Add macro structures to GDB's symbol tables. Nobody puts anything
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33
34 #include <sys/types.h>
35 #include "gdb_stat.h"
36 #include <fcntl.h>
37 #include "obstack.h"
38 #include "gdb_string.h"
39
40 #include "breakpoint.h"
41
42 /* Prototypes for local functions */
43
44 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
45
46 #include "mmalloc.h"
47
48 static int open_existing_mapped_file (char *, long, int);
49
50 static int open_mapped_file (char *filename, long mtime, int flags);
51
52 static PTR map_to_file (int);
53
54 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
55
56 static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
57
58 /* Externally visible variables that are owned by this module.
59 See declarations in objfile.h for more info. */
60
61 struct objfile *object_files; /* Linked list of all objfiles */
62 struct objfile *current_objfile; /* For symbol file being read in */
63 struct objfile *symfile_objfile; /* Main symbol table loaded from */
64 struct objfile *rt_common_objfile; /* For runtime common symbols */
65
66 int mapped_symbol_files; /* Try to use mapped symbol files */
67
68 /* Locate all mappable sections of a BFD file.
69 objfile_p_char is a char * to get it through
70 bfd_map_over_sections; we cast it back to its proper type. */
71
72 #ifndef TARGET_KEEP_SECTION
73 #define TARGET_KEEP_SECTION(ASECT) 0
74 #endif
75
76 /* Called via bfd_map_over_sections to build up the section table that
77 the objfile references. The objfile contains pointers to the start
78 of the table (objfile->sections) and to the first location after
79 the end of the table (objfile->sections_end). */
80
81 static void
82 add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
83 {
84 struct objfile *objfile = (struct objfile *) objfile_p_char;
85 struct obj_section section;
86 flagword aflag;
87
88 aflag = bfd_get_section_flags (abfd, asect);
89
90 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
91 return;
92
93 if (0 == bfd_section_size (abfd, asect))
94 return;
95 section.offset = 0;
96 section.objfile = objfile;
97 section.the_bfd_section = asect;
98 section.ovly_mapped = 0;
99 section.addr = bfd_section_vma (abfd, asect);
100 section.endaddr = section.addr + bfd_section_size (abfd, asect);
101 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
102 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
103 }
104
105 /* Builds a section table for OBJFILE.
106 Returns 0 if OK, 1 on error (in which case bfd_error contains the
107 error).
108
109 Note that while we are building the table, which goes into the
110 psymbol obstack, we hijack the sections_end pointer to instead hold
111 a count of the number of sections. When bfd_map_over_sections
112 returns, this count is used to compute the pointer to the end of
113 the sections table, which then overwrites the count.
114
115 Also note that the OFFSET and OVLY_MAPPED in each table entry
116 are initialized to zero.
117
118 Also note that if anything else writes to the psymbol obstack while
119 we are building the table, we're pretty much hosed. */
120
121 int
122 build_objfile_section_table (struct objfile *objfile)
123 {
124 /* objfile->sections can be already set when reading a mapped symbol
125 file. I believe that we do need to rebuild the section table in
126 this case (we rebuild other things derived from the bfd), but we
127 can't free the old one (it's in the psymbol_obstack). So we just
128 waste some memory. */
129
130 objfile->sections_end = 0;
131 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
132 objfile->sections = (struct obj_section *)
133 obstack_finish (&objfile->psymbol_obstack);
134 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
135 return (0);
136 }
137
138 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
139 allocate a new objfile struct, fill it in as best we can, link it
140 into the list of all known objfiles, and return a pointer to the
141 new objfile struct.
142
143 The FLAGS word contains various bits (OBJF_*) that can be taken as
144 requests for specific operations, like trying to open a mapped
145 version of the objfile (OBJF_MAPPED). Other bits like
146 OBJF_SHARED are simply copied through to the new objfile flags
147 member. */
148
149 struct objfile *
150 allocate_objfile (bfd *abfd, int flags)
151 {
152 struct objfile *objfile = NULL;
153 struct objfile *last_one = NULL;
154
155 if (mapped_symbol_files)
156 flags |= OBJF_MAPPED;
157
158 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
159 if (abfd != NULL)
160 {
161
162 /* If we can support mapped symbol files, try to open/reopen the
163 mapped file that corresponds to the file from which we wish to
164 read symbols. If the objfile is to be mapped, we must malloc
165 the structure itself using the mmap version, and arrange that
166 all memory allocation for the objfile uses the mmap routines.
