Replace psymbol_allocation_list with std::vector
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 #include <vector>
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = ((struct objfile_pspace_info *)
103 program_space_data (pspace, objfiles_pspace_data));
104 if (info == NULL)
105 {
106 info = XCNEW (struct objfile_pspace_info);
107 set_program_space_data (pspace, objfiles_pspace_data, info);
108 }
109
110 return info;
111 }
112
113 \f
114
115 /* Per-BFD data key. */
116
117 static const struct bfd_data *objfiles_bfd_data;
118
119 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
120 NULL, and it already has a per-BFD storage object, use that.
121 Otherwise, allocate a new per-BFD storage object. If ABFD is not
122 NULL, the object is allocated on the BFD; otherwise it is allocated
123 on OBJFILE's obstack. Note that it is not safe to call this
124 multiple times for a given OBJFILE -- it can only be called when
125 allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = ((struct objfile_per_bfd_storage *)
134 bfd_data (abfd, objfiles_bfd_data));
135
136 if (storage == NULL)
137 {
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 {
143 storage
144 = ((struct objfile_per_bfd_storage *)
145 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147 }
148 else
149 {
150 storage = (objfile_per_bfd_storage *)
151 obstack_alloc (&objfile->objfile_obstack,
152 sizeof (objfile_per_bfd_storage));
153 }
154
155 /* objfile_per_bfd_storage is not trivially constructible, must
156 call the ctor manually. */
157 storage = new (storage) objfile_per_bfd_storage ();
158
159 /* Look up the gdbarch associated with the BFD. */
160 if (abfd != NULL)
161 storage->gdbarch = gdbarch_from_bfd (abfd);
162
163 storage->filename_cache = bcache_xmalloc (NULL, NULL);
164 storage->macro_cache = bcache_xmalloc (NULL, NULL);
165 storage->language_of_main = language_unknown;
166 }
167
168 return storage;
169 }
170
171 /* Free STORAGE. */
172
173 static void
174 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
175 {
176 bcache_xfree (storage->filename_cache);
177 bcache_xfree (storage->macro_cache);
178 if (storage->demangled_names_hash)
179 htab_delete (storage->demangled_names_hash);
180 storage->~objfile_per_bfd_storage ();
181 }
182
183 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
184 cleanup function to the BFD registry. */
185
186 static void
187 objfile_bfd_data_free (struct bfd *unused, void *d)
188 {
189 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
190 }
191
192 /* See objfiles.h. */
193
194 void
195 set_objfile_per_bfd (struct objfile *objfile)
196 {
197 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
198 }
199
200 /* Set the objfile's per-BFD notion of the "main" name and
201 language. */
202
203 void
204 set_objfile_main_name (struct objfile *objfile,
205 const char *name, enum language lang)
206 {
207 if (objfile->per_bfd->name_of_main == NULL
208 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
209 objfile->per_bfd->name_of_main
210 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
211 strlen (name));
212 objfile->per_bfd->language_of_main = lang;
213 }
214
215 /* Helper structure to map blocks to static link properties in hash tables. */
216
217 struct static_link_htab_entry
218 {
219 const struct block *block;
220 const struct dynamic_prop *static_link;
221 };
222
223 /* Return a hash code for struct static_link_htab_entry *P. */
224
225 static hashval_t
226 static_link_htab_entry_hash (const void *p)
227 {
228 const struct static_link_htab_entry *e
229 = (const struct static_link_htab_entry *) p;
230
231 return htab_hash_pointer (e->block);
232 }
233
234 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
235 mappings for the same block. */
236
237 static int
