Make psymbols and psymtabs independent of the program space
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. If ABFD is not
123 NULL, the object is allocated on the BFD; otherwise it is allocated
124 on OBJFILE's obstack. Note that it is not safe to call this
125 multiple times for a given OBJFILE -- it can only be called when
126 allocating or re-initializing OBJFILE. */
127
128 static struct objfile_per_bfd_storage *
129 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
130 {
131 struct objfile_per_bfd_storage *storage = NULL;
132
133 if (abfd != NULL)
134 storage = ((struct objfile_per_bfd_storage *)
135 bfd_data (abfd, objfiles_bfd_data));
136
137 if (storage == NULL)
138 {
139 /* If the object requires gdb to do relocations, we simply fall
140 back to not sharing data across users. These cases are rare
141 enough that this seems reasonable. */
142 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
143 {
144 storage
145 = ((struct objfile_per_bfd_storage *)
146 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
147 /* objfile_per_bfd_storage is not trivially constructible, must
148 call the ctor manually. */
149 storage = new (storage) objfile_per_bfd_storage ();
150 set_bfd_data (abfd, objfiles_bfd_data, storage);
151 }
152 else
153 storage
154 = obstack_new<objfile_per_bfd_storage> (&objfile->objfile_obstack);
155
156 /* Look up the gdbarch associated with the BFD. */
157 if (abfd != NULL)
158 storage->gdbarch = gdbarch_from_bfd (abfd);
159
160 storage->filename_cache = bcache_xmalloc (NULL, NULL);
161 storage->macro_cache = bcache_xmalloc (NULL, NULL);
162 storage->language_of_main = language_unknown;
163 }
164
165 return storage;
166 }
167
168 /* Free STORAGE. */
169
170 static void
171 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
172 {
173 bcache_xfree (storage->filename_cache);
174 bcache_xfree (storage->macro_cache);
175 if (storage->demangled_names_hash)
176 htab_delete (storage->demangled_names_hash);
177 storage->~objfile_per_bfd_storage ();
178 }
179
180 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
181 cleanup function to the BFD registry. */
182
183 static void
184 objfile_bfd_data_free (struct bfd *unused, void *d)
185 {
186 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
187 }
188
189 /* See objfiles.h. */
190
191 void
192 set_objfile_per_bfd (struct objfile *objfile)
193 {
194 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
195 }
196
197 /* Set the objfile's per-BFD notion of the "main" name and
198 language. */
199
200 void
201 set_objfile_main_name (struct objfile *objfile,
202 const char *name, enum language lang)
203 {
204 if (objfile->per_bfd->name_of_main == NULL
205 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
206 objfile->per_bfd->name_of_main
207 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
208 strlen (name));
209 objfile->per_bfd->language_of_main = lang;
210 }
211
212 /* Helper structure to map blocks to static link properties in hash tables. */
213
214 struct static_link_htab_entry
215 {
216 const struct block *block;
217 const struct dynamic_prop *static_link;
218 };
219
220 /* Return a hash code for struct static_link_htab_entry *P. */
221
222 static hashval_t
223 static_link_htab_entry_hash (const void *p)
224 {
225 const struct static_link_htab_entry *e
226 = (const struct static_link_htab_entry *) p;
227
228 return htab_hash_pointer (e->block);
229 }
230
231 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
232 mappings for the same block. */
233
234 static int
235 static_link_htab_entry_eq (const void *p1, const void *p2)
236 {
237 const struct static_link_htab_entry *e1
238 = (const struct static_link_htab_entry *) p1;
239 const struct static_link_htab_entry *e2
240 = (const struct static_link_htab_entry *) p2;
241
242 return e1->block == e2->block;
243 }
244
245 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
246 Must not be called more than once for each BLOCK. */
247
248 void
249 objfile_register_static_link (struct objfile *objfile,
250 const struct block *block,
251 const struct dynamic_prop *static_link)
252 {
253 void **slot;
254 struct static_link_htab_entry lookup_entry;
255 struct static_link_htab_entry *entry;
256
257 if (objfile->static_links == NULL)
258 objfile->static_links = htab_create_alloc
259 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
260 xcalloc, xfree);
261
262 /* Create a slot for the mapping, make sure it's the first mapping for this
263 block and then create the mapping itself. */
264 lookup_entry.block = block;
265 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
266 gdb_assert (*slot == NULL);
267
268 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
269 entry->block = block;
270 entry->static_link = static_link;
271 *slot = (void *) entry;
272 }
273
274 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
275 none was found. */
276
277 const struct dynamic_prop *
278 objfile_lookup_static_link (struct objfile *objfile,
279 const struct block *block)
280 {
281 struct static_link_htab_entry *entry;
282 struct static_link_htab_entry lookup_entry;
283
284 if (objfile->static_links == NULL)
285 return NULL;
286 lookup_entry.block = block;
287 entry
288 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
289 &lookup_entry);
290 if (entry == NULL)
291 return NULL;
292
293 gdb_assert (entry->block == block);
294 return entry->static_link;
295 }
296
297 \f
298
299 /* Called via bfd_map_over_sections to build up the section table that
300 the objfile references. The objfile contains pointers to the start
301 of the table (objfile->sections) and to the first location after
302 the end of the table (objfile->sections_end). */
303
304 static void
305 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
306 struct objfile *objfile, int force)
307 {
308 struct obj_section *section;
309
310 if (!force)
311 {
312 flagword aflag;
313
314 aflag = bfd_get_section_flags (abfd, asect);
315 if (!(aflag & SEC_ALLOC))
316 return;
317 }
318
319 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
320 section->objfile = objfile;
321 section->the_bfd_section = asect;
322 section->ovly_mapped = 0;
323 }
324
325 static void
326 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
327 void *objfilep)
328 {
329 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
330 }
331
332 /* Builds a section table for OBJFILE.