167 If we are reusing an existing mapped file, from which we get
168 our objfile pointer, we have to make sure that we update the
169 pointers to the alloc/free functions in the obstack, in case
170 these functions have moved within the current gdb. */
171
172 int fd;
173
174 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
175 flags);
176 if (fd >= 0)
177 {
178 PTR md;
179
180 if ((md = map_to_file (fd)) == NULL)
181 {
182 close (fd);
183 }
184 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
185 {
186 /* Update memory corruption handler function addresses. */
187 init_malloc (md);
188 objfile->md = md;
189 objfile->mmfd = fd;
190 /* Update pointers to functions to *our* copies */
191 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
192 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
193 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
194 obstack_freefun (&objfile->macro_cache.cache, xmfree);
195 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
196 obstack_freefun (&objfile->psymbol_obstack, xmfree);
197 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
198 obstack_freefun (&objfile->symbol_obstack, xmfree);
199 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
200 obstack_freefun (&objfile->type_obstack, xmfree);
201 /* If already in objfile list, unlink it. */
202 unlink_objfile (objfile);
203 /* Forget things specific to a particular gdb, may have changed. */
204 objfile->sf = NULL;
205 }
206 else
207 {
208
209 /* Set up to detect internal memory corruption. MUST be
210 done before the first malloc. See comments in
211 init_malloc() and mmcheck(). */
212
213 init_malloc (md);
214
215 objfile = (struct objfile *)
216 xmmalloc (md, sizeof (struct objfile));
217 memset (objfile, 0, sizeof (struct objfile));
218 objfile->md = md;
219 objfile->mmfd = fd;
220 objfile->flags |= OBJF_MAPPED;
221 mmalloc_setkey (objfile->md, 0, objfile);
222 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
223 0, 0, xmmalloc, xmfree,
224 objfile->md);
225 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
226 0, 0, xmmalloc, xmfree,
227 objfile->md);
228 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
229 0, 0, xmmalloc, xmfree,
230 objfile->md);
231 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
232 0, 0, xmmalloc, xmfree,
233 objfile->md);
234 obstack_specify_allocation_with_arg (&objfile->type_obstack,
235 0, 0, xmmalloc, xmfree,
236 objfile->md);
237 }
238 }
239
240 if ((flags & OBJF_MAPPED) && (objfile == NULL))
241 {
242 warning ("symbol table for '%s' will not be mapped",
243 bfd_get_filename (abfd));
244 flags &= ~OBJF_MAPPED;
245 }
246 }
247 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
248
249 if (flags & OBJF_MAPPED)
250 {
251 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
252
253 /* Turn off the global flag so we don't try to do mapped symbol tables
254 any more, which shuts up gdb unless the user specifically gives the
255 "mapped" keyword again. */
256
257 mapped_symbol_files = 0;
258 flags &= ~OBJF_MAPPED;
259 }
260
261 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
262
263 /* If we don't support mapped symbol files, didn't ask for the file to be
264 mapped, or failed to open the mapped file for some reason, then revert
265 back to an unmapped objfile. */
266
267 if (objfile == NULL)
268 {
269 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
270 memset (objfile, 0, sizeof (struct objfile));
271 objfile->md = NULL;
272 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
273 xmalloc, xfree);
274 obstack_specify_allocation (&objfile->macro_cache.cache, 0, 0,
275 xmalloc, xfree);
276 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
277 xfree);
278 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
279 xfree);
280 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
281 xfree);
282 flags &= ~OBJF_MAPPED;
283 }
284
285 /* Update the per-objfile information that comes from the bfd, ensuring
286 that any data that is reference is saved in the per-objfile data
287 region. */
288
289 objfile->obfd = abfd;
290 if (objfile->name != NULL)
291 {
292 xmfree (objfile->md, objfile->name);
293 }
294 if (abfd != NULL)
295 {