238 static_link_htab_entry_eq (const void *p1, const void *p2)
239 {
240 const struct static_link_htab_entry *e1
241 = (const struct static_link_htab_entry *) p1;
242 const struct static_link_htab_entry *e2
243 = (const struct static_link_htab_entry *) p2;
244
245 return e1->block == e2->block;
246 }
247
248 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
249 Must not be called more than once for each BLOCK. */
250
251 void
252 objfile_register_static_link (struct objfile *objfile,
253 const struct block *block,
254 const struct dynamic_prop *static_link)
255 {
256 void **slot;
257 struct static_link_htab_entry lookup_entry;
258 struct static_link_htab_entry *entry;
259
260 if (objfile->static_links == NULL)
261 objfile->static_links = htab_create_alloc
262 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
263 xcalloc, xfree);
264
265 /* Create a slot for the mapping, make sure it's the first mapping for this
266 block and then create the mapping itself. */
267 lookup_entry.block = block;
268 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
269 gdb_assert (*slot == NULL);
270
271 entry = (struct static_link_htab_entry *) obstack_alloc
272 (&objfile->objfile_obstack, sizeof (*entry));
273 entry->block = block;
274 entry->static_link = static_link;
275 *slot = (void *) entry;
276 }
277
278 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
279 none was found. */
280
281 const struct dynamic_prop *
282 objfile_lookup_static_link (struct objfile *objfile,
283 const struct block *block)
284 {
285 struct static_link_htab_entry *entry;
286 struct static_link_htab_entry lookup_entry;
287
288 if (objfile->static_links == NULL)
289 return NULL;
290 lookup_entry.block = block;
291 entry
292 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
293 &lookup_entry);
294 if (entry == NULL)
295 return NULL;
296
297 gdb_assert (entry->block == block);
298 return entry->static_link;
299 }
300
301 \f
302
303 /* Called via bfd_map_over_sections to build up the section table that
304 the objfile references. The objfile contains pointers to the start
305 of the table (objfile->sections) and to the first location after
306 the end of the table (objfile->sections_end). */
307
308 static void
309 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
310 struct objfile *objfile, int force)
311 {
312 struct obj_section *section;
313
314 if (!force)
315 {
316 flagword aflag;
317
318 aflag = bfd_get_section_flags (abfd, asect);
319 if (!(aflag & SEC_ALLOC))
320 return;
321 }
322
323 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
324 section->objfile = objfile;
325 section->the_bfd_section = asect;
326 section->ovly_mapped = 0;
327 }
328
329 static void
330 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
331 void *objfilep)
332 {
333 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
334 }
335
336 /* Builds a section table for OBJFILE.
337
338 Note that the OFFSET and OVLY_MAPPED in each table entry are
339 initialized to zero. */
340
341 void
342 build_objfile_section_table (struct objfile *objfile)
343 {
344 int count = gdb_bfd_count_sections (objfile->obfd);
345
346 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
347 count,
348 struct obj_section);
349 objfile->sections_end = (objfile->sections + count);
350 bfd_map_over_sections (objfile->obfd,
351 add_to_objfile_sections, (void *) objfile);
352
353 /* See gdb_bfd_section_index. */
354 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
355 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
356 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
357 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
358 }
359
360 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
361 initialize the new objfile as best we can and link it into the list
362 of all known objfiles.
