Remove most uses of ALL_OBJFILES
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. If ABFD is not
123 NULL, the object is allocated on the BFD; otherwise it is allocated
124 on OBJFILE's obstack. Note that it is not safe to call this
125 multiple times for a given OBJFILE -- it can only be called when
126 allocating or re-initializing OBJFILE. */
127
128 static struct objfile_per_bfd_storage *
129 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
130 {
131 struct objfile_per_bfd_storage *storage = NULL;
132
133 if (abfd != NULL)
134 storage = ((struct objfile_per_bfd_storage *)
135 bfd_data (abfd, objfiles_bfd_data));
136
137 if (storage == NULL)
138 {
139 /* If the object requires gdb to do relocations, we simply fall
140 back to not sharing data across users. These cases are rare
141 enough that this seems reasonable. */
142 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
143 {
144 storage
145 = ((struct objfile_per_bfd_storage *)
146 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
147 /* objfile_per_bfd_storage is not trivially constructible, must
148 call the ctor manually. */
149 storage = new (storage) objfile_per_bfd_storage ();
150 set_bfd_data (abfd, objfiles_bfd_data, storage);
151 }
152 else
153 storage
154 = obstack_new<objfile_per_bfd_storage> (&objfile->objfile_obstack);
155
156 /* Look up the gdbarch associated with the BFD. */
157 if (abfd != NULL)
158 storage->gdbarch = gdbarch_from_bfd (abfd);
159
160 storage->filename_cache = bcache_xmalloc (NULL, NULL);
161 storage->macro_cache = bcache_xmalloc (NULL, NULL);
162 storage->language_of_main = language_unknown;
163 }
164
165 return storage;
166 }
167
168 /* Free STORAGE. */
169
170 static void
171 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
172 {
173 bcache_xfree (storage->filename_cache);
174 bcache_xfree (storage->macro_cache);
175 if (storage->demangled_names_hash)
176 htab_delete (storage->demangled_names_hash);
177 storage->~objfile_per_bfd_storage ();
178 }
179
180 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
181 cleanup function to the BFD registry. */
182
183 static void
184 objfile_bfd_data_free (struct bfd *unused, void *d)
185 {
186 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
187 }
188
189 /* See objfiles.h. */
190
191 void
192 set_objfile_per_bfd (struct objfile *objfile)
193 {
194 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
195 }
196
197 /* Set the objfile's per-BFD notion of the "main" name and
198 language. */
199
200 void
201 set_objfile_main_name (struct objfile *objfile,
202 const char *name, enum language lang)
203 {
204 if (objfile->per_bfd->name_of_main == NULL
205 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
206 objfile->per_bfd->name_of_main
207 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
208 strlen (name));
209 objfile->per_bfd->language_of_main = lang;
210 }
211
212 /* Helper structure to map blocks to static link properties in hash tables. */
213
214 struct static_link_htab_entry
215 {
216 const struct block *block;
217 const struct dynamic_prop *static_link;
218 };
219
220 /* Return a hash code for struct static_link_htab_entry *P. */
221
222 static hashval_t
223 static_link_htab_entry_hash (const void *p)
224 {
225 const struct static_link_htab_entry *e
226 = (const struct static_link_htab_entry *) p;
227
228 return htab_hash_pointer (e->block);
229 }
230
231 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
232 mappings for the same block. */
233
234 static int
235 static_link_htab_entry_eq (const void *p1, const void *p2)
236 {
237 const struct static_link_htab_entry *e1
238 = (const struct static_link_htab_entry *) p1;
239 const struct static_link_htab_entry *e2
240 = (const struct static_link_htab_entry *) p2;
241
242 return e1->block == e2->block;
243 }
244
245 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
246 Must not be called more than once for each BLOCK. */
247
248 void
249 objfile_register_static_link (struct objfile *objfile,
250 const struct block *block,
251 const struct dynamic_prop *static_link)
252 {
253 void **slot;
254 struct static_link_htab_entry lookup_entry;
255 struct static_link_htab_entry *entry;
256
257 if (objfile->static_links == NULL)
258 objfile->static_links = htab_create_alloc
259 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
260 xcalloc, xfree);
261
262 /* Create a slot for the mapping, make sure it's the first mapping for this
263 block and then create the mapping itself. */
264 lookup_entry.block = block;
265 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
266 gdb_assert (*slot == NULL);
267
268 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
269 entry->block = block;
270 entry->static_link = static_link;
271 *slot = (void *) entry;
272 }
273
274 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
275 none was found. */
276
277 const struct dynamic_prop *
278 objfile_lookup_static_link (struct objfile *objfile,
279 const struct block *block)
280 {
281 struct static_link_htab_entry *entry;
282 struct static_link_htab_entry lookup_entry;
283
284 if (objfile->static_links == NULL)
285 return NULL;
286 lookup_entry.block = block;
287 entry
288 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
289 &lookup_entry);
290 if (entry == NULL)
291 return NULL;
292
293 gdb_assert (entry->block == block);
294 return entry->static_link;
295 }
296
297 \f
298
299 /* Called via bfd_map_over_sections to build up the section table that
300 the objfile references. The objfile contains pointers to the start
301 of the table (objfile->sections) and to the first location after
302 the end of the table (objfile->sections_end). */
303
304 static void
305 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
306 struct objfile *objfile, int force)
307 {
308 struct obj_section *section;
309
310 if (!force)
311 {
312 flagword aflag;
313
314 aflag = bfd_get_section_flags (abfd, asect);
315 if (!(aflag & SEC_ALLOC))
316 return;
317 }
318
319 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
320 section->objfile = objfile;
321 section->the_bfd_section = asect;
322 section->ovly_mapped = 0;
323 }
324
325 static void
326 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
327 void *objfilep)
328 {
329 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
330 }
331
332 /* Builds a section table for OBJFILE.
