Change objfile to use new/delete
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 #include <vector>
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = ((struct objfile_pspace_info *)
103 program_space_data (pspace, objfiles_pspace_data));
104 if (info == NULL)
105 {
106 info = XCNEW (struct objfile_pspace_info);
107 set_program_space_data (pspace, objfiles_pspace_data, info);
108 }
109
110 return info;
111 }
112
113 \f
114
115 /* Per-BFD data key. */
116
117 static const struct bfd_data *objfiles_bfd_data;
118
119 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
120 NULL, and it already has a per-BFD storage object, use that.
121 Otherwise, allocate a new per-BFD storage object. If ABFD is not
122 NULL, the object is allocated on the BFD; otherwise it is allocated
123 on OBJFILE's obstack. Note that it is not safe to call this
124 multiple times for a given OBJFILE -- it can only be called when
125 allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = ((struct objfile_per_bfd_storage *)
134 bfd_data (abfd, objfiles_bfd_data));
135
136 if (storage == NULL)
137 {
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 {
143 storage
144 = ((struct objfile_per_bfd_storage *)
145 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147 }
148 else
149 {
150 storage = (objfile_per_bfd_storage *)
151 obstack_alloc (&objfile->objfile_obstack,
152 sizeof (objfile_per_bfd_storage));
153 }
154
155 /* objfile_per_bfd_storage is not trivially constructible, must
156 call the ctor manually. */
157 storage = new (storage) objfile_per_bfd_storage ();
158
159 /* Look up the gdbarch associated with the BFD. */
160 if (abfd != NULL)
161 storage->gdbarch = gdbarch_from_bfd (abfd);
162
163 storage->filename_cache = bcache_xmalloc (NULL, NULL);
164 storage->macro_cache = bcache_xmalloc (NULL, NULL);
165 storage->language_of_main = language_unknown;
166 }
167
168 return storage;
169 }
170
171 /* Free STORAGE. */
172
173 static void
174 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
175 {
176 bcache_xfree (storage->filename_cache);
177 bcache_xfree (storage->macro_cache);
178 if (storage->demangled_names_hash)
179 htab_delete (storage->demangled_names_hash);
180 storage->~objfile_per_bfd_storage ();
181 }
182
183 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
184 cleanup function to the BFD registry. */
185
186 static void
187 objfile_bfd_data_free (struct bfd *unused, void *d)
188 {
189 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
190 }
191
192 /* See objfiles.h. */
193
194 void
195 set_objfile_per_bfd (struct objfile *objfile)
196 {
197 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
198 }
199
200 /* Set the objfile's per-BFD notion of the "main" name and
201 language. */
202
203 void
204 set_objfile_main_name (struct objfile *objfile,
205 const char *name, enum language lang)
206 {
207 if (objfile->per_bfd->name_of_main == NULL
208 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
209 objfile->per_bfd->name_of_main
210 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
211 strlen (name));
212 objfile->per_bfd->language_of_main = lang;
213 }
214
215 /* Helper structure to map blocks to static link properties in hash tables. */
216
217 struct static_link_htab_entry
218 {
219 const struct block *block;
220 const struct dynamic_prop *static_link;
221 };
222
223 /* Return a hash code for struct static_link_htab_entry *P. */
224
225 static hashval_t
226 static_link_htab_entry_hash (const void *p)
227 {
228 const struct static_link_htab_entry *e
229 = (const struct static_link_htab_entry *) p;
230
231 return htab_hash_pointer (e->block);
232 }
233
234 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
235 mappings for the same block. */
236
237 static int
238 static_link_htab_entry_eq (const void *p1, const void *p2)
239 {
240 const struct static_link_htab_entry *e1
241 = (const struct static_link_htab_entry *) p1;
242 const struct static_link_htab_entry *e2
243 = (const struct static_link_htab_entry *) p2;
244
245 return e1->block == e2->block;
246 }
247
248 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
249 Must not be called more than once for each BLOCK. */
250
251 void
252 objfile_register_static_link (struct objfile *objfile,
253 const struct block *block,
254 const struct dynamic_prop *static_link)
255 {
256 void **slot;
257 struct static_link_htab_entry lookup_entry;
258 struct static_link_htab_entry *entry;
259
260 if (objfile->static_links == NULL)
261 objfile->static_links = htab_create_alloc
262 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
263 xcalloc, xfree);
264
265 /* Create a slot for the mapping, make sure it's the first mapping for this
266 block and then create the mapping itself. */
267 lookup_entry.block = block;
268 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
269 gdb_assert (*slot == NULL);
270
271 entry = (struct static_link_htab_entry *) obstack_alloc
272 (&objfile->objfile_obstack, sizeof (*entry));
273 entry->block = block;
274 entry->static_link = static_link;
275 *slot = (void *) entry;
276 }
277
278 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
279 none was found. */
280
281 const struct dynamic_prop *
282 objfile_lookup_static_link (struct objfile *objfile,
283 const struct block *block)
284 {
285 struct static_link_htab_entry *entry;
286 struct static_link_htab_entry lookup_entry;
287
288 if (objfile->static_links == NULL)
289 return NULL;
290 lookup_entry.block = block;
291 entry
292 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
293 &lookup_entry);
294 if (entry == NULL)
295 return NULL;
296
297 gdb_assert (entry->block == block);
298 return entry->static_link;
299 }
300
301 \f
302
303 /* Called via bfd_map_over_sections to build up the section table that
304 the objfile references. The objfile contains pointers to the start
305 of the table (objfile->sections) and to the first location after
306 the end of the table (objfile->sections_end). */
307
308 static void
309 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
310 struct objfile *objfile, int force)
311 {
312 struct obj_section *section;
313
314 if (!force)
315 {
316 flagword aflag;
317
318 aflag = bfd_get_section_flags (abfd, asect);
319 if (!(aflag & SEC_ALLOC))
320 return;
321 }
322
323 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
324 section->objfile = objfile;
325 section->the_bfd_section = asect;
326 section->ovly_mapped = 0;
327 }
328
329 static void
330 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
331 void *objfilep)
332 {
333 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
334 }
335
336 /* Builds a section table for OBJFILE.