333
334 Note that the OFFSET and OVLY_MAPPED in each table entry are
335 initialized to zero. */
336
337 void
338 build_objfile_section_table (struct objfile *objfile)
339 {
340 int count = gdb_bfd_count_sections (objfile->obfd);
341
342 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
343 count,
344 struct obj_section);
345 objfile->sections_end = (objfile->sections + count);
346 bfd_map_over_sections (objfile->obfd,
347 add_to_objfile_sections, (void *) objfile);
348
349 /* See gdb_bfd_section_index. */
350 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
351 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
352 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
353 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
354 }
355
356 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
357 initialize the new objfile as best we can and link it into the list
358 of all known objfiles.
359
360 NAME should contain original non-canonicalized filename or other
361 identifier as entered by user. If there is no better source use
362 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
363 NAME content is copied into returned objfile.
364
365 The FLAGS word contains various bits (OBJF_*) that can be taken as
366 requests for specific operations. Other bits like OBJF_SHARED are
367 simply copied through to the new objfile flags member. */
368
369 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
370 : flags (flags_),
371 pspace (current_program_space),
372 obfd (abfd),
373 psymbol_cache (psymbol_bcache_init ())
374 {
375 const char *expanded_name;
376
377 /* We could use obstack_specify_allocation here instead, but
378 gdb_obstack.h specifies the alloc/dealloc functions. */
379 obstack_init (&objfile_obstack);
380
381 objfile_alloc_data (this);
382
383 gdb::unique_xmalloc_ptr<char> name_holder;
384 if (name == NULL)
385 {
386 gdb_assert (abfd == NULL);
387 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
388 expanded_name = "<<anonymous objfile>>";
389 }
390 else if ((flags & OBJF_NOT_FILENAME) != 0
391 || is_target_filename (name))
392 expanded_name = name;
393 else
394 {
395 name_holder = gdb_abspath (name);
396 expanded_name = name_holder.get ();
397 }
398 original_name
399 = (char *) obstack_copy0 (&objfile_obstack,
400 expanded_name,
401 strlen (expanded_name));
402
403 /* Update the per-objfile information that comes from the bfd, ensuring
404 that any data that is reference is saved in the per-objfile data
405 region. */
406
407 gdb_bfd_ref (abfd);
408 if (abfd != NULL)
409 {
410 mtime = bfd_get_mtime (abfd);
411
412 /* Build section table. */
413 build_objfile_section_table (this);
414 }
415
416 per_bfd = get_objfile_bfd_data (this, abfd);
417
418 terminate_minimal_symbol_table (this);
419
420 /* Add this file onto the tail of the linked list of other such files. */
421
422 if (object_files == NULL)
423 object_files = this;
424 else
425 {
426 struct objfile *last_one;
427
428 for (last_one = object_files;
429 last_one->next;
430 last_one = last_one->next);
431 last_one->next = this;
432 }
433
434 /* Rebuild section map next time we need it. */
435 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
436 }
437
438 /* Retrieve the gdbarch associated with OBJFILE. */
439
440 struct gdbarch *
441 get_objfile_arch (const struct objfile *objfile)
442 {
443 return objfile->per_bfd->gdbarch;
444 }
445
446 /* If there is a valid and known entry point, function fills *ENTRY_P with it
447 and returns non-zero; otherwise it returns zero. */
448
449 int
450 entry_point_address_query (CORE_ADDR *entry_p)
451 {
452 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
453 return 0;
454
455 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
456 + ANOFFSET (symfile_objfile->section_offsets,
457 symfile_objfile->per_bfd->ei.the_bfd_section_index));
458
459 return 1;
460 }
461
462 /* Get current entry point address. Call error if it is not known. */
463
464 CORE_ADDR
465 entry_point_address (void)
466 {
467 CORE_ADDR retval;
468
469 if (!entry_point_address_query (&retval))
470 error (_("Entry point address is not known."));
471
472 return retval;
473 }
474
475 /* Iterator on PARENT and every separate debug objfile of PARENT.
476 The usage pattern is:
477 for (objfile = parent;
478 objfile;
479 objfile = objfile_separate_debug_iterate (parent, objfile))
480 ...