363
364 NAME should contain original non-canonicalized filename or other
365 identifier as entered by user. If there is no better source use
366 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
367 NAME content is copied into returned objfile.
368
369 The FLAGS word contains various bits (OBJF_*) that can be taken as
370 requests for specific operations. Other bits like OBJF_SHARED are
371 simply copied through to the new objfile flags member. */
372
373 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
374 : flags (flags_),
375 pspace (current_program_space),
376 obfd (abfd),
377 psymbol_cache (psymbol_bcache_init ())
378 {
379 const char *expanded_name;
380
381 /* We could use obstack_specify_allocation here instead, but
382 gdb_obstack.h specifies the alloc/dealloc functions. */
383 obstack_init (&objfile_obstack);
384
385 objfile_alloc_data (this);
386
387 gdb::unique_xmalloc_ptr<char> name_holder;
388 if (name == NULL)
389 {
390 gdb_assert (abfd == NULL);
391 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
392 expanded_name = "<<anonymous objfile>>";
393 }
394 else if ((flags & OBJF_NOT_FILENAME) != 0
395 || is_target_filename (name))
396 expanded_name = name;
397 else
398 {
399 name_holder = gdb_abspath (name);
400 expanded_name = name_holder.get ();
401 }
402 original_name
403 = (char *) obstack_copy0 (&objfile_obstack,
404 expanded_name,
405 strlen (expanded_name));
406
407 /* Update the per-objfile information that comes from the bfd, ensuring
408 that any data that is reference is saved in the per-objfile data
409 region. */
410
411 gdb_bfd_ref (abfd);
412 if (abfd != NULL)
413 {
414 mtime = bfd_get_mtime (abfd);
415
416 /* Build section table. */
417 build_objfile_section_table (this);
418 }
419
420 per_bfd = get_objfile_bfd_data (this, abfd);
421
422 terminate_minimal_symbol_table (this);
423
424 /* Add this file onto the tail of the linked list of other such files. */
425
426 if (object_files == NULL)
427 object_files = this;
428 else
429 {
430 struct objfile *last_one;
431
432 for (last_one = object_files;
433 last_one->next;
434 last_one = last_one->next);
435 last_one->next = this;
436 }
437
438 /* Rebuild section map next time we need it. */
439 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
440 }
441
442 /* Retrieve the gdbarch associated with OBJFILE. */
443
444 struct gdbarch *
445 get_objfile_arch (const struct objfile *objfile)
446 {
447 return objfile->per_bfd->gdbarch;
448 }
449
450 /* If there is a valid and known entry point, function fills *ENTRY_P with it
451 and returns non-zero; otherwise it returns zero. */
452
453 int
454 entry_point_address_query (CORE_ADDR *entry_p)
455 {
456 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
457 return 0;
458
459 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
460 + ANOFFSET (symfile_objfile->section_offsets,
461 symfile_objfile->per_bfd->ei.the_bfd_section_index));
462
463 return 1;
464 }
465
466 /* Get current entry point address. Call error if it is not known. */
467
468 CORE_ADDR
469 entry_point_address (void)
470 {
471 CORE_ADDR retval;
472
473 if (!entry_point_address_query (&retval))
474 error (_("Entry point address is not known."));
475
476 return retval;
477 }
478
479 /* Iterator on PARENT and every separate debug objfile of PARENT.
480 The usage pattern is:
481 for (objfile = parent;
482 objfile;
483 objfile = objfile_separate_debug_iterate (parent, objfile))
484 ...
485 */
486
487 struct objfile *
488 objfile_separate_debug_iterate (const struct objfile *parent,
489 const struct objfile *objfile)
490 {
491 struct objfile *res;
492
493 /* If any, return the first child. */
494 res = objfile->separate_debug_objfile;
495 if (res)
496 return res;
497
498 /* Common case where there is no separate debug objfile. */
499 if (objfile == parent)
500 return NULL;
501
502 /* Return the brother if any. Note that we don't iterate on brothers of
503 the parents. */
504 res = objfile->separate_debug_objfile_link;
505 if (res)
506 return res;
507
508 for (res = objfile->separate_debug_objfile_backlink;
509 res != parent;
510 res = res->separate_debug_objfile_backlink)
511 {
512 gdb_assert (res != NULL);
513 if (res->separate_debug_objfile_link)
514 return res->separate_debug_objfile_link;
515 }
516 return NULL;
517 }
518
519 /* Put one object file before a specified on in the global list.
520 This can be used to make sure an object file is destroyed before
521 another when using ALL_OBJFILES_SAFE to free all objfiles. */
522 void
523 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
524 {
525 struct objfile **objp;
526
527 unlink_objfile (objfile);
528
529 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
530 {
531 if (*objp == before_this)
532 {
533 objfile->next = *objp;
534 *objp = objfile;
535 return;
536 }
537 }
538
539 internal_error (__FILE__, __LINE__,
540 _("put_objfile_before: before objfile not in list"));
541 }
542
543 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
544 list.