337
338 Note that the OFFSET and OVLY_MAPPED in each table entry are
339 initialized to zero. */
340
341 void
342 build_objfile_section_table (struct objfile *objfile)
343 {
344 int count = gdb_bfd_count_sections (objfile->obfd);
345
346 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
347 count,
348 struct obj_section);
349 objfile->sections_end = (objfile->sections + count);
350 bfd_map_over_sections (objfile->obfd,
351 add_to_objfile_sections, (void *) objfile);
352
353 /* See gdb_bfd_section_index. */
354 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
355 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
356 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
357 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
358 }
359
360 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
361 initialize the new objfile as best we can and link it into the list
362 of all known objfiles.
363
364 NAME should contain original non-canonicalized filename or other
365 identifier as entered by user. If there is no better source use
366 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
367 NAME content is copied into returned objfile.
368
369 The FLAGS word contains various bits (OBJF_*) that can be taken as
370 requests for specific operations. Other bits like OBJF_SHARED are
371 simply copied through to the new objfile flags member. */
372
373 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
374 : flags (flags_),
375 pspace (current_program_space),
376 obfd (abfd),
377 psymbol_cache (psymbol_bcache_init ())
378 {
379 const char *expanded_name;
380
381 /* We could use obstack_specify_allocation here instead, but
382 gdb_obstack.h specifies the alloc/dealloc functions. */
383 obstack_init (&objfile_obstack);
384
385 objfile_alloc_data (this);
386
387 gdb::unique_xmalloc_ptr<char> name_holder;
388 if (name == NULL)
389 {
390 gdb_assert (abfd == NULL);
391 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
392 expanded_name = "<<anonymous objfile>>";
393 }
394 else if ((flags & OBJF_NOT_FILENAME) != 0
395 || is_target_filename (name))
396 expanded_name = name;
397 else
398 {
399 name_holder = gdb_abspath (name);
400 expanded_name = name_holder.get ();
401 }
402 original_name
403 = (char *) obstack_copy0 (&objfile_obstack,
404 expanded_name,
405 strlen (expanded_name));
406
407 /* Update the per-objfile information that comes from the bfd, ensuring
408 that any data that is reference is saved in the per-objfile data
409 region. */
410
411 gdb_bfd_ref (abfd);
412 if (abfd != NULL)
413 {
414 mtime = bfd_get_mtime (abfd);
415
416 /* Build section table. */
417 build_objfile_section_table (this);
418 }
419
420 per_bfd = get_objfile_bfd_data (this, abfd);
421
422 terminate_minimal_symbol_table (this);
423
424 /* Add this file onto the tail of the linked list of other such files. */
425
426 if (object_files == NULL)
427 object_files = this;
428 else
429 {
430 struct objfile *last_one;
431
432 for (last_one = object_files;
433 last_one->next;
434 last_one = last_one->next);
435 last_one->next = this;
436 }
437
438 /* Rebuild section map next time we need it. */
439 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
440 }
441
442 /* Retrieve the gdbarch associated with OBJFILE. */
443
444 struct gdbarch *
445 get_objfile_arch (const struct objfile *objfile)
446 {
447 return objfile->per_bfd->gdbarch;
448 }
449
450 /* If there is a valid and known entry point, function fills *ENTRY_P with it
451 and returns non-zero; otherwise it returns zero. */
452
453 int
454 entry_point_address_query (CORE_ADDR *entry_p)
455 {
456 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
457 return 0;
458
459 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
460 + ANOFFSET (symfile_objfile->section_offsets,
461 symfile_objfile->per_bfd->ei.the_bfd_section_index));
462
463 return 1;
464 }
465
466 /* Get current entry point address. Call error if it is not known. */
467
468 CORE_ADDR
469 entry_point_address (void)
470 {
471 CORE_ADDR retval;
472
473 if (!entry_point_address_query (&retval))
474 error (_("Entry point address is not known."));
475
476 return retval;
477 }
478
479 /* Iterator on PARENT and every separate debug objfile of PARENT.
480 The usage pattern is:
481 for (objfile = parent;
482 objfile;
483 objfile = objfile_separate_debug_iterate (parent, objfile))
484 ...