333
334 Note that the OFFSET and OVLY_MAPPED in each table entry are
335 initialized to zero. */
336
337 void
338 build_objfile_section_table (struct objfile *objfile)
339 {
340 int count = gdb_bfd_count_sections (objfile->obfd);
341
342 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
343 count,
344 struct obj_section);
345 objfile->sections_end = (objfile->sections + count);
346 bfd_map_over_sections (objfile->obfd,
347 add_to_objfile_sections, (void *) objfile);
348
349 /* See gdb_bfd_section_index. */
350 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
351 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
352 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
353 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
354 }
355
356 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
357 initialize the new objfile as best we can and link it into the list
358 of all known objfiles.
359
360 NAME should contain original non-canonicalized filename or other
361 identifier as entered by user. If there is no better source use
362 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
363 NAME content is copied into returned objfile.
364
365 The FLAGS word contains various bits (OBJF_*) that can be taken as
366 requests for specific operations. Other bits like OBJF_SHARED are
367 simply copied through to the new objfile flags member. */
368
369 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
370 : flags (flags_),
371 pspace (current_program_space),
372 obfd (abfd),
373 psymbol_cache (psymbol_bcache_init ())
374 {
375 const char *expanded_name;
376
377 /* We could use obstack_specify_allocation here instead, but
378 gdb_obstack.h specifies the alloc/dealloc functions. */
379 obstack_init (&objfile_obstack);
380
381 objfile_alloc_data (this);
382
383 gdb::unique_xmalloc_ptr<char> name_holder;
384 if (name == NULL)
385 {
386 gdb_assert (abfd == NULL);
387 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
388 expanded_name = "<<anonymous objfile>>";
389 }
390 else if ((flags & OBJF_NOT_FILENAME) != 0
391 || is_target_filename (name))
392 expanded_name = name;
393 else
394 {
395 name_holder = gdb_abspath (name);
396 expanded_name = name_holder.get ();
397 }
398 original_name
399 = (char *) obstack_copy0 (&objfile_obstack,
400 expanded_name,
401 strlen (expanded_name));
402
403 /* Update the per-objfile information that comes from the bfd, ensuring
404 that any data that is reference is saved in the per-objfile data
405 region. */
406
407 gdb_bfd_ref (abfd);
408 if (abfd != NULL)
409 {
410 mtime = bfd_get_mtime (abfd);
411
412 /* Build section table. */
413 build_objfile_section_table (this);
414 }
415
416 per_bfd = get_objfile_bfd_data (this, abfd);
417
418 terminate_minimal_symbol_table (this);
419
420 /* Add this file onto the tail of the linked list of other such files. */
421
422 if (object_files == NULL)
423 object_files = this;
424 else
425 {
426 struct objfile *last_one;
427
428 for (last_one = object_files;
429 last_one->next;
430 last_one = last_one->next);
431 last_one->next = this;
432 }
433
434 /* Rebuild section map next time we need it. */
435 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
436 }
437
438 /* Retrieve the gdbarch associated with OBJFILE. */
439
440 struct gdbarch *
441 get_objfile_arch (const struct objfile *objfile)
442 {
443 return objfile->per_bfd->gdbarch;
444 }
445
446 /* If there is a valid and known entry point, function fills *ENTRY_P with it
447 and returns non-zero; otherwise it returns zero. */
448
449 int
450 entry_point_address_query (CORE_ADDR *entry_p)
451 {
452 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
453 return 0;
454
455 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
456 + ANOFFSET (symfile_objfile->section_offsets,
457 symfile_objfile->per_bfd->ei.the_bfd_section_index));
458
459 return 1;
460 }
461
462 /* Get current entry point address. Call error if it is not known. */
463
464 CORE_ADDR
465 entry_point_address (void)
466 {
467 CORE_ADDR retval;
468
469 if (!entry_point_address_query (&retval))
470 error (_("Entry point address is not known."));
471
472 return retval;
473 }
474
475 /* Iterator on PARENT and every separate debug objfile of PARENT.
476 The usage pattern is:
477 for (objfile = parent;
478 objfile;
479 objfile = objfile_separate_debug_iterate (parent, objfile))
480 ...