481 */
482
483 struct objfile *
484 objfile_separate_debug_iterate (const struct objfile *parent,
485 const struct objfile *objfile)
486 {
487 struct objfile *res;
488
489 /* If any, return the first child. */
490 res = objfile->separate_debug_objfile;
491 if (res)
492 return res;
493
494 /* Common case where there is no separate debug objfile. */
495 if (objfile == parent)
496 return NULL;
497
498 /* Return the brother if any. Note that we don't iterate on brothers of
499 the parents. */
500 res = objfile->separate_debug_objfile_link;
501 if (res)
502 return res;
503
504 for (res = objfile->separate_debug_objfile_backlink;
505 res != parent;
506 res = res->separate_debug_objfile_backlink)
507 {
508 gdb_assert (res != NULL);
509 if (res->separate_debug_objfile_link)
510 return res->separate_debug_objfile_link;
511 }
512 return NULL;
513 }
514
515 /* Put one object file before a specified on in the global list.
516 This can be used to make sure an object file is destroyed before
517 another when using ALL_OBJFILES_SAFE to free all objfiles. */
518 void
519 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
520 {
521 struct objfile **objp;
522
523 unlink_objfile (objfile);
524
525 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
526 {
527 if (*objp == before_this)
528 {
529 objfile->next = *objp;
530 *objp = objfile;
531 return;
532 }
533 }
534
535 internal_error (__FILE__, __LINE__,
536 _("put_objfile_before: before objfile not in list"));
537 }
538
539 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
540 list.
541
542 It is not a bug, or error, to call this function if OBJFILE is not known
543 to be in the current list. This is done in the case of mapped objfiles,
544 for example, just to ensure that the mapped objfile doesn't appear twice
545 in the list. Since the list is threaded, linking in a mapped objfile
546 twice would create a circular list.
547
548 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
549 unlinking it, just to ensure that we have completely severed any linkages
550 between the OBJFILE and the list. */
551
552 void
553 unlink_objfile (struct objfile *objfile)
554 {
555 struct objfile **objpp;
556
557 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
558 {
559 if (*objpp == objfile)
560 {
561 *objpp = (*objpp)->next;
562 objfile->next = NULL;
563 return;
564 }
565 }
566
567 internal_error (__FILE__, __LINE__,
568 _("unlink_objfile: objfile already unlinked"));
569 }
570
571 /* Add OBJFILE as a separate debug objfile of PARENT. */
572
573 void
574 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
575 {
576 gdb_assert (objfile && parent);
577
578 /* Must not be already in a list. */
579 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
580 gdb_assert (objfile->separate_debug_objfile_link == NULL);
581 gdb_assert (objfile->separate_debug_objfile == NULL);
582 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
583 gdb_assert (parent->separate_debug_objfile_link == NULL);
584
585 objfile->separate_debug_objfile_backlink = parent;
586 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
587 parent->separate_debug_objfile = objfile;
588
589 /* Put the separate debug object before the normal one, this is so that
590 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
591 put_objfile_before (objfile, parent);
592 }
593
594 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
595 itself. */
596
597 void
598 free_objfile_separate_debug (struct objfile *objfile)
599 {
600 struct objfile *child;
601
602 for (child = objfile->separate_debug_objfile; child;)
603 {
604 struct objfile *next_child = child->separate_debug_objfile_link;
605 delete child;
606 child = next_child;
607 }
608 }
609
610 /* Destroy an objfile and all the symtabs and psymtabs under it. */
611
612 objfile::~objfile ()
613 {
614 /* First notify observers that this objfile is about to be freed. */
615 gdb::observers::free_objfile.notify (this);
616
617 /* Free all separate debug objfiles. */
618 free_objfile_separate_debug (this);
619
620 if (separate_debug_objfile_backlink)
621 {
622 /* We freed the separate debug file, make sure the base objfile
623 doesn't reference it. */
624 struct objfile *child;
625
626 child = separate_debug_objfile_backlink->separate_debug_objfile;
627
628 if (child == this)
629 {
630 /* THIS is the first child. */
631 separate_debug_objfile_backlink->separate_debug_objfile =
632 separate_debug_objfile_link;
633 }
634 else
635 {
636 /* Find THIS in the list. */
637 while (1)
638 {
639 if (child->separate_debug_objfile_link == this)
640 {
641 child->separate_debug_objfile_link =
642 separate_debug_objfile_link;
643 break;
644 }
645 child = child->separate_debug_objfile_link;
646 gdb_assert (child);
647 }
648 }
649 }
650
651 /* Remove any references to this objfile in the global value
652 lists. */
653 preserve_values (this);
654
655 /* It still may reference data modules have associated with the objfile and
656 the symbol file data. */
657 forget_cached_source_info_for_objfile (this);
658
659 breakpoint_free_objfile (this);
660 btrace_free_objfile (this);
661
662 /* First do any symbol file specific actions required when we are
663 finished with a particular symbol file. Note that if the objfile
664 is using reusable symbol information (via mmalloc) then each of
665 these routines is responsible for doing the correct thing, either
666 freeing things which are valid only during this particular gdb
667 execution, or leaving them to be reused during the next one. */
668
669 if (sf != NULL)
670 (*sf->sym_finish) (this);
671
672 /* Discard any data modules have associated with the objfile. The function
673 still may reference obfd. */
674 objfile_free_data (this);
675
676 if (obfd)
677 gdb_bfd_unref (obfd);
678 else
679 free_objfile_per_bfd_storage (per_bfd);
680
681 /* Remove it from the chain of all objfiles. */
682
683 unlink_objfile (this);
684
685 if (this == symfile_objfile)
686 symfile_objfile = NULL;
687
688 /* Before the symbol table code was redone to make it easier to
689 selectively load and remove information particular to a specific
690 linkage unit, gdb used to do these things whenever the monolithic
691 symbol table was blown away. How much still needs to be done
692 is unknown, but we play it safe for now and keep each action until
693 it is shown to be no longer needed. */
694
695 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
696 for example), so we need to call this here. */
697 clear_pc_function_cache ();
698
699 /* Clear globals which might have pointed into a removed objfile.