485 */
486
487 struct objfile *
488 objfile_separate_debug_iterate (const struct objfile *parent,
489 const struct objfile *objfile)
490 {
491 struct objfile *res;
492
493 /* If any, return the first child. */
494 res = objfile->separate_debug_objfile;
495 if (res)
496 return res;
497
498 /* Common case where there is no separate debug objfile. */
499 if (objfile == parent)
500 return NULL;
501
502 /* Return the brother if any. Note that we don't iterate on brothers of
503 the parents. */
504 res = objfile->separate_debug_objfile_link;
505 if (res)
506 return res;
507
508 for (res = objfile->separate_debug_objfile_backlink;
509 res != parent;
510 res = res->separate_debug_objfile_backlink)
511 {
512 gdb_assert (res != NULL);
513 if (res->separate_debug_objfile_link)
514 return res->separate_debug_objfile_link;
515 }
516 return NULL;
517 }
518
519 /* Put one object file before a specified on in the global list.
520 This can be used to make sure an object file is destroyed before
521 another when using ALL_OBJFILES_SAFE to free all objfiles. */
522 void
523 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
524 {
525 struct objfile **objp;
526
527 unlink_objfile (objfile);
528
529 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
530 {
531 if (*objp == before_this)
532 {
533 objfile->next = *objp;
534 *objp = objfile;
535 return;
536 }
537 }
538
539 internal_error (__FILE__, __LINE__,
540 _("put_objfile_before: before objfile not in list"));
541 }
542
543 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
544 list.
545
546 It is not a bug, or error, to call this function if OBJFILE is not known
547 to be in the current list. This is done in the case of mapped objfiles,
548 for example, just to ensure that the mapped objfile doesn't appear twice
549 in the list. Since the list is threaded, linking in a mapped objfile
550 twice would create a circular list.
551
552 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
553 unlinking it, just to ensure that we have completely severed any linkages
554 between the OBJFILE and the list. */
555
556 void
557 unlink_objfile (struct objfile *objfile)
558 {
559 struct objfile **objpp;
560
561 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
562 {
563 if (*objpp == objfile)
564 {
565 *objpp = (*objpp)->next;
566 objfile->next = NULL;
567 return;
568 }
569 }
570
571 internal_error (__FILE__, __LINE__,
572 _("unlink_objfile: objfile already unlinked"));
573 }
574
575 /* Add OBJFILE as a separate debug objfile of PARENT. */
576
577 void
578 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
579 {
580 gdb_assert (objfile && parent);
581
582 /* Must not be already in a list. */
583 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
584 gdb_assert (objfile->separate_debug_objfile_link == NULL);
585 gdb_assert (objfile->separate_debug_objfile == NULL);
586 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
587 gdb_assert (parent->separate_debug_objfile_link == NULL);
588
589 objfile->separate_debug_objfile_backlink = parent;
590 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
591 parent->separate_debug_objfile = objfile;
592
593 /* Put the separate debug object before the normal one, this is so that
594 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
595 put_objfile_before (objfile, parent);
596 }
597
598 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
599 itself. */
600
601 void
602 free_objfile_separate_debug (struct objfile *objfile)
603 {
604 struct objfile *child;
605
606 for (child = objfile->separate_debug_objfile; child;)
607 {
608 struct objfile *next_child = child->separate_debug_objfile_link;
609 delete child;
610 child = next_child;
611 }
612 }
613
614 /* Destroy an objfile and all the symtabs and psymtabs under it. */
615
616 objfile::~objfile ()
617 {
618 /* First notify observers that this objfile is about to be freed. */
619 observer_notify_free_objfile (this);
620
621 /* Free all separate debug objfiles. */
622 free_objfile_separate_debug (this);
623
624 if (separate_debug_objfile_backlink)
625 {
626 /* We freed the separate debug file, make sure the base objfile
627 doesn't reference it. */
628 struct objfile *child;
629
630 child = separate_debug_objfile_backlink->separate_debug_objfile;
631
632 if (child == this)
633 {
634 /* THIS is the first child. */
635 separate_debug_objfile_backlink->separate_debug_objfile =
636 separate_debug_objfile_link;
637 }
638 else
639 {
640 /* Find THIS in the list. */
641 while (1)
642 {
643 if (child->separate_debug_objfile_link == this)
644 {
645 child->separate_debug_objfile_link =
646 separate_debug_objfile_link;
647 break;
648 }
649 child = child->separate_debug_objfile_link;
650 gdb_assert (child);
651 }
652 }
653 }
654
655 /* Remove any references to this objfile in the global value
656 lists. */
657 preserve_values (this);
658
659 /* It still may reference data modules have associated with the objfile and
660 the symbol file data. */
661 forget_cached_source_info_for_objfile (this);
662
663 breakpoint_free_objfile (this);
664 btrace_free_objfile (this);
665
666 /* First do any symbol file specific actions required when we are
667 finished with a particular symbol file. Note that if the objfile
668 is using reusable symbol information (via mmalloc) then each of
669 these routines is responsible for doing the correct thing, either
670 freeing things which are valid only during this particular gdb
671 execution, or leaving them to be reused during the next one. */
672
673 if (sf != NULL)
674 (*sf->sym_finish) (this);
675
676 /* Discard any data modules have associated with the objfile. The function
677 still may reference obfd. */
678 objfile_free_data (this);
679
680 if (obfd)
681 gdb_bfd_unref (obfd);
682 else
683 free_objfile_per_bfd_storage (per_bfd);
684
685 /* Remove it from the chain of all objfiles. */
686
687 unlink_objfile (this);
688
689 if (this == symfile_objfile)
690 symfile_objfile = NULL;
691
692 /* Before the symbol table code was redone to make it easier to
693 selectively load and remove information particular to a specific
694 linkage unit, gdb used to do these things whenever the monolithic
695 symbol table was blown away. How much still needs to be done
696 is unknown, but we play it safe for now and keep each action until
697 it is shown to be no longer needed. */
698
699 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
700 for example), so we need to call this here. */
701 clear_pc_function_cache ();
702
703 /* Clear globals which might have pointed into a removed objfile.
