
97 section.endaddr = section.addr + bfd_section_size (abfd, asect);
98 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
99 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
100 }
101
102 /* Builds a section table for OBJFILE.
103 Returns 0 if OK, 1 on error (in which case bfd_error contains the
104 error).
105
106 Note that while we are building the table, which goes into the
107 psymbol obstack, we hijack the sections_end pointer to instead hold
108 a count of the number of sections. When bfd_map_over_sections
109 returns, this count is used to compute the pointer to the end of
110 the sections table, which then overwrites the count.
111
112 Also note that the OFFSET and OVLY_MAPPED in each table entry
113 are initialized to zero.
114
115 Also note that if anything else writes to the psymbol obstack while
116 we are building the table, we're pretty much hosed. */
117
118 int
119 build_objfile_section_table (struct objfile *objfile)
120 {
121 /* objfile->sections can be already set when reading a mapped symbol
122 file. I believe that we do need to rebuild the section table in
123 this case (we rebuild other things derived from the bfd), but we
124 can't free the old one (it's in the psymbol_obstack). So we just
125 waste some memory. */
126
127 objfile->sections_end = 0;
128 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
129 objfile->sections = (struct obj_section *)
130 obstack_finish (&objfile->psymbol_obstack);
131 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
132 return (0);
133 }
134
135 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
136 allocate a new objfile struct, fill it in as best we can, link it
137 into the list of all known objfiles, and return a pointer to the
138 new objfile struct.
139
140 The FLAGS word contains various bits (OBJF_*) that can be taken as
141 requests for specific operations, like trying to open a mapped
142 version of the objfile (OBJF_MAPPED). Other bits like
143 OBJF_SHARED are simply copied through to the new objfile flags
144 member. */
145
146 struct objfile *
147 allocate_objfile (bfd *abfd, int flags)
148 {
149 struct objfile *objfile = NULL;
150 struct objfile *last_one = NULL;
151
152 if (mapped_symbol_files)
153 flags |= OBJF_MAPPED;
154
155 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
156 if (abfd != NULL)
157 {
158
159 /* If we can support mapped symbol files, try to open/reopen the
160 mapped file that corresponds to the file from which we wish to
161 read symbols. If the objfile is to be mapped, we must malloc
162 the structure itself using the mmap version, and arrange that
163 all memory allocation for the objfile uses the mmap routines.
164 If we are reusing an existing mapped file, from which we get
165 our objfile pointer, we have to make sure that we update the
166 pointers to the alloc/free functions in the obstack, in case
167 these functions have moved within the current gdb. */
168
169 int fd;
170
171 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
172 flags);
173 if (fd >= 0)
174 {
175 PTR md;
176
177 if ((md = map_to_file (fd)) == NULL)
178 {
179 close (fd);
180 }
181 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
182 {
183 /* Update memory corruption handler function addresses. */
184 init_malloc (md);
185 objfile->md = md;
186 objfile->mmfd = fd;
187 /* Update pointers to functions to *our* copies */
188 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
189 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
190 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
191 obstack_freefun (&objfile->psymbol_obstack, mfree);
192 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
193 obstack_freefun (&objfile->symbol_obstack, mfree);
194 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
195 obstack_freefun (&objfile->type_obstack, mfree);
196 /* If already in objfile list, unlink it. */
197 unlink_objfile (objfile);
198 /* Forget things specific to a particular gdb, may have changed. */
199 objfile->sf = NULL;
200 }
201 else
202 {
203
204 /* Set up to detect internal memory corruption. MUST be
205 done before the first malloc. See comments in
206 init_malloc() and mmcheck(). */
207
208 init_malloc (md);
209
210 objfile = (struct objfile *)
211 xmmalloc (md, sizeof (struct objfile));
212 memset (objfile, 0, sizeof (struct objfile));
213 objfile->md = md;
214 objfile->mmfd = fd;
215 objfile->flags |= OBJF_MAPPED;
216 mmalloc_setkey (objfile->md, 0, objfile);
217 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
218 0, 0, xmmalloc, mfree,
219 objfile->md);