700 FIXME: It's not clear which of these are supposed to persist
701 between expressions and which ought to be reset each time. */
702 expression_context_block = NULL;
703 innermost_block.reset ();
704
705 /* Check to see if the current_source_symtab belongs to this objfile,
706 and if so, call clear_current_source_symtab_and_line. */
707
708 {
709 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
710
711 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
712 clear_current_source_symtab_and_line ();
713 }
714
715 /* Free the obstacks for non-reusable objfiles. */
716 psymbol_bcache_free (psymbol_cache);
717 obstack_free (&objfile_obstack, 0);
718
719 /* Rebuild section map next time we need it. */
720 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
721
722 /* Free the map for static links. There's no need to free static link
723 themselves since they were allocated on the objstack. */
724 if (static_links != NULL)
725 htab_delete (static_links);
726 }
727
728 /* Free all the object files at once and clean up their users. */
729
730 void
731 free_all_objfiles (void)
732 {
733 struct objfile *objfile, *temp;
734 struct so_list *so;
735
736 /* Any objfile referencewould become stale. */
737 for (so = master_so_list (); so; so = so->next)
738 gdb_assert (so->objfile == NULL);
739
740 ALL_OBJFILES_SAFE (objfile, temp)
741 {
742 delete objfile;
743 }
744 clear_symtab_users (0);
745 }
746 \f
747 /* A helper function for objfile_relocate1 that relocates a single
748 symbol. */
749
750 static void
751 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
752 struct section_offsets *delta)
753 {
754 fixup_symbol_section (sym, objfile);
755
756 /* The RS6000 code from which this was taken skipped
757 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
758 But I'm leaving out that test, on the theory that
759 they can't possibly pass the tests below. */
760 if ((SYMBOL_CLASS (sym) == LOC_LABEL
761 || SYMBOL_CLASS (sym) == LOC_STATIC)
762 && SYMBOL_SECTION (sym) >= 0)
763 {
764 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
765 }
766 }
767
768 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
769 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
770 Return non-zero iff any change happened. */
771
772 static int
773 objfile_relocate1 (struct objfile *objfile,
774 const struct section_offsets *new_offsets)
775 {
776 struct obj_section *s;
777 struct section_offsets *delta =
778 ((struct section_offsets *)
779 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
780
781 int i;
782 int something_changed = 0;
783
784 for (i = 0; i < objfile->num_sections; ++i)
785 {
786 delta->offsets[i] =
787 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
788 if (ANOFFSET (delta, i) != 0)
789 something_changed = 1;
790 }
791 if (!something_changed)
792 return 0;
793
794 /* OK, get all the symtabs. */
795 {
796 struct compunit_symtab *cust;
797 struct symtab *s;
798
799 ALL_OBJFILE_FILETABS (objfile, cust, s)
800 {
801 struct linetable *l;
802 int i;
803
804 /* First the line table. */
805 l = SYMTAB_LINETABLE (s);
806 if (l)
807 {
808 for (i = 0; i < l->nitems; ++i)
809 l->item[i].pc += ANOFFSET (delta,
810 COMPUNIT_BLOCK_LINE_SECTION
811 (cust));
812 }
813 }
814
815 ALL_OBJFILE_COMPUNITS (objfile, cust)
816 {
817 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
818 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
819
820 if (BLOCKVECTOR_MAP (bv))
821 addrmap_relocate (BLOCKVECTOR_MAP (bv),
822 ANOFFSET (delta, block_line_section));
823
824 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
825 {
826 struct block *b;
827 struct symbol *sym;
828 struct dict_iterator iter;
829
830 b = BLOCKVECTOR_BLOCK (bv, i);
831 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
832 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
833
834 /* We only want to iterate over the local symbols, not any
835 symbols in included symtabs. */
836 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
837 {
838 relocate_one_symbol (sym, objfile, delta);
839 }
840 }
841 }
842 }
843
844 /* This stores relocated addresses and so must be cleared. This
845 will cause it to be recreated on demand. */
846 objfile->psymbol_map.clear ();
847
848 /* Relocate isolated symbols. */
849 {
850 struct symbol *iter;
851
852 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
853 relocate_one_symbol (iter, objfile, delta);
854 }
855
856 {
857 int i;
858
859 for (i = 0; i < objfile->num_sections; ++i)
860 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
861 }
862
863 /* Rebuild section map next time we need it. */
864 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
865
866 /* Update the table in exec_ops, used to read memory. */
867 ALL_OBJFILE_OSECTIONS (objfile, s)
868 {
869 int idx = s - objfile->sections;
870
871 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
872 obj_section_addr (s));
873 }
874
875 /* Data changed. */
876 return 1;