704 FIXME: It's not clear which of these are supposed to persist
705 between expressions and which ought to be reset each time. */
706 expression_context_block = NULL;
707 innermost_block = NULL;
708
709 /* Check to see if the current_source_symtab belongs to this objfile,
710 and if so, call clear_current_source_symtab_and_line. */
711
712 {
713 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
714
715 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
716 clear_current_source_symtab_and_line ();
717 }
718
719 if (global_psymbols.list)
720 xfree (global_psymbols.list);
721 if (static_psymbols.list)
722 xfree (static_psymbols.list);
723 /* Free the obstacks for non-reusable objfiles. */
724 psymbol_bcache_free (psymbol_cache);
725 obstack_free (&objfile_obstack, 0);
726
727 /* Rebuild section map next time we need it. */
728 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
729
730 /* Free the map for static links. There's no need to free static link
731 themselves since they were allocated on the objstack. */
732 if (static_links != NULL)
733 htab_delete (static_links);
734 }
735
736 static void
737 do_free_objfile_cleanup (void *obj)
738 {
739 delete (struct objfile *) obj;
740 }
741
742 struct cleanup *
743 make_cleanup_free_objfile (struct objfile *obj)
744 {
745 return make_cleanup (do_free_objfile_cleanup, obj);
746 }
747
748 /* Free all the object files at once and clean up their users. */
749
750 void
751 free_all_objfiles (void)
752 {
753 struct objfile *objfile, *temp;
754 struct so_list *so;
755
756 /* Any objfile referencewould become stale. */
757 for (so = master_so_list (); so; so = so->next)
758 gdb_assert (so->objfile == NULL);
759
760 ALL_OBJFILES_SAFE (objfile, temp)
761 {
762 delete objfile;
763 }
764 clear_symtab_users (0);
765 }
766 \f
767 /* A helper function for objfile_relocate1 that relocates a single
768 symbol. */
769
770 static void
771 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
772 struct section_offsets *delta)
773 {
774 fixup_symbol_section (sym, objfile);
775
776 /* The RS6000 code from which this was taken skipped
777 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
778 But I'm leaving out that test, on the theory that
779 they can't possibly pass the tests below. */
780 if ((SYMBOL_CLASS (sym) == LOC_LABEL
781 || SYMBOL_CLASS (sym) == LOC_STATIC)
782 && SYMBOL_SECTION (sym) >= 0)
783 {
784 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
785 }
786 }
787
788 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
789 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
790 Return non-zero iff any change happened. */
791
792 static int
793 objfile_relocate1 (struct objfile *objfile,
794 const struct section_offsets *new_offsets)
795 {
796 struct obj_section *s;
797 struct section_offsets *delta =
798 ((struct section_offsets *)
799 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
800
801 int i;
802 int something_changed = 0;
803
804 for (i = 0; i < objfile->num_sections; ++i)
805 {
806 delta->offsets[i] =
807 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
808 if (ANOFFSET (delta, i) != 0)
809 something_changed = 1;
810 }
811 if (!something_changed)
812 return 0;
813
814 /* OK, get all the symtabs. */
815 {
816 struct compunit_symtab *cust;
817 struct symtab *s;
818
819 ALL_OBJFILE_FILETABS (objfile, cust, s)
820 {
821 struct linetable *l;
822 int i;
823
824 /* First the line table. */
825 l = SYMTAB_LINETABLE (s);
826 if (l)
827 {
828 for (i = 0; i < l->nitems; ++i)
829 l->item[i].pc += ANOFFSET (delta,
830 COMPUNIT_BLOCK_LINE_SECTION
831 (cust));
832 }
833 }
834
835 ALL_OBJFILE_COMPUNITS (objfile, cust)
836 {
837 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
838 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
839
840 if (BLOCKVECTOR_MAP (bv))
841 addrmap_relocate (BLOCKVECTOR_MAP (bv),
842 ANOFFSET (delta, block_line_section));
843
844 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
845 {
846 struct block *b;
847 struct symbol *sym;
848 struct dict_iterator iter;
849
850 b = BLOCKVECTOR_BLOCK (bv, i);
851 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
852 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
853
854 /* We only want to iterate over the local symbols, not any
855 symbols in included symtabs. */
856 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
857 {
858 relocate_one_symbol (sym, objfile, delta);
859 }
860 }
861 }
862 }
863
864 /* Relocate isolated symbols. */
865 {
866 struct symbol *iter;
867
868 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
869 relocate_one_symbol (iter, objfile, delta);
870 }
871
872 if (objfile->psymtabs_addrmap)
873 addrmap_relocate (objfile->psymtabs_addrmap,
874 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
875
876 if (objfile->sf)
877 objfile->sf->qf->relocate (objfile, new_offsets, delta);
878
879 {
880 int i;
881
882 for (i = 0; i < objfile->num_sections; ++i)
883 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
884 }
885
886 /* Rebuild section map next time we need it. */
887 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
888
889 /* Update the table in exec_ops, used to read memory. */
890 ALL_OBJFILE_OSECTIONS (objfile, s)
891 {
892 int idx = s - objfile->sections;
893
894 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
895 obj_section_addr (s));
896 }
897
898 /* Data changed. */
899 return 1;