545
546 It is not a bug, or error, to call this function if OBJFILE is not known
547 to be in the current list. This is done in the case of mapped objfiles,
548 for example, just to ensure that the mapped objfile doesn't appear twice
549 in the list. Since the list is threaded, linking in a mapped objfile
550 twice would create a circular list.
551
552 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
553 unlinking it, just to ensure that we have completely severed any linkages
554 between the OBJFILE and the list. */
555
556 void
557 unlink_objfile (struct objfile *objfile)
558 {
559 struct objfile **objpp;
560
561 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
562 {
563 if (*objpp == objfile)
564 {
565 *objpp = (*objpp)->next;
566 objfile->next = NULL;
567 return;
568 }
569 }
570
571 internal_error (__FILE__, __LINE__,
572 _("unlink_objfile: objfile already unlinked"));
573 }
574
575 /* Add OBJFILE as a separate debug objfile of PARENT. */
576
577 void
578 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
579 {
580 gdb_assert (objfile && parent);
581
582 /* Must not be already in a list. */
583 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
584 gdb_assert (objfile->separate_debug_objfile_link == NULL);
585 gdb_assert (objfile->separate_debug_objfile == NULL);
586 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
587 gdb_assert (parent->separate_debug_objfile_link == NULL);
588
589 objfile->separate_debug_objfile_backlink = parent;
590 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
591 parent->separate_debug_objfile = objfile;
592
593 /* Put the separate debug object before the normal one, this is so that
594 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
595 put_objfile_before (objfile, parent);
596 }
597
598 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
599 itself. */
600
601 void
602 free_objfile_separate_debug (struct objfile *objfile)
603 {
604 struct objfile *child;
605
606 for (child = objfile->separate_debug_objfile; child;)
607 {
608 struct objfile *next_child = child->separate_debug_objfile_link;
609 delete child;
610 child = next_child;
611 }
612 }
613
614 /* Destroy an objfile and all the symtabs and psymtabs under it. */
615
616 objfile::~objfile ()
617 {
618 /* First notify observers that this objfile is about to be freed. */
619 observer_notify_free_objfile (this);
620
621 /* Free all separate debug objfiles. */
622 free_objfile_separate_debug (this);
623
624 if (separate_debug_objfile_backlink)
625 {
626 /* We freed the separate debug file, make sure the base objfile
627 doesn't reference it. */
628 struct objfile *child;
629
630 child = separate_debug_objfile_backlink->separate_debug_objfile;
631
632 if (child == this)
633 {
634 /* THIS is the first child. */
635 separate_debug_objfile_backlink->separate_debug_objfile =
636 separate_debug_objfile_link;
637 }
638 else
639 {
640 /* Find THIS in the list. */
641 while (1)
642 {
643 if (child->separate_debug_objfile_link == this)
644 {
645 child->separate_debug_objfile_link =
646 separate_debug_objfile_link;
647 break;
648 }
649 child = child->separate_debug_objfile_link;
650 gdb_assert (child);
651 }
652 }
653 }
654
655 /* Remove any references to this objfile in the global value
656 lists. */
657 preserve_values (this);
658
659 /* It still may reference data modules have associated with the objfile and
660 the symbol file data. */
661 forget_cached_source_info_for_objfile (this);
662
663 breakpoint_free_objfile (this);
664 btrace_free_objfile (this);
665
666 /* First do any symbol file specific actions required when we are
667 finished with a particular symbol file. Note that if the objfile
668 is using reusable symbol information (via mmalloc) then each of
669 these routines is responsible for doing the correct thing, either
670 freeing things which are valid only during this particular gdb
671 execution, or leaving them to be reused during the next one. */
672
673 if (sf != NULL)
674 (*sf->sym_finish) (this);
675
676 /* Discard any data modules have associated with the objfile. The function
677 still may reference obfd. */
678 objfile_free_data (this);
679
680 if (obfd)
681 gdb_bfd_unref (obfd);
682 else
683 free_objfile_per_bfd_storage (per_bfd);
684
685 /* Remove it from the chain of all objfiles. */
686
687 unlink_objfile (this);
688
689 if (this == symfile_objfile)
690 symfile_objfile = NULL;
691
692 /* Before the symbol table code was redone to make it easier to
693 selectively load and remove information particular to a specific
694 linkage unit, gdb used to do these things whenever the monolithic
695 symbol table was blown away. How much still needs to be done
696 is unknown, but we play it safe for now and keep each action until
697 it is shown to be no longer needed. */
698
699 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
700 for example), so we need to call this here. */
701 clear_pc_function_cache ();
702
703 /* Clear globals which might have pointed into a removed objfile.