877 }
878
879 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
880 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
881
882 The number and ordering of sections does differ between the two objfiles.
883 Only their names match. Also the file offsets will differ (objfile being
884 possibly prelinked but separate_debug_objfile is probably not prelinked) but
885 the in-memory absolute address as specified by NEW_OFFSETS must match both
886 files. */
887
888 void
889 objfile_relocate (struct objfile *objfile,
890 const struct section_offsets *new_offsets)
891 {
892 struct objfile *debug_objfile;
893 int changed = 0;
894
895 changed |= objfile_relocate1 (objfile, new_offsets);
896
897 for (debug_objfile = objfile->separate_debug_objfile;
898 debug_objfile;
899 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
900 {
901 section_addr_info objfile_addrs
902 = build_section_addr_info_from_objfile (objfile);
903
904 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
905 relative ones must be already created according to debug_objfile. */
906
907 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
908
909 gdb_assert (debug_objfile->num_sections
910 == gdb_bfd_count_sections (debug_objfile->obfd));
911 std::vector<struct section_offsets>
912 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
913 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
914 debug_objfile->num_sections,
915 objfile_addrs);
916
917 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
918 }
919
920 /* Relocate breakpoints as necessary, after things are relocated. */
921 if (changed)
922 breakpoint_re_set ();
923 }
924
925 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
926 not touched here.
927 Return non-zero iff any change happened. */
928
929 static int
930 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
931 {
932 struct section_offsets *new_offsets =
933 ((struct section_offsets *)
934 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
935 int i;
936
937 for (i = 0; i < objfile->num_sections; ++i)
938 new_offsets->offsets[i] = slide;
939
940 return objfile_relocate1 (objfile, new_offsets);
941 }
942
943 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
944 SEPARATE_DEBUG_OBJFILEs. */
945
946 void
947 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
948 {
949 struct objfile *debug_objfile;
950 int changed = 0;
951
952 changed |= objfile_rebase1 (objfile, slide);
953
954 for (debug_objfile = objfile->separate_debug_objfile;
955 debug_objfile;
956 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
957 changed |= objfile_rebase1 (debug_objfile, slide);
958
959 /* Relocate breakpoints as necessary, after things are relocated. */
960 if (changed)
961 breakpoint_re_set ();
962 }
963 \f
964 /* Return non-zero if OBJFILE has partial symbols. */
965
966 int
967 objfile_has_partial_symbols (struct objfile *objfile)
968 {
969 if (!objfile->sf)
970 return 0;
971
972 /* If we have not read psymbols, but we have a function capable of reading
973 them, then that is an indication that they are in fact available. Without
974 this function the symbols may have been already read in but they also may
975 not be present in this objfile. */
976 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
977 && objfile->sf->sym_read_psymbols != NULL)
978 return 1;
979
980 return objfile->sf->qf->has_symbols (objfile);
981 }
982
983 /* Return non-zero if OBJFILE has full symbols. */
984
985 int
986 objfile_has_full_symbols (struct objfile *objfile)
987 {
988 return objfile->compunit_symtabs != NULL;
989 }
990
991 /* Return non-zero if OBJFILE has full or partial symbols, either directly
992 or through a separate debug file. */
993
994 int
995 objfile_has_symbols (struct objfile *objfile)
996 {
997 struct objfile *o;
998
999 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1000 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1001 return 1;
1002 return 0;
1003 }
1004
1005
1006 /* Many places in gdb want to test just to see if we have any partial
1007 symbols available. This function returns zero if none are currently
1008 available, nonzero otherwise. */
1009
1010 int
1011 have_partial_symbols (void)
1012 {
1013 struct objfile *ofp;
1014
1015 ALL_OBJFILES (ofp)
1016 {
1017 if (objfile_has_partial_symbols (ofp))
1018 return 1;
1019 }
1020 return 0;
1021 }
1022
1023 /* Many places in gdb want to test just to see if we have any full
1024 symbols available. This function returns zero if none are currently
1025 available, nonzero otherwise. */
1026
1027 int
1028 have_full_symbols (void)
1029 {
1030 struct objfile *ofp;
1031
1032 ALL_OBJFILES (ofp)
1033 {
1034 if (objfile_has_full_symbols (ofp))
1035 return 1;
1036 }
1037 return 0;
1038 }
1039
1040
1041 /* This operations deletes all objfile entries that represent solibs that
1042 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1043 command. */
1044
1045 void
1046 objfile_purge_solibs (void)
1047 {
1048 struct objfile *objf;
1049 struct objfile *temp;
1050
1051 ALL_OBJFILES_SAFE (objf, temp)
1052 {
1053 /* We assume that the solib package has been purged already, or will
1054 be soon. */
1055
1056 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1057 delete objf;
1058 }
1059 }
1060
1061
1062 /* Many places in gdb want to test just to see if we have any minimal
1063 symbols available. This function returns zero if none are currently
1064 available, nonzero otherwise. */
1065
1066 int
1067 have_minimal_symbols (void)
1068 {
1069 struct objfile *ofp;
1070
1071 ALL_OBJFILES (ofp)
1072 {
1073 if (ofp->per_bfd->minimal_symbol_count > 0)
1074 {
1075 return 1;
1076 }
1077 }
1078 return 0;
1079 }
1080
1081 /* Qsort comparison function. */
1082
1083 static int
1084 qsort_cmp (const void *a, const void *b)
1085 {
1086 const struct obj_section *sect1 = *(const struct obj_section **) a;
1087 const struct obj_section *sect2 = *(const struct obj_section **) b;
1088 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1089 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1090
1091 if (sect1_addr < sect2_addr)
1092 return -1;
1093 else if (sect1_addr > sect2_addr)
1094 return 1;