900 }
901
902 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
903 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
904
905 The number and ordering of sections does differ between the two objfiles.
906 Only their names match. Also the file offsets will differ (objfile being
907 possibly prelinked but separate_debug_objfile is probably not prelinked) but
908 the in-memory absolute address as specified by NEW_OFFSETS must match both
909 files. */
910
911 void
912 objfile_relocate (struct objfile *objfile,
913 const struct section_offsets *new_offsets)
914 {
915 struct objfile *debug_objfile;
916 int changed = 0;
917
918 changed |= objfile_relocate1 (objfile, new_offsets);
919
920 for (debug_objfile = objfile->separate_debug_objfile;
921 debug_objfile;
922 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
923 {
924 struct section_addr_info *objfile_addrs;
925 struct cleanup *my_cleanups;
926
927 objfile_addrs = build_section_addr_info_from_objfile (objfile);
928 my_cleanups = make_cleanup (xfree, objfile_addrs);
929
930 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
931 relative ones must be already created according to debug_objfile. */
932
933 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
934
935 gdb_assert (debug_objfile->num_sections
936 == gdb_bfd_count_sections (debug_objfile->obfd));
937 std::vector<struct section_offsets>
938 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
939 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
940 debug_objfile->num_sections,
941 objfile_addrs);
942
943 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
944
945 do_cleanups (my_cleanups);
946 }
947
948 /* Relocate breakpoints as necessary, after things are relocated. */
949 if (changed)
950 breakpoint_re_set ();
951 }
952
953 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
954 not touched here.
955 Return non-zero iff any change happened. */
956
957 static int
958 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
959 {
960 struct section_offsets *new_offsets =
961 ((struct section_offsets *)
962 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
963 int i;
964
965 for (i = 0; i < objfile->num_sections; ++i)
966 new_offsets->offsets[i] = slide;
967
968 return objfile_relocate1 (objfile, new_offsets);
969 }
970
971 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
972 SEPARATE_DEBUG_OBJFILEs. */
973
974 void
975 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
976 {
977 struct objfile *debug_objfile;
978 int changed = 0;
979
980 changed |= objfile_rebase1 (objfile, slide);
981
982 for (debug_objfile = objfile->separate_debug_objfile;
983 debug_objfile;
984 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
985 changed |= objfile_rebase1 (debug_objfile, slide);
986
987 /* Relocate breakpoints as necessary, after things are relocated. */
988 if (changed)
989 breakpoint_re_set ();
990 }
991 \f
992 /* Return non-zero if OBJFILE has partial symbols. */
993
994 int
995 objfile_has_partial_symbols (struct objfile *objfile)
996 {
997 if (!objfile->sf)
998 return 0;
999
1000 /* If we have not read psymbols, but we have a function capable of reading
1001 them, then that is an indication that they are in fact available. Without
1002 this function the symbols may have been already read in but they also may
1003 not be present in this objfile. */
1004 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1005 && objfile->sf->sym_read_psymbols != NULL)
1006 return 1;
1007
1008 return objfile->sf->qf->has_symbols (objfile);
1009 }
1010
1011 /* Return non-zero if OBJFILE has full symbols. */
1012
1013 int
1014 objfile_has_full_symbols (struct objfile *objfile)
1015 {
1016 return objfile->compunit_symtabs != NULL;
1017 }
1018
1019 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1020 or through a separate debug file. */
1021
1022 int
1023 objfile_has_symbols (struct objfile *objfile)
1024 {
1025 struct objfile *o;
1026
1027 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1028 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1029 return 1;
1030 return 0;
1031 }
1032
1033
1034 /* Many places in gdb want to test just to see if we have any partial
1035 symbols available. This function returns zero if none are currently
1036 available, nonzero otherwise. */
1037
1038 int
1039 have_partial_symbols (void)
1040 {
1041 struct objfile *ofp;
1042
1043 ALL_OBJFILES (ofp)
1044 {
1045 if (objfile_has_partial_symbols (ofp))
1046 return 1;
1047 }
1048 return 0;
1049 }
1050
1051 /* Many places in gdb want to test just to see if we have any full
1052 symbols available. This function returns zero if none are currently
1053 available, nonzero otherwise. */
1054
1055 int
1056 have_full_symbols (void)
1057 {
1058 struct objfile *ofp;
1059
1060 ALL_OBJFILES (ofp)
1061 {
1062 if (objfile_has_full_symbols (ofp))
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068
1069 /* This operations deletes all objfile entries that represent solibs that
1070 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1071 command. */
1072
1073 void
1074 objfile_purge_solibs (void)
1075 {
1076 struct objfile *objf;
1077 struct objfile *temp;
1078
1079 ALL_OBJFILES_SAFE (objf, temp)
1080 {
1081 /* We assume that the solib package has been purged already, or will
1082 be soon. */
1083
1084 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1085 delete objf;
1086 }
1087 }
1088
1089
1090 /* Many places in gdb want to test just to see if we have any minimal
1091 symbols available. This function returns zero if none are currently
1092 available, nonzero otherwise. */
1093
1094 int
1095 have_minimal_symbols (void)
1096 {
1097 struct objfile *ofp;
1098
1099 ALL_OBJFILES (ofp)
1100 {
1101 if (ofp->per_bfd->minimal_symbol_count > 0)
1102 {
1103 return 1;
1104 }
1105 }
1106 return 0;
1107 }
1108
1109 /* Qsort comparison function. */
1110
1111 static int
1112 qsort_cmp (const void *a, const void *b)
1113 {
1114 const struct obj_section *sect1 = *(const struct obj_section **) a;
1115 const struct obj_section *sect2 = *(const struct obj_section **) b;
1116 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1117 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1118
1119 if (sect1_addr < sect2_addr)
1120 return -1;
1121 else if (sect1_addr > sect2_addr)
1122 return 1;