481 */
482
483 struct objfile *
484 objfile_separate_debug_iterate (const struct objfile *parent,
485 const struct objfile *objfile)
486 {
487 struct objfile *res;
488
489 /* If any, return the first child. */
490 res = objfile->separate_debug_objfile;
491 if (res)
492 return res;
493
494 /* Common case where there is no separate debug objfile. */
495 if (objfile == parent)
496 return NULL;
497
498 /* Return the brother if any. Note that we don't iterate on brothers of
499 the parents. */
500 res = objfile->separate_debug_objfile_link;
501 if (res)
502 return res;
503
504 for (res = objfile->separate_debug_objfile_backlink;
505 res != parent;
506 res = res->separate_debug_objfile_backlink)
507 {
508 gdb_assert (res != NULL);
509 if (res->separate_debug_objfile_link)
510 return res->separate_debug_objfile_link;
511 }
512 return NULL;
513 }
514
515 /* Put one object file before a specified on in the global list.
516 This can be used to make sure an object file is destroyed before
517 another when using ALL_OBJFILES_SAFE to free all objfiles. */
518 void
519 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
520 {
521 struct objfile **objp;
522
523 unlink_objfile (objfile);
524
525 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
526 {
527 if (*objp == before_this)
528 {
529 objfile->next = *objp;
530 *objp = objfile;
531 return;
532 }
533 }
534
535 internal_error (__FILE__, __LINE__,
536 _("put_objfile_before: before objfile not in list"));
537 }
538
539 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
540 list.
541
542 It is not a bug, or error, to call this function if OBJFILE is not known
543 to be in the current list. This is done in the case of mapped objfiles,
544 for example, just to ensure that the mapped objfile doesn't appear twice
545 in the list. Since the list is threaded, linking in a mapped objfile
546 twice would create a circular list.
547
548 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
549 unlinking it, just to ensure that we have completely severed any linkages
550 between the OBJFILE and the list. */
551
552 void
553 unlink_objfile (struct objfile *objfile)
554 {
555 struct objfile **objpp;
556
557 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
558 {
559 if (*objpp == objfile)
560 {
561 *objpp = (*objpp)->next;
562 objfile->next = NULL;
563 return;
564 }
565 }
566
567 internal_error (__FILE__, __LINE__,
568 _("unlink_objfile: objfile already unlinked"));
569 }
570
571 /* Add OBJFILE as a separate debug objfile of PARENT. */
572
573 void
574 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
575 {
576 gdb_assert (objfile && parent);
577
578 /* Must not be already in a list. */
579 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
580 gdb_assert (objfile->separate_debug_objfile_link == NULL);
581 gdb_assert (objfile->separate_debug_objfile == NULL);
582 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
583 gdb_assert (parent->separate_debug_objfile_link == NULL);
584
585 objfile->separate_debug_objfile_backlink = parent;
586 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
587 parent->separate_debug_objfile = objfile;
588
589 /* Put the separate debug object before the normal one, this is so that
590 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
591 put_objfile_before (objfile, parent);
592 }
593
594 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
595 itself. */
596
597 void
598 free_objfile_separate_debug (struct objfile *objfile)
599 {
600 struct objfile *child;
601
602 for (child = objfile->separate_debug_objfile; child;)
603 {
604 struct objfile *next_child = child->separate_debug_objfile_link;
605 delete child;
606 child = next_child;
607 }
608 }
609
610 /* Destroy an objfile and all the symtabs and psymtabs under it. */
611
612 objfile::~objfile ()
613 {
614 /* First notify observers that this objfile is about to be freed. */
615 gdb::observers::free_objfile.notify (this);
616
617 /* Free all separate debug objfiles. */
618 free_objfile_separate_debug (this);
619
620 if (separate_debug_objfile_backlink)
621 {
622 /* We freed the separate debug file, make sure the base objfile
623 doesn't reference it. */
624 struct objfile *child;
625
626 child = separate_debug_objfile_backlink->separate_debug_objfile;
627
628 if (child == this)
629 {
630 /* THIS is the first child. */
631 separate_debug_objfile_backlink->separate_debug_objfile =
632 separate_debug_objfile_link;
633 }
634 else
635 {
636 /* Find THIS in the list. */
637 while (1)
638 {
639 if (child->separate_debug_objfile_link == this)
640 {
641 child->separate_debug_objfile_link =
642 separate_debug_objfile_link;
643 break;
644 }
645 child = child->separate_debug_objfile_link;
646 gdb_assert (child);
647 }
648 }
649 }
650
651 /* Remove any references to this objfile in the global value
652 lists. */
653 preserve_values (this);
654
655 /* It still may reference data modules have associated with the objfile and
656 the symbol file data. */
657 forget_cached_source_info_for_objfile (this);
658
659 breakpoint_free_objfile (this);
660 btrace_free_objfile (this);
661
662 /* First do any symbol file specific actions required when we are
663 finished with a particular symbol file. Note that if the objfile
664 is using reusable symbol information (via mmalloc) then each of
665 these routines is responsible for doing the correct thing, either
666 freeing things which are valid only during this particular gdb
667 execution, or leaving them to be reused during the next one. */
668
669 if (sf != NULL)
670 (*sf->sym_finish) (this);
671
672 /* Discard any data modules have associated with the objfile. The function
673 still may reference obfd. */
674 objfile_free_data (this);
675
676 if (obfd)
677 gdb_bfd_unref (obfd);
678 else
679 free_objfile_per_bfd_storage (per_bfd);
680
681 /* Remove it from the chain of all objfiles. */
682
683 unlink_objfile (this);
684
685 if (this == symfile_objfile)
686 symfile_objfile = NULL;
687
688 /* Before the symbol table code was redone to make it easier to
689 selectively load and remove information particular to a specific
690 linkage unit, gdb used to do these things whenever the monolithic
691 symbol table was blown away. How much still needs to be done
692 is unknown, but we play it safe for now and keep each action until
693 it is shown to be no longer needed. */
694
695 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
696 for example), so we need to call this here. */
697 clear_pc_function_cache ();
698
699 /* Clear globals which might have pointed into a removed objfile.