220 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
221 0, 0, xmmalloc, mfree,
222 objfile->md);
223 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
224 0, 0, xmmalloc, mfree,
225 objfile->md);
226 obstack_specify_allocation_with_arg (&objfile->type_obstack,
227 0, 0, xmmalloc, mfree,
228 objfile->md);
229 }
230 }
231
232 if ((flags & OBJF_MAPPED) && (objfile == NULL))
233 {
234 warning ("symbol table for '%s' will not be mapped",
235 bfd_get_filename (abfd));
236 flags &= ~OBJF_MAPPED;
237 }
238 }
239 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
240
241 if (flags & OBJF_MAPPED)
242 {
243 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
244
245 /* Turn off the global flag so we don't try to do mapped symbol tables
246 any more, which shuts up gdb unless the user specifically gives the
247 "mapped" keyword again. */
248
249 mapped_symbol_files = 0;
250 flags &= ~OBJF_MAPPED;
251 }
252
253 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
254
255 /* If we don't support mapped symbol files, didn't ask for the file to be
256 mapped, or failed to open the mapped file for some reason, then revert
257 back to an unmapped objfile. */
258
259 if (objfile == NULL)
260 {
261 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
262 memset (objfile, 0, sizeof (struct objfile));
263 objfile->md = NULL;
264 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
265 xmalloc, free);
266 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
267 free);
268 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
269 free);
270 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
271 free);
272 flags &= ~OBJF_MAPPED;
273 }
274
275 /* Update the per-objfile information that comes from the bfd, ensuring
276 that any data that is reference is saved in the per-objfile data
277 region. */
278
279 objfile->obfd = abfd;
280 if (objfile->name != NULL)
281 {
282 mfree (objfile->md, objfile->name);
283 }
284 if (abfd != NULL)
285 {
286 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
287 objfile->mtime = bfd_get_mtime (abfd);
288
289 /* Build section table. */
290
291 if (build_objfile_section_table (objfile))
292 {
293 error ("Can't find the file sections in `%s': %s",
294 objfile->name, bfd_errmsg (bfd_get_error ()));
295 }
296 }
297
298 /* Initialize the section indexes for this objfile, so that we can
299 later detect if they are used w/o being properly assigned to. */
300
301 objfile->sect_index_text = -1;
302 objfile->sect_index_data = -1;
303 objfile->sect_index_bss = -1;
304 objfile->sect_index_rodata = -1;
305
306 /* Add this file onto the tail of the linked list of other such files. */
307
308 objfile->next = NULL;
309 if (object_files == NULL)
310 object_files = objfile;
311 else
312 {
313 for (last_one = object_files;
314 last_one->next;
315 last_one = last_one->next);
316 last_one->next = objfile;
317 }
318
319 /* Save passed in flag bits. */
320 objfile->flags |= flags;
321
322 return (objfile);
323 }
324
325 /* Put OBJFILE at the front of the list. */
326
327 void
328 objfile_to_front (struct objfile *objfile)
329 {
330 struct objfile **objp;
331 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
332 {
333 if (*objp == objfile)
334 {
335 /* Unhook it from where it is. */
336 *objp = objfile->next;
337 /* Put it in the front. */
338 objfile->next = object_files;
339 object_files = objfile;
340 break;
341 }
342 }
343 }
344
345 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
346 list.
347
348 It is not a bug, or error, to call this function if OBJFILE is not known
349 to be in the current list. This is done in the case of mapped objfiles,
350 for example, just to ensure that the mapped objfile doesn't appear twice
351 in the list. Since the list is threaded, linking in a mapped objfile
352 twice would create a circular list.
353
354 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
355 unlinking it, just to ensure that we have completely severed any linkages
356 between the OBJFILE and the list. */
357
358 void
359 unlink_objfile (struct objfile *objfile)
360 {
361 struct objfile **objpp;
362
363 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
364 {
365 if (*objpp == objfile)
366 {
367 *objpp = (*objpp)->next;
368 objfile->next = NULL;
369 return;
370 }
371 }
372
373 internal_error ("objfiles.c (unlink_objfile): objfile already unlinked");
374 }
375
376
377 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
378 that as much as possible is allocated on the symbol_obstack and
379 psymbol_obstack, so that the memory can be efficiently freed.