296 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
297 objfile->mtime = bfd_get_mtime (abfd);
298
299 /* Build section table. */
300
301 if (build_objfile_section_table (objfile))
302 {
303 error ("Can't find the file sections in `%s': %s",
304 objfile->name, bfd_errmsg (bfd_get_error ()));
305 }
306 }
307
308 /* Initialize the section indexes for this objfile, so that we can
309 later detect if they are used w/o being properly assigned to. */
310
311 objfile->sect_index_text = -1;
312 objfile->sect_index_data = -1;
313 objfile->sect_index_bss = -1;
314 objfile->sect_index_rodata = -1;
315
316 /* Add this file onto the tail of the linked list of other such files. */
317
318 objfile->next = NULL;
319 if (object_files == NULL)
320 object_files = objfile;
321 else
322 {
323 for (last_one = object_files;
324 last_one->next;
325 last_one = last_one->next);
326 last_one->next = objfile;
327 }
328
329 /* Save passed in flag bits. */
330 objfile->flags |= flags;
331
332 return (objfile);
333 }
334
335 /* Put OBJFILE at the front of the list. */
336
337 void
338 objfile_to_front (struct objfile *objfile)
339 {
340 struct objfile **objp;
341 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
342 {
343 if (*objp == objfile)
344 {
345 /* Unhook it from where it is. */
346 *objp = objfile->next;
347 /* Put it in the front. */
348 objfile->next = object_files;
349 object_files = objfile;
350 break;
351 }
352 }
353 }
354
355 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
356 list.
357
358 It is not a bug, or error, to call this function if OBJFILE is not known
359 to be in the current list. This is done in the case of mapped objfiles,
360 for example, just to ensure that the mapped objfile doesn't appear twice
361 in the list. Since the list is threaded, linking in a mapped objfile
362 twice would create a circular list.
363
364 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
365 unlinking it, just to ensure that we have completely severed any linkages
366 between the OBJFILE and the list. */
367
368 void
369 unlink_objfile (struct objfile *objfile)
370 {
371 struct objfile **objpp;
372
373 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
374 {
375 if (*objpp == objfile)
376 {
377 *objpp = (*objpp)->next;
378 objfile->next = NULL;
379 return;
380 }
381 }
382
383 internal_error (__FILE__, __LINE__,
384 "unlink_objfile: objfile already unlinked");
385 }
386
387
388 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
389 that as much as possible is allocated on the symbol_obstack and
390 psymbol_obstack, so that the memory can be efficiently freed.
391
392 Things which we do NOT free because they are not in malloc'd memory
393 or not in memory specific to the objfile include:
394
395 objfile -> sf
396
397 FIXME: If the objfile is using reusable symbol information (via mmalloc),
398 then we need to take into account the fact that more than one process
399 may be using the symbol information at the same time (when mmalloc is
400 extended to support cooperative locking). When more than one process
401 is using the mapped symbol info, we need to be more careful about when
402 we free objects in the reusable area. */
403
404 void
405 free_objfile (struct objfile *objfile)
406 {
407 /* First do any symbol file specific actions required when we are
408 finished with a particular symbol file. Note that if the objfile
409 is using reusable symbol information (via mmalloc) then each of
410 these routines is responsible for doing the correct thing, either
411 freeing things which are valid only during this particular gdb
412 execution, or leaving them to be reused during the next one. */
413
414 if (objfile->sf != NULL)
415 {
416 (*objfile->sf->sym_finish) (objfile);
417 }
418
419 /* We always close the bfd. */
420
421 if (objfile->obfd != NULL)
422 {
423 char *name = bfd_get_filename (objfile->obfd);
424 if (!bfd_close (objfile->obfd))
425 warning ("cannot close \"%s\": %s",
426 name, bfd_errmsg (bfd_get_error ()));
427 xfree (name);
428 }
429
430 /* Remove it from the chain of all objfiles. */
431
432 unlink_objfile (objfile);
433
434 /* If we are going to free the runtime common objfile, mark it
435 as unallocated. */
436