700 FIXME: It's not clear which of these are supposed to persist
701 between expressions and which ought to be reset each time. */
702 expression_context_block = NULL;
703 innermost_block.reset ();
704
705 /* Check to see if the current_source_symtab belongs to this objfile,
706 and if so, call clear_current_source_symtab_and_line. */
707
708 {
709 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
710
711 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
712 clear_current_source_symtab_and_line ();
713 }
714
715 /* Free the obstacks for non-reusable objfiles. */
716 psymbol_bcache_free (psymbol_cache);
717 obstack_free (&objfile_obstack, 0);
718
719 /* Rebuild section map next time we need it. */
720 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
721
722 /* Free the map for static links. There's no need to free static link
723 themselves since they were allocated on the objstack. */
724 if (static_links != NULL)
725 htab_delete (static_links);
726 }
727
728 /* Free all the object files at once and clean up their users. */
729
730 void
731 free_all_objfiles (void)
732 {
733 struct objfile *objfile, *temp;
734 struct so_list *so;
735
736 /* Any objfile referencewould become stale. */
737 for (so = master_so_list (); so; so = so->next)
738 gdb_assert (so->objfile == NULL);
739
740 ALL_OBJFILES_SAFE (objfile, temp)
741 {
742 delete objfile;
743 }
744 clear_symtab_users (0);
745 }
746 \f
747 /* A helper function for objfile_relocate1 that relocates a single
748 symbol. */
749
750 static void
751 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
752 struct section_offsets *delta)
753 {
754 fixup_symbol_section (sym, objfile);
755
756 /* The RS6000 code from which this was taken skipped
757 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
758 But I'm leaving out that test, on the theory that
759 they can't possibly pass the tests below. */
760 if ((SYMBOL_CLASS (sym) == LOC_LABEL
761 || SYMBOL_CLASS (sym) == LOC_STATIC)
762 && SYMBOL_SECTION (sym) >= 0)
763 {
764 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
765 }
766 }
767
768 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
769 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
770 Return non-zero iff any change happened. */
771
772 static int
773 objfile_relocate1 (struct objfile *objfile,
774 const struct section_offsets *new_offsets)
775 {
776 struct section_offsets *delta =
777 ((struct section_offsets *)
778 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
779
780 int something_changed = 0;
781
782 for (int i = 0; i < objfile->num_sections; ++i)
783 {
784 delta->offsets[i] =
785 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
786 if (ANOFFSET (delta, i) != 0)
787 something_changed = 1;
788 }
789 if (!something_changed)
790 return 0;
791
792 /* OK, get all the symtabs. */
793 {
794 struct compunit_symtab *cust;
795 struct symtab *s;
796
797 ALL_OBJFILE_FILETABS (objfile, cust, s)
798 {
799 struct linetable *l;
800
801 /* First the line table. */
802 l = SYMTAB_LINETABLE (s);
803 if (l)
804 {
805 for (int i = 0; i < l->nitems; ++i)
806 l->item[i].pc += ANOFFSET (delta,
807 COMPUNIT_BLOCK_LINE_SECTION
808 (cust));
809 }
810 }
811
812 ALL_OBJFILE_COMPUNITS (objfile, cust)
813 {
814 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
815 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
816
817 if (BLOCKVECTOR_MAP (bv))
818 addrmap_relocate (BLOCKVECTOR_MAP (bv),
819 ANOFFSET (delta, block_line_section));
820
821 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
822 {
823 struct block *b;
824 struct symbol *sym;
825 struct dict_iterator iter;
826
827 b = BLOCKVECTOR_BLOCK (bv, i);
828 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
829 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
830
831 if (BLOCK_RANGES (b) != nullptr)
832 for (int j = 0; j < BLOCK_NRANGES (b); j++)
833 {
834 BLOCK_RANGE_START (b, j)
835 += ANOFFSET (delta, block_line_section);
836 BLOCK_RANGE_END (b, j) += ANOFFSET (delta, block_line_section);
837 }
838
839 /* We only want to iterate over the local symbols, not any
840 symbols in included symtabs. */
841 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
842 {
843 relocate_one_symbol (sym, objfile, delta);
844 }
845 }
846 }
847 }
848
849 /* This stores relocated addresses and so must be cleared. This
850 will cause it to be recreated on demand. */
851 objfile->psymbol_map.clear ();
852
853 /* Relocate isolated symbols. */
854 {
855 struct symbol *iter;
856
857 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
858 relocate_one_symbol (iter, objfile, delta);
859 }
860
861 {
862 int i;
863
864 for (i = 0; i < objfile->num_sections; ++i)
865 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
866 }
867
868 /* Rebuild section map next time we need it. */
869 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
870
871 /* Update the table in exec_ops, used to read memory. */
872 struct obj_section *s;
873 ALL_OBJFILE_OSECTIONS (objfile, s)
874 {
875 int idx = s - objfile->sections;
876
877 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
878 obj_section_addr (s));
879 }
880
881 /* Data changed. */
882 return 1;