380
381 Things which we do NOT free because they are not in malloc'd memory
382 or not in memory specific to the objfile include:
383
384 objfile -> sf
385
386 FIXME: If the objfile is using reusable symbol information (via mmalloc),
387 then we need to take into account the fact that more than one process
388 may be using the symbol information at the same time (when mmalloc is
389 extended to support cooperative locking). When more than one process
390 is using the mapped symbol info, we need to be more careful about when
391 we free objects in the reusable area. */
392
393 void
394 free_objfile (struct objfile *objfile)
395 {
396 /* First do any symbol file specific actions required when we are
397 finished with a particular symbol file. Note that if the objfile
398 is using reusable symbol information (via mmalloc) then each of
399 these routines is responsible for doing the correct thing, either
400 freeing things which are valid only during this particular gdb
401 execution, or leaving them to be reused during the next one. */
402
403 if (objfile->sf != NULL)
404 {
405 (*objfile->sf->sym_finish) (objfile);
406 }
407
408 /* We always close the bfd. */
409
410 if (objfile->obfd != NULL)
411 {
412 char *name = bfd_get_filename (objfile->obfd);
413 if (!bfd_close (objfile->obfd))
414 warning ("cannot close \"%s\": %s",
415 name, bfd_errmsg (bfd_get_error ()));
416 free (name);
417 }
418
419 /* Remove it from the chain of all objfiles. */
420
421 unlink_objfile (objfile);
422
423 /* If we are going to free the runtime common objfile, mark it
424 as unallocated. */
425
426 if (objfile == rt_common_objfile)
427 rt_common_objfile = NULL;
428
429 /* Before the symbol table code was redone to make it easier to
430 selectively load and remove information particular to a specific
431 linkage unit, gdb used to do these things whenever the monolithic
432 symbol table was blown away. How much still needs to be done
433 is unknown, but we play it safe for now and keep each action until
434 it is shown to be no longer needed. */
435
436 /* I *think* all our callers call clear_symtab_users. If so, no need
437 to call this here. */
438 clear_pc_function_cache ();
439
440 /* The last thing we do is free the objfile struct itself for the
441 non-reusable case, or detach from the mapped file for the reusable
442 case. Note that the mmalloc_detach or the mfree is the last thing
443 we can do with this objfile. */
444
445 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
446
447 if (objfile->flags & OBJF_MAPPED)
448 {
449 /* Remember the fd so we can close it. We can't close it before
450 doing the detach, and after the detach the objfile is gone. */
451 int mmfd;
452
453 mmfd = objfile->mmfd;
454 mmalloc_detach (objfile->md);
455 objfile = NULL;
456 close (mmfd);
457 }
458
459 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
460
461 /* If we still have an objfile, then either we don't support reusable
462 objfiles or this one was not reusable. So free it normally. */
463
464 if (objfile != NULL)
465 {
466 if (objfile->name != NULL)
467 {
468 mfree (objfile->md, objfile->name);
469 }
470 if (objfile->global_psymbols.list)
471 mfree (objfile->md, objfile->global_psymbols.list);
472 if (objfile->static_psymbols.list)
473 mfree (objfile->md, objfile->static_psymbols.list);
474 /* Free the obstacks for non-reusable objfiles */
475 free_bcache (&objfile->psymbol_cache);
476 obstack_free (&objfile->psymbol_obstack, 0);
477 obstack_free (&objfile->symbol_obstack, 0);
478 obstack_free (&objfile->type_obstack, 0);
479 mfree (objfile->md, objfile);
480 objfile = NULL;
481 }
482 }
483
484 static void
485 do_free_objfile_cleanup (void *obj)
486 {
487 free_objfile (obj);
488 }
489
490 struct cleanup *
491 make_cleanup_free_objfile (struct objfile *obj)
492 {
493 return make_cleanup (do_free_objfile_cleanup, obj);
494 }
495
496 /* Free all the object files at once and clean up their users. */
497
498 void
499 free_all_objfiles (void)
500 {
501 struct objfile *objfile, *temp;
502
503 ALL_OBJFILES_SAFE (objfile, temp)
504 {
505 free_objfile (objfile);
506 }
507 clear_symtab_users ();
508 }
509 \f
510 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
511 entries in new_offsets. */
512 void
513 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
514 {
515 struct section_offsets *delta =
516 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
517
518 {
519 int i;
520 int something_changed = 0;
521 for (i = 0; i < objfile->num_sections; ++i)
522 {
523 delta->offsets[i] =
524 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
525 if (ANOFFSET (delta, i) != 0)
526 something_changed = 1;
527 }
528 if (!something_changed)
529 return;
530 }
531
532 /* OK, get all the symtabs. */
533 {
534 struct symtab *s;
535
536 ALL_OBJFILE_SYMTABS (objfile, s)
537 {
538 struct linetable *l;