1095 else
1096 {
1097 /* Sections are at the same address. This could happen if
1098 A) we have an objfile and a separate debuginfo.
1099 B) we are confused, and have added sections without proper relocation,
1100 or something like that. */
1101
1102 const struct objfile *const objfile1 = sect1->objfile;
1103 const struct objfile *const objfile2 = sect2->objfile;
1104
1105 if (objfile1->separate_debug_objfile == objfile2
1106 || objfile2->separate_debug_objfile == objfile1)
1107 {
1108 /* Case A. The ordering doesn't matter: separate debuginfo files
1109 will be filtered out later. */
1110
1111 return 0;
1112 }
1113
1114 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1115 triage. This section could be slow (since we iterate over all
1116 objfiles in each call to qsort_cmp), but this shouldn't happen
1117 very often (GDB is already in a confused state; one hopes this
1118 doesn't happen at all). If you discover that significant time is
1119 spent in the loops below, do 'set complaints 100' and examine the
1120 resulting complaints. */
1121
1122 if (objfile1 == objfile2)
1123 {
1124 /* Both sections came from the same objfile. We are really confused.
1125 Sort on sequence order of sections within the objfile. */
1126
1127 const struct obj_section *osect;
1128
1129 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1130 if (osect == sect1)
1131 return -1;
1132 else if (osect == sect2)
1133 return 1;
1134
1135 /* We should have found one of the sections before getting here. */
1136 gdb_assert_not_reached ("section not found");
1137 }
1138 else
1139 {
1140 /* Sort on sequence number of the objfile in the chain. */
1141
1142 const struct objfile *objfile;
1143
1144 ALL_OBJFILES (objfile)
1145 if (objfile == objfile1)
1146 return -1;
1147 else if (objfile == objfile2)
1148 return 1;
1149
1150 /* We should have found one of the objfiles before getting here. */
1151 gdb_assert_not_reached ("objfile not found");
1152 }
1153 }
1154
1155 /* Unreachable. */
1156 gdb_assert_not_reached ("unexpected code path");
1157 return 0;
1158 }
1159
1160 /* Select "better" obj_section to keep. We prefer the one that came from
1161 the real object, rather than the one from separate debuginfo.
1162 Most of the time the two sections are exactly identical, but with
1163 prelinking the .rel.dyn section in the real object may have different
1164 size. */
1165
1166 static struct obj_section *
1167 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1168 {
1169 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1170 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1171 || (b->objfile->separate_debug_objfile == a->objfile));
1172 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1173 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1174
1175 if (a->objfile->separate_debug_objfile != NULL)
1176 return a;
1177 return b;
1178 }
1179
1180 /* Return 1 if SECTION should be inserted into the section map.
1181 We want to insert only non-overlay and non-TLS section. */
1182
1183 static int
1184 insert_section_p (const struct bfd *abfd,
1185 const struct bfd_section *section)
1186 {
1187 const bfd_vma lma = bfd_section_lma (abfd, section);
1188
1189 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1190 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1191 /* This is an overlay section. IN_MEMORY check is needed to avoid
1192 discarding sections from the "system supplied DSO" (aka vdso)
1193 on some Linux systems (e.g. Fedora 11). */
1194 return 0;
1195 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1196 /* This is a TLS section. */
1197 return 0;
1198
1199 return 1;
1200 }
1201
1202 /* Filter out overlapping sections where one section came from the real
1203 objfile, and the other from a separate debuginfo file.
1204 Return the size of table after redundant sections have been eliminated. */
1205
1206 static int
1207 filter_debuginfo_sections (struct obj_section **map, int map_size)
1208 {
1209 int i, j;
1210
1211 for (i = 0, j = 0; i < map_size - 1; i++)
1212 {
1213 struct obj_section *const sect1 = map[i];
1214 struct obj_section *const sect2 = map[i + 1];
1215 const struct objfile *const objfile1 = sect1->objfile;
1216 const struct objfile *const objfile2 = sect2->objfile;
1217 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1218 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1219
1220 if (sect1_addr == sect2_addr
1221 && (objfile1->separate_debug_objfile == objfile2
1222 || objfile2->separate_debug_objfile == objfile1))
1223 {
1224 map[j++] = preferred_obj_section (sect1, sect2);
1225 ++i;
1226 }
1227 else
1228 map[j++] = sect1;
1229 }
1230
1231 if (i < map_size)
1232 {
1233 gdb_assert (i == map_size - 1);
1234 map[j++] = map[i];
1235 }
1236
1237 /* The map should not have shrunk to less than half the original size. */
1238 gdb_assert (map_size / 2 <= j);
1239
1240 return j;
1241 }
1242
1243 /* Filter out overlapping sections, issuing a warning if any are found.