883 }
884
885 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
886 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
887
888 The number and ordering of sections does differ between the two objfiles.
889 Only their names match. Also the file offsets will differ (objfile being
890 possibly prelinked but separate_debug_objfile is probably not prelinked) but
891 the in-memory absolute address as specified by NEW_OFFSETS must match both
892 files. */
893
894 void
895 objfile_relocate (struct objfile *objfile,
896 const struct section_offsets *new_offsets)
897 {
898 struct objfile *debug_objfile;
899 int changed = 0;
900
901 changed |= objfile_relocate1 (objfile, new_offsets);
902
903 for (debug_objfile = objfile->separate_debug_objfile;
904 debug_objfile;
905 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
906 {
907 section_addr_info objfile_addrs
908 = build_section_addr_info_from_objfile (objfile);
909
910 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
911 relative ones must be already created according to debug_objfile. */
912
913 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
914
915 gdb_assert (debug_objfile->num_sections
916 == gdb_bfd_count_sections (debug_objfile->obfd));
917 std::vector<struct section_offsets>
918 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
919 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
920 debug_objfile->num_sections,
921 objfile_addrs);
922
923 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
924 }
925
926 /* Relocate breakpoints as necessary, after things are relocated. */
927 if (changed)
928 breakpoint_re_set ();
929 }
930
931 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
932 not touched here.
933 Return non-zero iff any change happened. */
934
935 static int
936 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
937 {
938 struct section_offsets *new_offsets =
939 ((struct section_offsets *)
940 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
941 int i;
942
943 for (i = 0; i < objfile->num_sections; ++i)
944 new_offsets->offsets[i] = slide;
945
946 return objfile_relocate1 (objfile, new_offsets);
947 }
948
949 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
950 SEPARATE_DEBUG_OBJFILEs. */
951
952 void
953 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
954 {
955 struct objfile *debug_objfile;
956 int changed = 0;
957
958 changed |= objfile_rebase1 (objfile, slide);
959
960 for (debug_objfile = objfile->separate_debug_objfile;
961 debug_objfile;
962 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
963 changed |= objfile_rebase1 (debug_objfile, slide);
964
965 /* Relocate breakpoints as necessary, after things are relocated. */
966 if (changed)
967 breakpoint_re_set ();
968 }
969 \f
970 /* Return non-zero if OBJFILE has partial symbols. */
971
972 int
973 objfile_has_partial_symbols (struct objfile *objfile)
974 {
975 if (!objfile->sf)
976 return 0;
977
978 /* If we have not read psymbols, but we have a function capable of reading
979 them, then that is an indication that they are in fact available. Without
980 this function the symbols may have been already read in but they also may
981 not be present in this objfile. */
982 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
983 && objfile->sf->sym_read_psymbols != NULL)
984 return 1;
985
986 return objfile->sf->qf->has_symbols (objfile);
987 }
988
989 /* Return non-zero if OBJFILE has full symbols. */
990
991 int
992 objfile_has_full_symbols (struct objfile *objfile)
993 {
994 return objfile->compunit_symtabs != NULL;
995 }
996
997 /* Return non-zero if OBJFILE has full or partial symbols, either directly
998 or through a separate debug file. */
999
1000 int
1001 objfile_has_symbols (struct objfile *objfile)
1002 {
1003 struct objfile *o;
1004
1005 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1006 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1007 return 1;
1008 return 0;
1009 }
1010
1011
1012 /* Many places in gdb want to test just to see if we have any partial
1013 symbols available. This function returns zero if none are currently
1014 available, nonzero otherwise. */
1015
1016 int
1017 have_partial_symbols (void)
1018 {
1019 for (objfile *ofp : all_objfiles (current_program_space))
1020 {
1021 if (objfile_has_partial_symbols (ofp))
1022 return 1;
1023 }
1024 return 0;
1025 }
1026
1027 /* Many places in gdb want to test just to see if we have any full
1028 symbols available. This function returns zero if none are currently
1029 available, nonzero otherwise. */
1030
1031 int
1032 have_full_symbols (void)
1033 {
1034 for (objfile *ofp : all_objfiles (current_program_space))
1035 {
1036 if (objfile_has_full_symbols (ofp))
1037 return 1;
1038 }
1039 return 0;
1040 }
1041
1042
1043 /* This operations deletes all objfile entries that represent solibs that
1044 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1045 command. */
1046
1047 void
1048 objfile_purge_solibs (void)
1049 {
1050 struct objfile *objf;
1051 struct objfile *temp;
1052
1053 ALL_OBJFILES_SAFE (objf, temp)
1054 {
1055 /* We assume that the solib package has been purged already, or will
1056 be soon. */
1057
1058 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1059 delete objf;
1060 }
1061 }
1062
1063
1064 /* Many places in gdb want to test just to see if we have any minimal
1065 symbols available. This function returns zero if none are currently
1066 available, nonzero otherwise. */
1067
1068 int
1069 have_minimal_symbols (void)
1070 {
1071 for (objfile *ofp : all_objfiles (current_program_space))
1072 {
1073 if (ofp->per_bfd->minimal_symbol_count > 0)
1074 {
1075 return 1;
1076 }
1077 }
1078 return 0;
1079 }
1080
1081 /* Qsort comparison function. */
1082
1083 static int
1084 qsort_cmp (const void *a, const void *b)
1085 {
1086 const struct obj_section *sect1 = *(const struct obj_section **) a;
1087 const struct obj_section *sect2 = *(const struct obj_section **) b;
1088 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1089 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1090
1091 if (sect1_addr < sect2_addr)
1092 return -1;
1093 else if (sect1_addr > sect2_addr)
1094 return 1;