1123 else
1124 {
1125 /* Sections are at the same address. This could happen if
1126 A) we have an objfile and a separate debuginfo.
1127 B) we are confused, and have added sections without proper relocation,
1128 or something like that. */
1129
1130 const struct objfile *const objfile1 = sect1->objfile;
1131 const struct objfile *const objfile2 = sect2->objfile;
1132
1133 if (objfile1->separate_debug_objfile == objfile2
1134 || objfile2->separate_debug_objfile == objfile1)
1135 {
1136 /* Case A. The ordering doesn't matter: separate debuginfo files
1137 will be filtered out later. */
1138
1139 return 0;
1140 }
1141
1142 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1143 triage. This section could be slow (since we iterate over all
1144 objfiles in each call to qsort_cmp), but this shouldn't happen
1145 very often (GDB is already in a confused state; one hopes this
1146 doesn't happen at all). If you discover that significant time is
1147 spent in the loops below, do 'set complaints 100' and examine the
1148 resulting complaints. */
1149
1150 if (objfile1 == objfile2)
1151 {
1152 /* Both sections came from the same objfile. We are really confused.
1153 Sort on sequence order of sections within the objfile. */
1154
1155 const struct obj_section *osect;
1156
1157 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1158 if (osect == sect1)
1159 return -1;
1160 else if (osect == sect2)
1161 return 1;
1162
1163 /* We should have found one of the sections before getting here. */
1164 gdb_assert_not_reached ("section not found");
1165 }
1166 else
1167 {
1168 /* Sort on sequence number of the objfile in the chain. */
1169
1170 const struct objfile *objfile;
1171
1172 ALL_OBJFILES (objfile)
1173 if (objfile == objfile1)
1174 return -1;
1175 else if (objfile == objfile2)
1176 return 1;
1177
1178 /* We should have found one of the objfiles before getting here. */
1179 gdb_assert_not_reached ("objfile not found");
1180 }
1181 }
1182
1183 /* Unreachable. */
1184 gdb_assert_not_reached ("unexpected code path");
1185 return 0;
1186 }
1187
1188 /* Select "better" obj_section to keep. We prefer the one that came from
1189 the real object, rather than the one from separate debuginfo.
1190 Most of the time the two sections are exactly identical, but with
1191 prelinking the .rel.dyn section in the real object may have different
1192 size. */
1193
1194 static struct obj_section *
1195 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1196 {
1197 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1198 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1199 || (b->objfile->separate_debug_objfile == a->objfile));
1200 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1201 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1202
1203 if (a->objfile->separate_debug_objfile != NULL)
1204 return a;
1205 return b;
1206 }
1207
1208 /* Return 1 if SECTION should be inserted into the section map.
1209 We want to insert only non-overlay and non-TLS section. */
1210
1211 static int
1212 insert_section_p (const struct bfd *abfd,
1213 const struct bfd_section *section)
1214 {
1215 const bfd_vma lma = bfd_section_lma (abfd, section);
1216
1217 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1218 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1219 /* This is an overlay section. IN_MEMORY check is needed to avoid
1220 discarding sections from the "system supplied DSO" (aka vdso)
1221 on some Linux systems (e.g. Fedora 11). */
1222 return 0;
1223 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1224 /* This is a TLS section. */
1225 return 0;
1226
1227 return 1;
1228 }
1229
1230 /* Filter out overlapping sections where one section came from the real
1231 objfile, and the other from a separate debuginfo file.
1232 Return the size of table after redundant sections have been eliminated. */
1233
1234 static int
1235 filter_debuginfo_sections (struct obj_section **map, int map_size)
1236 {
1237 int i, j;
1238
1239 for (i = 0, j = 0; i < map_size - 1; i++)
1240 {
1241 struct obj_section *const sect1 = map[i];
1242 struct obj_section *const sect2 = map[i + 1];
1243 const struct objfile *const objfile1 = sect1->objfile;
1244 const struct objfile *const objfile2 = sect2->objfile;
1245 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1246 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1247
1248 if (sect1_addr == sect2_addr
1249 && (objfile1->separate_debug_objfile == objfile2
1250 || objfile2->separate_debug_objfile == objfile1))
1251 {
1252 map[j++] = preferred_obj_section (sect1, sect2);
1253 ++i;
1254 }
1255 else
1256 map[j++] = sect1;
1257 }
1258
1259 if (i < map_size)
1260 {
1261 gdb_assert (i == map_size - 1);
1262 map[j++] = map[i];
1263 }
1264
1265 /* The map should not have shrunk to less than half the original size. */
1266 gdb_assert (map_size / 2 <= j);
1267
1268 return j;
1269 }
1270
1271 /* Filter out overlapping sections, issuing a warning if any are found.