1244 Overlapping sections could really be overlay sections which we didn't
1245 classify as such in insert_section_p, or we could be dealing with a
1246 corrupt binary. */
1247
1248 static int
1249 filter_overlapping_sections (struct obj_section **map, int map_size)
1250 {
1251 int i, j;
1252
1253 for (i = 0, j = 0; i < map_size - 1; )
1254 {
1255 int k;
1256
1257 map[j++] = map[i];
1258 for (k = i + 1; k < map_size; k++)
1259 {
1260 struct obj_section *const sect1 = map[i];
1261 struct obj_section *const sect2 = map[k];
1262 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1263 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1264 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1265
1266 gdb_assert (sect1_addr <= sect2_addr);
1267
1268 if (sect1_endaddr <= sect2_addr)
1269 break;
1270 else
1271 {
1272 /* We have an overlap. Report it. */
1273
1274 struct objfile *const objf1 = sect1->objfile;
1275 struct objfile *const objf2 = sect2->objfile;
1276
1277 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1278 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1279
1280 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1281
1282 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1283
1284 complaint (_("unexpected overlap between:\n"
1285 " (A) section `%s' from `%s' [%s, %s)\n"
1286 " (B) section `%s' from `%s' [%s, %s).\n"
1287 "Will ignore section B"),
1288 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1289 paddress (gdbarch, sect1_addr),
1290 paddress (gdbarch, sect1_endaddr),
1291 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1292 paddress (gdbarch, sect2_addr),
1293 paddress (gdbarch, sect2_endaddr));
1294 }
1295 }
1296 i = k;
1297 }
1298
1299 if (i < map_size)
1300 {
1301 gdb_assert (i == map_size - 1);
1302 map[j++] = map[i];
1303 }
1304
1305 return j;
1306 }
1307
1308
1309 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1310 TLS, overlay and overlapping sections. */
1311
1312 static void
1313 update_section_map (struct program_space *pspace,
1314 struct obj_section ***pmap, int *pmap_size)
1315 {
1316 struct objfile_pspace_info *pspace_info;
1317 int alloc_size, map_size, i;
1318 struct obj_section *s, **map;
1319 struct objfile *objfile;
1320
1321 pspace_info = get_objfile_pspace_data (pspace);
1322 gdb_assert (pspace_info->section_map_dirty != 0
1323 || pspace_info->new_objfiles_available != 0);
1324
1325 map = *pmap;
1326 xfree (map);
1327
1328 alloc_size = 0;
1329 ALL_PSPACE_OBJFILES (pspace, objfile)
1330 ALL_OBJFILE_OSECTIONS (objfile, s)
1331 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1332 alloc_size += 1;
1333
1334 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1335 if (alloc_size == 0)
1336 {
1337 *pmap = NULL;
1338 *pmap_size = 0;
1339 return;
1340 }
1341
1342 map = XNEWVEC (struct obj_section *, alloc_size);
1343
1344 i = 0;
1345 ALL_PSPACE_OBJFILES (pspace, objfile)
1346 ALL_OBJFILE_OSECTIONS (objfile, s)
1347 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1348 map[i++] = s;
1349
1350 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1351 map_size = filter_debuginfo_sections(map, alloc_size);
1352 map_size = filter_overlapping_sections(map, map_size);
1353
1354 if (map_size < alloc_size)
1355 /* Some sections were eliminated. Trim excess space. */
1356 map = XRESIZEVEC (struct obj_section *, map, map_size);
1357 else
1358 gdb_assert (alloc_size == map_size);
1359
1360 *pmap = map;
1361 *pmap_size = map_size;
1362 }
1363
1364 /* Bsearch comparison function. */
1365
1366 static int
1367 bsearch_cmp (const void *key, const void *elt)
1368 {
1369 const CORE_ADDR pc = *(CORE_ADDR *) key;
1370 const struct obj_section *section = *(const struct obj_section **) elt;
1371
1372 if (pc < obj_section_addr (section))
1373 return -1;
1374 if (pc < obj_section_endaddr (section))
1375 return 0;
1376 return 1;
1377 }
1378
1379 /* Returns a section whose range includes PC or NULL if none found. */
1380
1381 struct obj_section *
1382 find_pc_section (CORE_ADDR pc)
1383 {
1384 struct objfile_pspace_info *pspace_info;
1385 struct obj_section *s, **sp;
1386
1387 /* Check for mapped overlay section first. */
1388 s = find_pc_mapped_section (pc);
1389 if (s)
1390 return s;
1391
1392 pspace_info = get_objfile_pspace_data (current_program_space);
1393 if (pspace_info->section_map_dirty
1394 || (pspace_info->new_objfiles_available
1395 && !pspace_info->inhibit_updates))
1396 {
1397 update_section_map (current_program_space,