437 if (objfile == rt_common_objfile)
438 rt_common_objfile = NULL;
439
440 /* Before the symbol table code was redone to make it easier to
441 selectively load and remove information particular to a specific
442 linkage unit, gdb used to do these things whenever the monolithic
443 symbol table was blown away. How much still needs to be done
444 is unknown, but we play it safe for now and keep each action until
445 it is shown to be no longer needed. */
446
447 /* I *think* all our callers call clear_symtab_users. If so, no need
448 to call this here. */
449 clear_pc_function_cache ();
450
451 /* The last thing we do is free the objfile struct itself for the
452 non-reusable case, or detach from the mapped file for the
453 reusable case. Note that the mmalloc_detach or the xmfree() is
454 the last thing we can do with this objfile. */
455
456 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
457
458 if (objfile->flags & OBJF_MAPPED)
459 {
460 /* Remember the fd so we can close it. We can't close it before
461 doing the detach, and after the detach the objfile is gone. */
462 int mmfd;
463
464 mmfd = objfile->mmfd;
465 mmalloc_detach (objfile->md);
466 objfile = NULL;
467 close (mmfd);
468 }
469
470 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
471
472 /* If we still have an objfile, then either we don't support reusable
473 objfiles or this one was not reusable. So free it normally. */
474
475 if (objfile != NULL)
476 {
477 if (objfile->name != NULL)
478 {
479 xmfree (objfile->md, objfile->name);
480 }
481 if (objfile->global_psymbols.list)
482 xmfree (objfile->md, objfile->global_psymbols.list);
483 if (objfile->static_psymbols.list)
484 xmfree (objfile->md, objfile->static_psymbols.list);
485 /* Free the obstacks for non-reusable objfiles */
486 free_bcache (&objfile->psymbol_cache);
487 free_bcache (&objfile->macro_cache);
488 obstack_free (&objfile->psymbol_obstack, 0);
489 obstack_free (&objfile->symbol_obstack, 0);
490 obstack_free (&objfile->type_obstack, 0);
491 xmfree (objfile->md, objfile);
492 objfile = NULL;
493 }
494 }
495
496 static void
497 do_free_objfile_cleanup (void *obj)
498 {
499 free_objfile (obj);
500 }
501
502 struct cleanup *
503 make_cleanup_free_objfile (struct objfile *obj)
504 {
505 return make_cleanup (do_free_objfile_cleanup, obj);
506 }
507
508 /* Free all the object files at once and clean up their users. */
509
510 void
511 free_all_objfiles (void)
512 {
513 struct objfile *objfile, *temp;
514
515 ALL_OBJFILES_SAFE (objfile, temp)
516 {
517 free_objfile (objfile);
518 }
519 clear_symtab_users ();
520 }
521 \f
522 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
523 entries in new_offsets. */
524 void
525 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
526 {
527 struct section_offsets *delta =
528 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
529
530 {
531 int i;
532 int something_changed = 0;
533 for (i = 0; i < objfile->num_sections; ++i)
534 {
535 delta->offsets[i] =
536 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
537 if (ANOFFSET (delta, i) != 0)
538 something_changed = 1;
539 }
540 if (!something_changed)
541 return;
542 }
543
544 /* OK, get all the symtabs. */
545 {
546 struct symtab *s;
547
548 ALL_OBJFILE_SYMTABS (objfile, s)
549 {
550 struct linetable *l;
551 struct blockvector *bv;
552 int i;
553
554 /* First the line table. */
555 l = LINETABLE (s);
556 if (l)
557 {
558 for (i = 0; i < l->nitems; ++i)
559 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
560 }
561
562 /* Don't relocate a shared blockvector more than once. */
563 if (!s->primary)
564 continue;
565
566 bv = BLOCKVECTOR (s);
567 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
568 {
569 struct block *b;
570 struct symbol *sym;
571 int j;
572
573 b = BLOCKVECTOR_BLOCK (bv, i);
574 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
575 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
576
577 ALL_BLOCK_SYMBOLS (b, j, sym)
578 {
579 fixup_symbol_section (sym, objfile);
580
581 /* The RS6000 code from which this was taken skipped
582 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
583 But I'm leaving out that test, on the theory that