704 FIXME: It's not clear which of these are supposed to persist
705 between expressions and which ought to be reset each time. */
706 expression_context_block = NULL;
707 innermost_block = NULL;
708
709 /* Check to see if the current_source_symtab belongs to this objfile,
710 and if so, call clear_current_source_symtab_and_line. */
711
712 {
713 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
714
715 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
716 clear_current_source_symtab_and_line ();
717 }
718
719 /* Free the obstacks for non-reusable objfiles. */
720 psymbol_bcache_free (psymbol_cache);
721 obstack_free (&objfile_obstack, 0);
722
723 /* Rebuild section map next time we need it. */
724 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
725
726 /* Free the map for static links. There's no need to free static link
727 themselves since they were allocated on the objstack. */
728 if (static_links != NULL)
729 htab_delete (static_links);
730 }
731
732 static void
733 do_free_objfile_cleanup (void *obj)
734 {
735 delete (struct objfile *) obj;
736 }
737
738 struct cleanup *
739 make_cleanup_free_objfile (struct objfile *obj)
740 {
741 return make_cleanup (do_free_objfile_cleanup, obj);
742 }
743
744 /* Free all the object files at once and clean up their users. */
745
746 void
747 free_all_objfiles (void)
748 {
749 struct objfile *objfile, *temp;
750 struct so_list *so;
751
752 /* Any objfile referencewould become stale. */
753 for (so = master_so_list (); so; so = so->next)
754 gdb_assert (so->objfile == NULL);
755
756 ALL_OBJFILES_SAFE (objfile, temp)
757 {
758 delete objfile;
759 }
760 clear_symtab_users (0);
761 }
762 \f
763 /* A helper function for objfile_relocate1 that relocates a single
764 symbol. */
765
766 static void
767 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
768 struct section_offsets *delta)
769 {
770 fixup_symbol_section (sym, objfile);
771
772 /* The RS6000 code from which this was taken skipped
773 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
774 But I'm leaving out that test, on the theory that
775 they can't possibly pass the tests below. */
776 if ((SYMBOL_CLASS (sym) == LOC_LABEL
777 || SYMBOL_CLASS (sym) == LOC_STATIC)
778 && SYMBOL_SECTION (sym) >= 0)
779 {
780 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
781 }
782 }
783
784 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
785 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
786 Return non-zero iff any change happened. */
787
788 static int
789 objfile_relocate1 (struct objfile *objfile,
790 const struct section_offsets *new_offsets)
791 {
792 struct obj_section *s;
793 struct section_offsets *delta =
794 ((struct section_offsets *)
795 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
796
797 int i;
798 int something_changed = 0;
799
800 for (i = 0; i < objfile->num_sections; ++i)
801 {
802 delta->offsets[i] =
803 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
804 if (ANOFFSET (delta, i) != 0)
805 something_changed = 1;
806 }
807 if (!something_changed)
808 return 0;
809
810 /* OK, get all the symtabs. */
811 {
812 struct compunit_symtab *cust;
813 struct symtab *s;
814
815 ALL_OBJFILE_FILETABS (objfile, cust, s)
816 {
817 struct linetable *l;
818 int i;
819
820 /* First the line table. */
821 l = SYMTAB_LINETABLE (s);
822 if (l)
823 {
824 for (i = 0; i < l->nitems; ++i)
825 l->item[i].pc += ANOFFSET (delta,
826 COMPUNIT_BLOCK_LINE_SECTION
827 (cust));
828 }
829 }
830
831 ALL_OBJFILE_COMPUNITS (objfile, cust)
832 {
833 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
834 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
835
836 if (BLOCKVECTOR_MAP (bv))
837 addrmap_relocate (BLOCKVECTOR_MAP (bv),