1095 else
1096 {
1097 /* Sections are at the same address. This could happen if
1098 A) we have an objfile and a separate debuginfo.
1099 B) we are confused, and have added sections without proper relocation,
1100 or something like that. */
1101
1102 const struct objfile *const objfile1 = sect1->objfile;
1103 const struct objfile *const objfile2 = sect2->objfile;
1104
1105 if (objfile1->separate_debug_objfile == objfile2
1106 || objfile2->separate_debug_objfile == objfile1)
1107 {
1108 /* Case A. The ordering doesn't matter: separate debuginfo files
1109 will be filtered out later. */
1110
1111 return 0;
1112 }
1113
1114 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1115 triage. This section could be slow (since we iterate over all
1116 objfiles in each call to qsort_cmp), but this shouldn't happen
1117 very often (GDB is already in a confused state; one hopes this
1118 doesn't happen at all). If you discover that significant time is
1119 spent in the loops below, do 'set complaints 100' and examine the
1120 resulting complaints. */
1121
1122 if (objfile1 == objfile2)
1123 {
1124 /* Both sections came from the same objfile. We are really confused.
1125 Sort on sequence order of sections within the objfile. */
1126
1127 const struct obj_section *osect;
1128
1129 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1130 if (osect == sect1)
1131 return -1;
1132 else if (osect == sect2)
1133 return 1;
1134
1135 /* We should have found one of the sections before getting here. */
1136 gdb_assert_not_reached ("section not found");
1137 }
1138 else
1139 {
1140 /* Sort on sequence number of the objfile in the chain. */
1141
1142 for (objfile *objfile : all_objfiles (current_program_space))
1143 if (objfile == objfile1)
1144 return -1;
1145 else if (objfile == objfile2)
1146 return 1;
1147
1148 /* We should have found one of the objfiles before getting here. */
1149 gdb_assert_not_reached ("objfile not found");
1150 }
1151 }
1152
1153 /* Unreachable. */
1154 gdb_assert_not_reached ("unexpected code path");
1155 return 0;
1156 }
1157
1158 /* Select "better" obj_section to keep. We prefer the one that came from
1159 the real object, rather than the one from separate debuginfo.
1160 Most of the time the two sections are exactly identical, but with
1161 prelinking the .rel.dyn section in the real object may have different
1162 size. */
1163
1164 static struct obj_section *
1165 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1166 {
1167 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1168 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1169 || (b->objfile->separate_debug_objfile == a->objfile));
1170 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1171 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1172
1173 if (a->objfile->separate_debug_objfile != NULL)
1174 return a;
1175 return b;
1176 }
1177
1178 /* Return 1 if SECTION should be inserted into the section map.
1179 We want to insert only non-overlay and non-TLS section. */
1180
1181 static int
1182 insert_section_p (const struct bfd *abfd,
1183 const struct bfd_section *section)
1184 {
1185 const bfd_vma lma = bfd_section_lma (abfd, section);
1186
1187 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1188 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1189 /* This is an overlay section. IN_MEMORY check is needed to avoid
1190 discarding sections from the "system supplied DSO" (aka vdso)
1191 on some Linux systems (e.g. Fedora 11). */
1192 return 0;
1193 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1194 /* This is a TLS section. */
1195 return 0;
1196
1197 return 1;
1198 }
1199
1200 /* Filter out overlapping sections where one section came from the real
1201 objfile, and the other from a separate debuginfo file.