584 they can't possibly pass the tests below. */
585 if ((SYMBOL_CLASS (sym) == LOC_LABEL
586 || SYMBOL_CLASS (sym) == LOC_STATIC
587 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
588 && SYMBOL_SECTION (sym) >= 0)
589 {
590 SYMBOL_VALUE_ADDRESS (sym) +=
591 ANOFFSET (delta, SYMBOL_SECTION (sym));
592 }
593 #ifdef MIPS_EFI_SYMBOL_NAME
594 /* Relocate Extra Function Info for ecoff. */
595
596 else if (SYMBOL_CLASS (sym) == LOC_CONST
597 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
598 && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
599 ecoff_relocate_efi (sym, ANOFFSET (delta,
600 s->block_line_section));
601 #endif
602 }
603 }
604 }
605 }
606
607 {
608 struct partial_symtab *p;
609
610 ALL_OBJFILE_PSYMTABS (objfile, p)
611 {
612 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
613 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
614 }
615 }
616
617 {
618 struct partial_symbol **psym;
619
620 for (psym = objfile->global_psymbols.list;
621 psym < objfile->global_psymbols.next;
622 psym++)
623 {
624 fixup_psymbol_section (*psym, objfile);
625 if (SYMBOL_SECTION (*psym) >= 0)
626 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
627 SYMBOL_SECTION (*psym));
628 }
629 for (psym = objfile->static_psymbols.list;
630 psym < objfile->static_psymbols.next;
631 psym++)
632 {
633 fixup_psymbol_section (*psym, objfile);
634 if (SYMBOL_SECTION (*psym) >= 0)
635 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
636 SYMBOL_SECTION (*psym));
637 }
638 }
639
640 {
641 struct minimal_symbol *msym;
642 ALL_OBJFILE_MSYMBOLS (objfile, msym)
643 if (SYMBOL_SECTION (msym) >= 0)
644 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
645 }
646 /* Relocating different sections by different amounts may cause the symbols
647 to be out of order. */
648 msymbols_sort (objfile);
649
650 {
651 int i;
652 for (i = 0; i < objfile->num_sections; ++i)
653 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
654 }
655
656 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
657 {
658 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
659 only as a fallback. */
660 struct obj_section *s;
661 s = find_pc_section (objfile->ei.entry_point);
662 if (s)
663 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
664 else
665 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
666 }
667
668 {
669 struct obj_section *s;
670 bfd *abfd;
671
672 abfd = objfile->obfd;
673
674 ALL_OBJFILE_OSECTIONS (objfile, s)
675 {
676 int idx = s->the_bfd_section->index;
677
678 s->addr += ANOFFSET (delta, idx);
679 s->endaddr += ANOFFSET (delta, idx);
680 }
681 }
682
683 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
684 {
685 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
686 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
687 }
688
689 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
690 {
691 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
692 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
693 }
694
695 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
696 {
697 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
698 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
699 }
700
701 /* Relocate breakpoints as necessary, after things are relocated. */
702 breakpoint_re_set ();
703 }
704 \f
705 /* Many places in gdb want to test just to see if we have any partial
706 symbols available. This function returns zero if none are currently
707 available, nonzero otherwise. */
708
709 int
710 have_partial_symbols (void)
711 {
712 struct objfile *ofp;
713
714 ALL_OBJFILES (ofp)
715 {
716 if (ofp->psymtabs != NULL)
717 {
718 return 1;
719 }
720 }
721 return 0;
722 }
723
724 /* Many places in gdb want to test just to see if we have any full
725 symbols available. This function returns zero if none are currently
726 available, nonzero otherwise. */
727
728 int
729 have_full_symbols (void)
730 {
731 struct objfile *ofp;
732
733 ALL_OBJFILES (ofp)
734 {
735 if (ofp->symtabs != NULL)
736 {
737 return 1;
738 }
739 }
740 return 0;
741 }
742
743
744 /* This operations deletes all objfile entries that represent solibs that
745 weren't explicitly loaded by the user, via e.g., the add-symbol-file
746 command.