1398 &pspace_info->sections,
1399 &pspace_info->num_sections);
1400
1401 /* Don't need updates to section map until objfiles are added,
1402 removed or relocated. */
1403 pspace_info->new_objfiles_available = 0;
1404 pspace_info->section_map_dirty = 0;
1405 }
1406
1407 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1408 bsearch be non-NULL. */
1409 if (pspace_info->sections == NULL)
1410 {
1411 gdb_assert (pspace_info->num_sections == 0);
1412 return NULL;
1413 }
1414
1415 sp = (struct obj_section **) bsearch (&pc,
1416 pspace_info->sections,
1417 pspace_info->num_sections,
1418 sizeof (*pspace_info->sections),
1419 bsearch_cmp);
1420 if (sp != NULL)
1421 return *sp;
1422 return NULL;
1423 }
1424
1425
1426 /* Return non-zero if PC is in a section called NAME. */
1427
1428 int
1429 pc_in_section (CORE_ADDR pc, const char *name)
1430 {
1431 struct obj_section *s;
1432 int retval = 0;
1433
1434 s = find_pc_section (pc);
1435
1436 retval = (s != NULL
1437 && s->the_bfd_section->name != NULL
1438 && strcmp (s->the_bfd_section->name, name) == 0);
1439 return (retval);
1440 }
1441 \f
1442
1443 /* Set section_map_dirty so section map will be rebuilt next time it
1444 is used. Called by reread_symbols. */
1445
1446 void
1447 objfiles_changed (void)
1448 {
1449 /* Rebuild section map next time we need it. */
1450 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1451 }
1452
1453 /* See comments in objfiles.h. */
1454
1455 scoped_restore_tmpl<int>
1456 inhibit_section_map_updates (struct program_space *pspace)
1457 {
1458 return scoped_restore_tmpl<int>
1459 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1460 }
1461
1462 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1463 otherwise. */
1464
1465 int
1466 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1467 {
1468 struct obj_section *osect;
1469
1470 if (objfile == NULL)
1471 return 0;
1472
1473 ALL_OBJFILE_OSECTIONS (objfile, osect)
1474 {
1475 if (section_is_overlay (osect) && !section_is_mapped (osect))
1476 continue;
1477
1478 if (obj_section_addr (osect) <= addr
1479 && addr < obj_section_endaddr (osect))
1480 return 1;
1481 }
1482 return 0;
1483 }
1484
1485 int
1486 shared_objfile_contains_address_p (struct program_space *pspace,
1487 CORE_ADDR address)
1488 {
1489 struct objfile *objfile;
1490
1491 ALL_PSPACE_OBJFILES (pspace, objfile)
1492 {
1493 if ((objfile->flags & OBJF_SHARED) != 0
1494 && is_addr_in_objfile (address, objfile))
1495 return 1;
1496 }
1497
1498 return 0;
1499 }
1500
1501 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1502 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1503 searching the objfiles in the order they are stored internally,
1504 ignoring CURRENT_OBJFILE.
1505
1506 On most platorms, it should be close enough to doing the best
1507 we can without some knowledge specific to the architecture. */
1508
1509 void
1510 default_iterate_over_objfiles_in_search_order
1511 (struct gdbarch *gdbarch,
1512 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1513 void *cb_data, struct objfile *current_objfile)
1514 {
1515 int stop = 0;
1516 struct objfile *objfile;
1517
1518 ALL_OBJFILES (objfile)
1519 {
1520 stop = cb (objfile, cb_data);
1521 if (stop)
1522 return;
1523 }
1524 }
1525
1526 /* See objfiles.h. */
1527
1528 const char *
1529 objfile_name (const struct objfile *objfile)
1530 {
1531 if (objfile->obfd != NULL)
1532 return bfd_get_filename (objfile->obfd);
1533
1534 return objfile->original_name;
1535 }
1536
1537 /* See objfiles.h. */
1538
1539 const char *
1540 objfile_filename (const struct objfile *objfile)
1541 {
1542 if (objfile->obfd != NULL)
1543 return bfd_get_filename (objfile->obfd);
1544
1545 return NULL;
1546 }
1547
1548 /* See objfiles.h. */
1549
1550 const char *
1551 objfile_debug_name (const struct objfile *objfile)
1552 {
1553 return lbasename (objfile->original_name);
1554 }
1555
1556 /* See objfiles.h. */
1557
1558 const char *
1559 objfile_flavour_name (struct objfile *objfile)
1560 {
1561 if (objfile->obfd != NULL)
1562 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1563 return NULL;
1564 }
1565
1566 void
1567 _initialize_objfiles (void)
1568 {
1569 objfiles_pspace_data
1570 = register_program_space_data_with_cleanup (NULL,
1571 objfiles_pspace_data_cleanup);
1572
1573 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1574 objfile_bfd_data_free);
1575 }
This page took 0.060414 seconds and 5 git commands to generate.