1202 Return the size of table after redundant sections have been eliminated. */
1203
1204 static int
1205 filter_debuginfo_sections (struct obj_section **map, int map_size)
1206 {
1207 int i, j;
1208
1209 for (i = 0, j = 0; i < map_size - 1; i++)
1210 {
1211 struct obj_section *const sect1 = map[i];
1212 struct obj_section *const sect2 = map[i + 1];
1213 const struct objfile *const objfile1 = sect1->objfile;
1214 const struct objfile *const objfile2 = sect2->objfile;
1215 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1216 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1217
1218 if (sect1_addr == sect2_addr
1219 && (objfile1->separate_debug_objfile == objfile2
1220 || objfile2->separate_debug_objfile == objfile1))
1221 {
1222 map[j++] = preferred_obj_section (sect1, sect2);
1223 ++i;
1224 }
1225 else
1226 map[j++] = sect1;
1227 }
1228
1229 if (i < map_size)
1230 {
1231 gdb_assert (i == map_size - 1);
1232 map[j++] = map[i];
1233 }
1234
1235 /* The map should not have shrunk to less than half the original size. */
1236 gdb_assert (map_size / 2 <= j);
1237
1238 return j;
1239 }
1240
1241 /* Filter out overlapping sections, issuing a warning if any are found.
1242 Overlapping sections could really be overlay sections which we didn't
1243 classify as such in insert_section_p, or we could be dealing with a
1244 corrupt binary. */
1245
1246 static int
1247 filter_overlapping_sections (struct obj_section **map, int map_size)
1248 {
1249 int i, j;
1250
1251 for (i = 0, j = 0; i < map_size - 1; )
1252 {
1253 int k;
1254
1255 map[j++] = map[i];
1256 for (k = i + 1; k < map_size; k++)
1257 {
1258 struct obj_section *const sect1 = map[i];
1259 struct obj_section *const sect2 = map[k];
1260 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1261 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1262 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1263
1264 gdb_assert (sect1_addr <= sect2_addr);
1265
1266 if (sect1_endaddr <= sect2_addr)
1267 break;
1268 else
1269 {
1270 /* We have an overlap. Report it. */
1271
1272 struct objfile *const objf1 = sect1->objfile;
1273 struct objfile *const objf2 = sect2->objfile;
1274
1275 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1276 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1277
1278 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1279
1280 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1281
1282 complaint (_("unexpected overlap between:\n"
1283 " (A) section `%s' from `%s' [%s, %s)\n"
1284 " (B) section `%s' from `%s' [%s, %s).\n"
1285 "Will ignore section B"),
1286 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1287 paddress (gdbarch, sect1_addr),
1288 paddress (gdbarch, sect1_endaddr),
1289 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1290 paddress (gdbarch, sect2_addr),
1291 paddress (gdbarch, sect2_endaddr));
1292 }
1293 }
1294 i = k;
1295 }
1296
1297 if (i < map_size)
1298 {
1299 gdb_assert (i == map_size - 1);
1300 map[j++] = map[i];
1301 }
1302
1303 return j;
1304 }
1305
1306
1307 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1308 TLS, overlay and overlapping sections. */
1309
1310 static void
1311 update_section_map (struct program_space *pspace,
1312 struct obj_section ***pmap, int *pmap_size)
1313 {
1314 struct objfile_pspace_info *pspace_info;
1315 int alloc_size, map_size, i;
1316 struct obj_section *s, **map;
1317
1318 pspace_info = get_objfile_pspace_data (pspace);
1319 gdb_assert (pspace_info->section_map_dirty != 0
1320 || pspace_info->new_objfiles_available != 0);
1321
1322 map = *pmap;
1323 xfree (map);
1324
1325 alloc_size = 0;
1326 for (objfile *objfile : all_objfiles (pspace))
1327 ALL_OBJFILE_OSECTIONS (objfile, s)
1328 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1329 alloc_size += 1;
1330
1331 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1332 if (alloc_size == 0)
1333 {
1334 *pmap = NULL;
1335 *pmap_size = 0;
1336 return;
1337 }
1338
1339 map = XNEWVEC (struct obj_section *, alloc_size);
1340
1341 i = 0;
1342 for (objfile *objfile : all_objfiles (pspace))
1343 ALL_OBJFILE_OSECTIONS (objfile, s)
1344 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1345 map[i++] = s;
1346
1347 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1348 map_size = filter_debuginfo_sections(map, alloc_size);
1349 map_size = filter_overlapping_sections(map, map_size);
1350
1351 if (map_size < alloc_size)
1352 /* Some sections were eliminated. Trim excess space. */
1353 map = XRESIZEVEC (struct obj_section *, map, map_size);
1354 else
1355 gdb_assert (alloc_size == map_size);
1356
1357 *pmap = map;
1358 *pmap_size = map_size;
1359 }
1360
1361 /* Bsearch comparison function. */
1362
1363 static int
1364 bsearch_cmp (const void *key, const void *elt)
1365 {
1366 const CORE_ADDR pc = *(CORE_ADDR *) key;
1367 const struct obj_section *section = *(const struct obj_section **) elt;
1368
1369 if (pc < obj_section_addr (section))
1370 return -1;
1371 if (pc < obj_section_endaddr (section))
1372 return 0;
1373 return 1;
1374 }
1375