747 */
748 void
749 objfile_purge_solibs (void)
750 {
751 struct objfile *objf;
752 struct objfile *temp;
753
754 ALL_OBJFILES_SAFE (objf, temp)
755 {
756 /* We assume that the solib package has been purged already, or will
757 be soon.
758 */
759 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
760 free_objfile (objf);
761 }
762 }
763
764
765 /* Many places in gdb want to test just to see if we have any minimal
766 symbols available. This function returns zero if none are currently
767 available, nonzero otherwise. */
768
769 int
770 have_minimal_symbols (void)
771 {
772 struct objfile *ofp;
773
774 ALL_OBJFILES (ofp)
775 {
776 if (ofp->msymbols != NULL)
777 {
778 return 1;
779 }
780 }
781 return 0;
782 }
783
784 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
785
786 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
787 of the corresponding symbol file in MTIME, try to open an existing file
788 with the name SYMSFILENAME and verify it is more recent than the base
789 file by checking it's timestamp against MTIME.
790
791 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
792
793 If SYMSFILENAME does exist, but is out of date, we check to see if the
794 user has specified creation of a mapped file. If so, we don't issue
795 any warning message because we will be creating a new mapped file anyway,
796 overwriting the old one. If not, then we issue a warning message so that
797 the user will know why we aren't using this existing mapped symbol file.
798 In either case, we return -1.
799
800 If SYMSFILENAME does exist and is not out of date, but can't be opened for
801 some reason, then prints an appropriate system error message and returns -1.
802
803 Otherwise, returns the open file descriptor. */
804
805 static int
806 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
807 {
808 int fd = -1;
809 struct stat sbuf;
810
811 if (stat (symsfilename, &sbuf) == 0)
812 {
813 if (sbuf.st_mtime < mtime)
814 {
815 if (!(flags & OBJF_MAPPED))
816 {
817 warning ("mapped symbol file `%s' is out of date, ignored it",
818 symsfilename);
819 }
820 }
821 else if ((fd = open (symsfilename, O_RDWR)) < 0)
822 {
823 if (error_pre_print)
824 {
825 printf_unfiltered (error_pre_print);
826 }
827 print_sys_errmsg (symsfilename, errno);
828 }
829 }
830 return (fd);
831 }
832
833 /* Look for a mapped symbol file that corresponds to FILENAME and is more
834 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
835 use a mapped symbol file for this file, so create a new one if one does
836 not currently exist.
837
838 If found, then return an open file descriptor for the file, otherwise
839 return -1.
840
841 This routine is responsible for implementing the policy that generates
842 the name of the mapped symbol file from the name of a file containing
843 symbols that gdb would like to read. Currently this policy is to append
844 ".syms" to the name of the file.
845
846 This routine is also responsible for implementing the policy that
847 determines where the mapped symbol file is found (the search path).
848 This policy is that when reading an existing mapped file, a file of
849 the correct name in the current directory takes precedence over a
850 file of the correct name in the same directory as the symbol file.
851 When creating a new mapped file, it is always created in the current
852 directory. This helps to minimize the chances of a user unknowingly
853 creating big mapped files in places like /bin and /usr/local/bin, and
854 allows a local copy to override a manually installed global copy (in
855 /bin for example). */
856
857 static int
858 open_mapped_file (char *filename, long mtime, int flags)
859 {
860 int fd;
861 char *symsfilename;
862
863 /* First try to open an existing file in the current directory, and
864 then try the directory where the symbol file is located. */
865
866 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
867 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
868 {
869 xfree (symsfilename);
870 symsfilename = concat (filename, ".syms", (char *) NULL);
871 fd = open_existing_mapped_file (symsfilename, mtime, flags);
872 }
873
874 /* If we don't have an open file by now, then either the file does not
875 already exist, or the base file has changed since it was created. In
876 either case, if the user has specified use of a mapped file, then
877 create a new mapped file, truncating any existing one. If we can't
878 create one, print a system error message saying why we can't.