539 struct blockvector *bv;
540 int i;
541
542 /* First the line table. */
543 l = LINETABLE (s);
544 if (l)
545 {
546 for (i = 0; i < l->nitems; ++i)
547 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
548 }
549
550 /* Don't relocate a shared blockvector more than once. */
551 if (!s->primary)
552 continue;
553
554 bv = BLOCKVECTOR (s);
555 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
556 {
557 struct block *b;
558 int j;
559
560 b = BLOCKVECTOR_BLOCK (bv, i);
561 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
562 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
563
564 for (j = 0; j < BLOCK_NSYMS (b); ++j)
565 {
566 struct symbol *sym = BLOCK_SYM (b, j);
567
568 fixup_symbol_section (sym, objfile);
569
570 /* The RS6000 code from which this was taken skipped
571 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
572 But I'm leaving out that test, on the theory that
573 they can't possibly pass the tests below. */
574 if ((SYMBOL_CLASS (sym) == LOC_LABEL
575 || SYMBOL_CLASS (sym) == LOC_STATIC
576 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
577 && SYMBOL_SECTION (sym) >= 0)
578 {
579 SYMBOL_VALUE_ADDRESS (sym) +=
580 ANOFFSET (delta, SYMBOL_SECTION (sym));
581 }
582 #ifdef MIPS_EFI_SYMBOL_NAME
583 /* Relocate Extra Function Info for ecoff. */
584
585 else if (SYMBOL_CLASS (sym) == LOC_CONST
586 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
587 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
588 ecoff_relocate_efi (sym, ANOFFSET (delta,
589 s->block_line_section));
590 #endif
591 }
592 }
593 }
594 }
595
596 {
597 struct partial_symtab *p;
598
599 ALL_OBJFILE_PSYMTABS (objfile, p)
600 {
601 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
602 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
603 }
604 }
605
606 {
607 struct partial_symbol **psym;
608
609 for (psym = objfile->global_psymbols.list;
610 psym < objfile->global_psymbols.next;
611 psym++)
612 {
613 fixup_psymbol_section (*psym, objfile);
614 if (SYMBOL_SECTION (*psym) >= 0)
615 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
616 SYMBOL_SECTION (*psym));
617 }
618 for (psym = objfile->static_psymbols.list;
619 psym < objfile->static_psymbols.next;
620 psym++)
621 {
622 fixup_psymbol_section (*psym, objfile);
623 if (SYMBOL_SECTION (*psym) >= 0)
624 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
625 SYMBOL_SECTION (*psym));
626 }
627 }
628
629 {
630 struct minimal_symbol *msym;
631 ALL_OBJFILE_MSYMBOLS (objfile, msym)
632 if (SYMBOL_SECTION (msym) >= 0)
633 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
634 }
635 /* Relocating different sections by different amounts may cause the symbols
636 to be out of order. */
637 msymbols_sort (objfile);
638
639 {
640 int i;
641 for (i = 0; i < objfile->num_sections; ++i)
642 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
643 }
644
645 {
646 struct obj_section *s;
647 bfd *abfd;
648
649 abfd = objfile->obfd;
650
651 ALL_OBJFILE_OSECTIONS (objfile, s)
652 {
653 int idx = s->the_bfd_section->index;
654
655 s->addr += ANOFFSET (delta, idx);
656 s->endaddr += ANOFFSET (delta, idx);
657 }
658 }
659
660 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
661 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
662
663 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
664 {
665 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
666 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
667 }
668
669 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
670 {
671 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
672 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
673 }
674
675 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
676 {
677 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
678 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
679 }
680
681 /* Relocate breakpoints as necessary, after things are relocated. */
682 breakpoint_re_set ();
683 }
684 \f
685 /* Many places in gdb want to test just to see if we have any partial
686 symbols available. This function returns zero if none are currently
687 available, nonzero otherwise. */
688
689 int
690 have_partial_symbols (void)
691 {
692 struct objfile *ofp;
693
694 ALL_OBJFILES (ofp)
695 {
696 if (ofp->psymtabs != NULL)
697 {
698 return 1;
699 }
700 }
701 return 0;
702 }
703
704 /* Many places in gdb want to test just to see if we have any full
705 symbols available. This function returns zero if none are currently
706 available, nonzero otherwise. */
707
708 int
709 have_full_symbols (void)
710 {
711 struct objfile *ofp;
712
713 ALL_OBJFILES (ofp)
714 {
715 if (ofp->symtabs != NULL)
716 {
717 return 1;
718 }
719 }
720 return 0;
721 }
722
723
724 /* This operations deletes all objfile entries that represent solibs that
725 weren't explicitly loaded by the user, via e.g., the add-symbol-file
726 command.