1272 Overlapping sections could really be overlay sections which we didn't
1273 classify as such in insert_section_p, or we could be dealing with a
1274 corrupt binary. */
1275
1276 static int
1277 filter_overlapping_sections (struct obj_section **map, int map_size)
1278 {
1279 int i, j;
1280
1281 for (i = 0, j = 0; i < map_size - 1; )
1282 {
1283 int k;
1284
1285 map[j++] = map[i];
1286 for (k = i + 1; k < map_size; k++)
1287 {
1288 struct obj_section *const sect1 = map[i];
1289 struct obj_section *const sect2 = map[k];
1290 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1291 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1292 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1293
1294 gdb_assert (sect1_addr <= sect2_addr);
1295
1296 if (sect1_endaddr <= sect2_addr)
1297 break;
1298 else
1299 {
1300 /* We have an overlap. Report it. */
1301
1302 struct objfile *const objf1 = sect1->objfile;
1303 struct objfile *const objf2 = sect2->objfile;
1304
1305 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1306 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1307
1308 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1309
1310 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1311
1312 complaint (&symfile_complaints,
1313 _("unexpected overlap between:\n"
1314 " (A) section `%s' from `%s' [%s, %s)\n"
1315 " (B) section `%s' from `%s' [%s, %s).\n"
1316 "Will ignore section B"),
1317 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1318 paddress (gdbarch, sect1_addr),
1319 paddress (gdbarch, sect1_endaddr),
1320 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1321 paddress (gdbarch, sect2_addr),
1322 paddress (gdbarch, sect2_endaddr));
1323 }
1324 }
1325 i = k;
1326 }
1327
1328 if (i < map_size)
1329 {
1330 gdb_assert (i == map_size - 1);
1331 map[j++] = map[i];
1332 }
1333
1334 return j;
1335 }
1336
1337
1338 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1339 TLS, overlay and overlapping sections. */
1340
1341 static void
1342 update_section_map (struct program_space *pspace,
1343 struct obj_section ***pmap, int *pmap_size)
1344 {
1345 struct objfile_pspace_info *pspace_info;
1346 int alloc_size, map_size, i;
1347 struct obj_section *s, **map;
1348 struct objfile *objfile;
1349
1350 pspace_info = get_objfile_pspace_data (pspace);
1351 gdb_assert (pspace_info->section_map_dirty != 0
1352 || pspace_info->new_objfiles_available != 0);
1353
1354 map = *pmap;
1355 xfree (map);
1356
1357 alloc_size = 0;
1358 ALL_PSPACE_OBJFILES (pspace, objfile)
1359 ALL_OBJFILE_OSECTIONS (objfile, s)
1360 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1361 alloc_size += 1;
1362
1363 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1364 if (alloc_size == 0)
1365 {
1366 *pmap = NULL;
1367 *pmap_size = 0;
1368 return;
1369 }
1370
1371 map = XNEWVEC (struct obj_section *, alloc_size);
1372
1373 i = 0;
1374 ALL_PSPACE_OBJFILES (pspace, objfile)
1375 ALL_OBJFILE_OSECTIONS (objfile, s)
1376 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1377 map[i++] = s;
1378
1379 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1380 map_size = filter_debuginfo_sections(map, alloc_size);
1381 map_size = filter_overlapping_sections(map, map_size);
1382
1383 if (map_size < alloc_size)
1384 /* Some sections were eliminated. Trim excess space. */
1385 map = XRESIZEVEC (struct obj_section *, map, map_size);
1386 else
1387 gdb_assert (alloc_size == map_size);
1388
1389 *pmap = map;
1390 *pmap_size = map_size;
1391 }
1392
1393 /* Bsearch comparison function. */
1394
1395 static int
1396 bsearch_cmp (const void *key, const void *elt)
1397 {
1398 const CORE_ADDR pc = *(CORE_ADDR *) key;
1399 const struct obj_section *section = *(const struct obj_section **) elt;
1400
1401 if (pc < obj_section_addr (section))
1402 return -1;
1403 if (pc < obj_section_endaddr (section))
1404 return 0;
1405 return 1;
1406 }
1407
1408 /* Returns a section whose range includes PC or NULL if none found. */
1409
1410 struct obj_section *
1411 find_pc_section (CORE_ADDR pc)
1412 {
1413 struct objfile_pspace_info *pspace_info;
1414 struct obj_section *s, **sp;
1415
1416 /* Check for mapped overlay section first. */
1417 s = find_pc_mapped_section (pc);
1418 if (s)
1419 return s;
1420
1421 pspace_info = get_objfile_pspace_data (current_program_space);
1422 if (pspace_info->section_map_dirty
1423 || (pspace_info->new_objfiles_available
1424 && !pspace_info->inhibit_updates))
1425 {
1426 update_section_map (current_program_space,
1427 &pspace_info->sections,
1428 &pspace_info->num_sections);
1429
1430 /* Don't need updates to section map until objfiles are added,