879
880 By default the file is rw for everyone, with the user's umask taking
881 care of turning off the permissions the user wants off. */
882
883 if ((fd < 0) && (flags & OBJF_MAPPED))
884 {
885 xfree (symsfilename);
886 symsfilename = concat ("./", lbasename (filename), ".syms",
887 (char *) NULL);
888 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
889 {
890 if (error_pre_print)
891 {
892 printf_unfiltered (error_pre_print);
893 }
894 print_sys_errmsg (symsfilename, errno);
895 }
896 }
897
898 xfree (symsfilename);
899 return (fd);
900 }
901
902 static PTR
903 map_to_file (int fd)
904 {
905 PTR md;
906 CORE_ADDR mapto;
907
908 md = mmalloc_attach (fd, (PTR) 0);
909 if (md != NULL)
910 {
911 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
912 md = mmalloc_detach (md);
913 if (md != NULL)
914 {
915 /* FIXME: should figure out why detach failed */
916 md = NULL;
917 }
918 else if (mapto != (CORE_ADDR) NULL)
919 {
920 /* This mapping file needs to be remapped at "mapto" */
921 md = mmalloc_attach (fd, (PTR) mapto);
922 }
923 else
924 {
925 /* This is a freshly created mapping file. */
926 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
927 if (mapto != 0)
928 {
929 /* To avoid reusing the freshly created mapping file, at the
930 address selected by mmap, we must truncate it before trying
931 to do an attach at the address we want. */
932 ftruncate (fd, 0);
933 md = mmalloc_attach (fd, (PTR) mapto);
934 if (md != NULL)
935 {
936 mmalloc_setkey (md, 1, (PTR) mapto);
937 }
938 }
939 }
940 }
941 return (md);
942 }
943
944 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
945
946 /* Returns a section whose range includes PC and SECTION,
947 or NULL if none found. Note the distinction between the return type,
948 struct obj_section (which is defined in gdb), and the input type
949 struct sec (which is a bfd-defined data type). The obj_section
950 contains a pointer to the bfd struct sec section. */
951
952 struct obj_section *
953 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
954 {
955 struct obj_section *s;
956 struct objfile *objfile;
957
958 ALL_OBJSECTIONS (objfile, s)
959 if ((section == 0 || section == s->the_bfd_section) &&
960 s->addr <= pc && pc < s->endaddr)
961 return (s);
962
963 return (NULL);
964 }
965
966 /* Returns a section whose range includes PC or NULL if none found.
967 Backward compatibility, no section. */
968
969 struct obj_section *
970 find_pc_section (CORE_ADDR pc)
971 {
972 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
973 }
974
975
976 /* In SVR4, we recognize a trampoline by it's section name.
977 That is, if the pc is in a section named ".plt" then we are in
978 a trampoline. */
979
980 int
981 in_plt_section (CORE_ADDR pc, char *name)
982 {
983 struct obj_section *s;
984 int retval = 0;
985
986 s = find_pc_section (pc);
987
988 retval = (s != NULL
989 && s->the_bfd_section->name != NULL
990 && STREQ (s->the_bfd_section->name, ".plt"));
991 return (retval);
992 }
993
994 /* Return nonzero if NAME is in the import list of OBJFILE. Else
995 return zero. */
996
997 int
998 is_in_import_list (char *name, struct objfile *objfile)
999 {
1000 register int i;
1001
1002 if (!objfile || !name || !*name)
1003 return 0;
1004
1005 for (i = 0; i < objfile->import_list_size; i++)
1006 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1007 return 1;
1008 return 0;
1009 }
1010
This page took 0.05149 seconds and 5 git commands to generate.