1376 /* Returns a section whose range includes PC or NULL if none found. */
1377
1378 struct obj_section *
1379 find_pc_section (CORE_ADDR pc)
1380 {
1381 struct objfile_pspace_info *pspace_info;
1382 struct obj_section *s, **sp;
1383
1384 /* Check for mapped overlay section first. */
1385 s = find_pc_mapped_section (pc);
1386 if (s)
1387 return s;
1388
1389 pspace_info = get_objfile_pspace_data (current_program_space);
1390 if (pspace_info->section_map_dirty
1391 || (pspace_info->new_objfiles_available
1392 && !pspace_info->inhibit_updates))
1393 {
1394 update_section_map (current_program_space,
1395 &pspace_info->sections,
1396 &pspace_info->num_sections);
1397
1398 /* Don't need updates to section map until objfiles are added,
1399 removed or relocated. */
1400 pspace_info->new_objfiles_available = 0;
1401 pspace_info->section_map_dirty = 0;
1402 }
1403
1404 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1405 bsearch be non-NULL. */
1406 if (pspace_info->sections == NULL)
1407 {
1408 gdb_assert (pspace_info->num_sections == 0);
1409 return NULL;
1410 }
1411
1412 sp = (struct obj_section **) bsearch (&pc,
1413 pspace_info->sections,
1414 pspace_info->num_sections,
1415 sizeof (*pspace_info->sections),
1416 bsearch_cmp);
1417 if (sp != NULL)
1418 return *sp;
1419 return NULL;
1420 }
1421
1422
1423 /* Return non-zero if PC is in a section called NAME. */
1424
1425 int
1426 pc_in_section (CORE_ADDR pc, const char *name)
1427 {
1428 struct obj_section *s;
1429 int retval = 0;
1430
1431 s = find_pc_section (pc);
1432
1433 retval = (s != NULL
1434 && s->the_bfd_section->name != NULL
1435 && strcmp (s->the_bfd_section->name, name) == 0);
1436 return (retval);
1437 }
1438 \f
1439
1440 /* Set section_map_dirty so section map will be rebuilt next time it
1441 is used. Called by reread_symbols. */
1442
1443 void
1444 objfiles_changed (void)
1445 {
1446 /* Rebuild section map next time we need it. */
1447 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1448 }
1449
1450 /* See comments in objfiles.h. */
1451
1452 scoped_restore_tmpl<int>
1453 inhibit_section_map_updates (struct program_space *pspace)
1454 {
1455 return scoped_restore_tmpl<int>
1456 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1457 }
1458
1459 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1460 otherwise. */
1461
1462 int
1463 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1464 {
1465 struct obj_section *osect;
1466
1467 if (objfile == NULL)
1468 return 0;
1469
1470 ALL_OBJFILE_OSECTIONS (objfile, osect)
1471 {
1472 if (section_is_overlay (osect) && !section_is_mapped (osect))
1473 continue;
1474
1475 if (obj_section_addr (osect) <= addr
1476 && addr < obj_section_endaddr (osect))
1477 return 1;
1478 }
1479 return 0;
1480 }
1481
1482 int
1483 shared_objfile_contains_address_p (struct program_space *pspace,
1484 CORE_ADDR address)
1485 {
1486 for (objfile *objfile : all_objfiles (pspace))
1487 {
1488 if ((objfile->flags & OBJF_SHARED) != 0
1489 && is_addr_in_objfile (address, objfile))
1490 return 1;
1491 }
1492
1493 return 0;
1494 }
1495
1496 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1497 gdbarch method. It is equivalent to use the all_objfiles iterable,
1498 searching the objfiles in the order they are stored internally,
1499 ignoring CURRENT_OBJFILE.
1500
1501 On most platorms, it should be close enough to doing the best
1502 we can without some knowledge specific to the architecture. */
1503
1504 void
1505 default_iterate_over_objfiles_in_search_order
1506 (struct gdbarch *gdbarch,
1507 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1508 void *cb_data, struct objfile *current_objfile)
1509 {
1510 int stop = 0;
1511
1512 for (objfile *objfile : all_objfiles (current_program_space))
1513 {
1514 stop = cb (objfile, cb_data);
1515 if (stop)
1516 return;
1517 }
1518 }
1519
1520 /* See objfiles.h. */
1521
1522 const char *
1523 objfile_name (const struct objfile *objfile)
1524 {
1525 if (objfile->obfd != NULL)
1526 return bfd_get_filename (objfile->obfd);
1527
1528 return objfile->original_name;
1529 }
1530
1531 /* See objfiles.h. */
1532
1533 const char *
1534 objfile_filename (const struct objfile *objfile)
1535 {
1536 if (objfile->obfd != NULL)
1537 return bfd_get_filename (objfile->obfd);
1538
1539 return NULL;
1540 }
1541
1542 /* See objfiles.h. */
1543
1544 const char *
1545 objfile_debug_name (const struct objfile *objfile)
1546 {
1547 return lbasename (objfile->original_name);
1548 }
1549
1550 /* See objfiles.h. */
1551
1552 const char *
1553 objfile_flavour_name (struct objfile *objfile)
1554 {
1555 if (objfile->obfd != NULL)
1556 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1557 return NULL;
1558 }
1559
1560 void
1561 _initialize_objfiles (void)
1562 {
1563 objfiles_pspace_data
1564 = register_program_space_data_with_cleanup (NULL,
1565 objfiles_pspace_data_cleanup);
1566
1567 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1568 objfile_bfd_data_free);
1569 }
This page took 0.059896 seconds and 5 git commands to generate.