1431 removed or relocated. */
1432 pspace_info->new_objfiles_available = 0;
1433 pspace_info->section_map_dirty = 0;
1434 }
1435
1436 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1437 bsearch be non-NULL. */
1438 if (pspace_info->sections == NULL)
1439 {
1440 gdb_assert (pspace_info->num_sections == 0);
1441 return NULL;
1442 }
1443
1444 sp = (struct obj_section **) bsearch (&pc,
1445 pspace_info->sections,
1446 pspace_info->num_sections,
1447 sizeof (*pspace_info->sections),
1448 bsearch_cmp);
1449 if (sp != NULL)
1450 return *sp;
1451 return NULL;
1452 }
1453
1454
1455 /* Return non-zero if PC is in a section called NAME. */
1456
1457 int
1458 pc_in_section (CORE_ADDR pc, const char *name)
1459 {
1460 struct obj_section *s;
1461 int retval = 0;
1462
1463 s = find_pc_section (pc);
1464
1465 retval = (s != NULL
1466 && s->the_bfd_section->name != NULL
1467 && strcmp (s->the_bfd_section->name, name) == 0);
1468 return (retval);
1469 }
1470 \f
1471
1472 /* Set section_map_dirty so section map will be rebuilt next time it
1473 is used. Called by reread_symbols. */
1474
1475 void
1476 objfiles_changed (void)
1477 {
1478 /* Rebuild section map next time we need it. */
1479 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1480 }
1481
1482 /* See comments in objfiles.h. */
1483
1484 void
1485 inhibit_section_map_updates (struct program_space *pspace)
1486 {
1487 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1488 }
1489
1490 /* See comments in objfiles.h. */
1491
1492 void
1493 resume_section_map_updates (struct program_space *pspace)
1494 {
1495 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1496 }
1497
1498 /* See comments in objfiles.h. */
1499
1500 void
1501 resume_section_map_updates_cleanup (void *arg)
1502 {
1503 resume_section_map_updates ((struct program_space *) arg);
1504 }
1505
1506 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1507 otherwise. */
1508
1509 int
1510 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1511 {
1512 struct obj_section *osect;
1513
1514 if (objfile == NULL)
1515 return 0;
1516
1517 ALL_OBJFILE_OSECTIONS (objfile, osect)
1518 {
1519 if (section_is_overlay (osect) && !section_is_mapped (osect))
1520 continue;
1521
1522 if (obj_section_addr (osect) <= addr
1523 && addr < obj_section_endaddr (osect))
1524 return 1;
1525 }
1526 return 0;
1527 }
1528
1529 int
1530 shared_objfile_contains_address_p (struct program_space *pspace,
1531 CORE_ADDR address)
1532 {
1533 struct objfile *objfile;
1534
1535 ALL_PSPACE_OBJFILES (pspace, objfile)
1536 {
1537 if ((objfile->flags & OBJF_SHARED) != 0
1538 && is_addr_in_objfile (address, objfile))
1539 return 1;
1540 }
1541
1542 return 0;
1543 }
1544
1545 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1546 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1547 searching the objfiles in the order they are stored internally,
1548 ignoring CURRENT_OBJFILE.
1549
1550 On most platorms, it should be close enough to doing the best
1551 we can without some knowledge specific to the architecture. */
1552
1553 void
1554 default_iterate_over_objfiles_in_search_order
1555 (struct gdbarch *gdbarch,
1556 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1557 void *cb_data, struct objfile *current_objfile)
1558 {
1559 int stop = 0;
1560 struct objfile *objfile;
1561
1562 ALL_OBJFILES (objfile)
1563 {
1564 stop = cb (objfile, cb_data);
1565 if (stop)
1566 return;
1567 }
1568 }
1569
1570 /* See objfiles.h. */
1571
1572 const char *
1573 objfile_name (const struct objfile *objfile)
1574 {
1575 if (objfile->obfd != NULL)
1576 return bfd_get_filename (objfile->obfd);
1577
1578 return objfile->original_name;
1579 }
1580
1581 /* See objfiles.h. */
1582
1583 const char *
1584 objfile_filename (const struct objfile *objfile)
1585 {
1586 if (objfile->obfd != NULL)
1587 return bfd_get_filename (objfile->obfd);
1588
1589 return NULL;
1590 }
1591
1592 /* See objfiles.h. */
1593
1594 const char *
1595 objfile_debug_name (const struct objfile *objfile)
1596 {
1597 return lbasename (objfile->original_name);
1598 }
1599
1600 /* See objfiles.h. */
1601
1602 const char *
1603 objfile_flavour_name (struct objfile *objfile)
1604 {
1605 if (objfile->obfd != NULL)
1606 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1607 return NULL;
1608 }
1609
1610 void
1611 _initialize_objfiles (void)
1612 {
1613 objfiles_pspace_data
1614 = register_program_space_data_with_cleanup (NULL,
1615 objfiles_pspace_data_cleanup);
1616
1617 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1618 objfile_bfd_data_free);
1619 }
This page took 0.061642 seconds and 5 git commands to generate.