727 */
728 void
729 objfile_purge_solibs (void)
730 {
731 struct objfile *objf;
732 struct objfile *temp;
733
734 ALL_OBJFILES_SAFE (objf, temp)
735 {
736 /* We assume that the solib package has been purged already, or will
737 be soon.
738 */
739 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
740 free_objfile (objf);
741 }
742 }
743
744
745 /* Many places in gdb want to test just to see if we have any minimal
746 symbols available. This function returns zero if none are currently
747 available, nonzero otherwise. */
748
749 int
750 have_minimal_symbols (void)
751 {
752 struct objfile *ofp;
753
754 ALL_OBJFILES (ofp)
755 {
756 if (ofp->msymbols != NULL)
757 {
758 return 1;
759 }
760 }
761 return 0;
762 }
763
764 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
765
766 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
767 of the corresponding symbol file in MTIME, try to open an existing file
768 with the name SYMSFILENAME and verify it is more recent than the base
769 file by checking it's timestamp against MTIME.
770
771 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
772
773 If SYMSFILENAME does exist, but is out of date, we check to see if the
774 user has specified creation of a mapped file. If so, we don't issue
775 any warning message because we will be creating a new mapped file anyway,
776 overwriting the old one. If not, then we issue a warning message so that
777 the user will know why we aren't using this existing mapped symbol file.
778 In either case, we return -1.
779
780 If SYMSFILENAME does exist and is not out of date, but can't be opened for
781 some reason, then prints an appropriate system error message and returns -1.
782
783 Otherwise, returns the open file descriptor. */
784
785 static int
786 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
787 {
788 int fd = -1;
789 struct stat sbuf;
790
791 if (stat (symsfilename, &sbuf) == 0)
792 {
793 if (sbuf.st_mtime < mtime)
794 {
795 if (!(flags & OBJF_MAPPED))
796 {
797 warning ("mapped symbol file `%s' is out of date, ignored it",
798 symsfilename);
799 }
800 }
801 else if ((fd = open (symsfilename, O_RDWR)) < 0)
802 {
803 if (error_pre_print)
804 {
805 printf_unfiltered (error_pre_print);
806 }
807 print_sys_errmsg (symsfilename, errno);
808 }
809 }
810 return (fd);
811 }
812
813 /* Look for a mapped symbol file that corresponds to FILENAME and is more
814 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
815 use a mapped symbol file for this file, so create a new one if one does
816 not currently exist.
817
818 If found, then return an open file descriptor for the file, otherwise
819 return -1.
820
821 This routine is responsible for implementing the policy that generates
822 the name of the mapped symbol file from the name of a file containing
823 symbols that gdb would like to read. Currently this policy is to append
824 ".syms" to the name of the file.
825
826 This routine is also responsible for implementing the policy that
827 determines where the mapped symbol file is found (the search path).
828 This policy is that when reading an existing mapped file, a file of
829 the correct name in the current directory takes precedence over a
830 file of the correct name in the same directory as the symbol file.
831 When creating a new mapped file, it is always created in the current
832 directory. This helps to minimize the chances of a user unknowingly
833 creating big mapped files in places like /bin and /usr/local/bin, and
834 allows a local copy to override a manually installed global copy (in
835 /bin for example). */
836
837 static int
838 open_mapped_file (char *filename, long mtime, int flags)
839 {
840 int fd;
841 char *symsfilename;
842
843 /* First try to open an existing file in the current directory, and
844 then try the directory where the symbol file is located. */
845
846 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
847 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
848 {
849 free (symsfilename);
850 symsfilename = concat (filename, ".syms", (char *) NULL);
851 fd = open_existing_mapped_file (symsfilename, mtime, flags);
852 }
853
854 /* If we don't have an open file by now, then either the file does not
855 already exist, or the base file has changed since it was created. In
856 either case, if the user has specified use of a mapped file, then
857 create a new mapped file, truncating any existing one. If we can't
858 create one, print a system error message saying why we can't.
859
860 By default the file is rw for everyone, with the user's umask taking
861 care of turning off the permissions the user wants off. */
862
863 if ((fd < 0) && (flags & OBJF_MAPPED))
864 {
865 free (symsfilename);
866 symsfilename = concat ("./", basename (filename), ".syms",
867 (char *) NULL);
868 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
869 {
870 if (error_pre_print)
871 {
872 printf_unfiltered (error_pre_print);
873 }
874 print_sys_errmsg (symsfilename, errno);
875 }
876 }
877
878 free (symsfilename);
879 return (fd);
880 }
881
882 static PTR
883 map_to_file (int fd)
884 {
885 PTR md;
886 CORE_ADDR mapto;
887
888 md = mmalloc_attach (fd, (PTR) 0);
889 if (md != NULL)
890 {
891 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
892 md = mmalloc_detach (md);
893 if (md != NULL)
894 {
895 /* FIXME: should figure out why detach failed */
896 md = NULL;
897 }
898 else if (mapto != (CORE_ADDR) NULL)
899 {
900 /* This mapping file needs to be remapped at "mapto" */
901 md = mmalloc_attach (fd, (PTR) mapto);
902 }
903 else
904 {
905 /* This is a freshly created mapping file. */
906 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
907 if (mapto != 0)
908 {
909 /* To avoid reusing the freshly created mapping file, at the
910 address selected by mmap, we must truncate it before trying
911 to do an attach at the address we want. */
912 ftruncate (fd, 0);
913 md = mmalloc_attach (fd, (PTR) mapto);
914 if (md != NULL)
915 {
916 mmalloc_setkey (md, 1, (PTR) mapto);
917 }
918 }
919 }
920 }
921 return (md);
922 }
923
924 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
925
926 /* Returns a section whose range includes PC and SECTION,
927 or NULL if none found. Note the distinction between the return type,
928 struct obj_section (which is defined in gdb), and the input type
929 struct sec (which is a bfd-defined data type). The obj_section
930 contains a pointer to the bfd struct sec section. */
931
932 struct obj_section *
933 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
934 {
935 struct obj_section *s;
936 struct objfile *objfile;
937
938 ALL_OBJSECTIONS (objfile, s)
939 if ((section == 0 || section == s->the_bfd_section) &&
940 s->addr <= pc && pc < s->endaddr)
941 return (s);
942
943 return (NULL);
944 }
945
946 /* Returns a section whose range includes PC or NULL if none found.
947 Backward compatibility, no section. */
948
949 struct obj_section *
950 find_pc_section (CORE_ADDR pc)
951 {
952 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
953 }
954
955
956 /* In SVR4, we recognize a trampoline by it's section name.
957 That is, if the pc is in a section named ".plt" then we are in
958 a trampoline. */
959
960 int
961 in_plt_section (CORE_ADDR pc, char *name)
962 {
963 struct obj_section *s;
964 int retval = 0;
965
966 s = find_pc_section (pc);
967
968 retval = (s != NULL
969 && s->the_bfd_section->name != NULL
970 && STREQ (s->the_bfd_section->name, ".plt"));
971 return (retval);
972 }
973
974 /* Return nonzero if NAME is in the import list of OBJFILE. Else
975 return zero. */
976
977 int
978 is_in_import_list (char *name, struct objfile *objfile)
979 {
980 register int i;
981
982 if (!objfile || !name || !*name)
983 return 0;
984
985 for (i = 0; i < objfile->import_list_size; i++)
986 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
987 return 1;
988 return 0;
989 }
990
This page took 0.051821 seconds and 5 git commands to generate.