838 ANOFFSET (delta, block_line_section));
839
840 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
841 {
842 struct block *b;
843 struct symbol *sym;
844 struct dict_iterator iter;
845
846 b = BLOCKVECTOR_BLOCK (bv, i);
847 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
848 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
849
850 /* We only want to iterate over the local symbols, not any
851 symbols in included symtabs. */
852 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
853 {
854 relocate_one_symbol (sym, objfile, delta);
855 }
856 }
857 }
858 }
859
860 /* Relocate isolated symbols. */
861 {
862 struct symbol *iter;
863
864 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
865 relocate_one_symbol (iter, objfile, delta);
866 }
867
868 if (objfile->psymtabs_addrmap)
869 addrmap_relocate (objfile->psymtabs_addrmap,
870 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
871
872 if (objfile->sf)
873 objfile->sf->qf->relocate (objfile, new_offsets, delta);
874
875 {
876 int i;
877
878 for (i = 0; i < objfile->num_sections; ++i)
879 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
880 }
881
882 /* Rebuild section map next time we need it. */
883 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
884
885 /* Update the table in exec_ops, used to read memory. */
886 ALL_OBJFILE_OSECTIONS (objfile, s)
887 {
888 int idx = s - objfile->sections;
889
890 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
891 obj_section_addr (s));
892 }
893
894 /* Data changed. */
895 return 1;
896 }
897
898 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
899 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
900
901 The number and ordering of sections does differ between the two objfiles.
902 Only their names match. Also the file offsets will differ (objfile being
903 possibly prelinked but separate_debug_objfile is probably not prelinked) but
904 the in-memory absolute address as specified by NEW_OFFSETS must match both
905 files. */
906
907 void
908 objfile_relocate (struct objfile *objfile,
909 const struct section_offsets *new_offsets)
910 {
911 struct objfile *debug_objfile;
912 int changed = 0;
913
914 changed |= objfile_relocate1 (objfile, new_offsets);
915
916 for (debug_objfile = objfile->separate_debug_objfile;
917 debug_objfile;
918 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
919 {
920 struct section_addr_info *objfile_addrs;
921 struct cleanup *my_cleanups;
922
923 objfile_addrs = build_section_addr_info_from_objfile (objfile);
924 my_cleanups = make_cleanup (xfree, objfile_addrs);
925
926 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
927 relative ones must be already created according to debug_objfile. */
928
929 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
930
931 gdb_assert (debug_objfile->num_sections
932 == gdb_bfd_count_sections (debug_objfile->obfd));
933 std::vector<struct section_offsets>
934 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
935 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
936 debug_objfile->num_sections,
937 objfile_addrs);
938
939 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
940
941 do_cleanups (my_cleanups);
942 }
943
944 /* Relocate breakpoints as necessary, after things are relocated. */
945 if (changed)
946 breakpoint_re_set ();
947 }
948
949 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
950 not touched here.
951 Return non-zero iff any change happened. */
952
953 static int
954 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
955 {
956 struct section_offsets *new_offsets =
957 ((struct section_offsets *)
958 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
959 int i;
960
961 for (i = 0; i < objfile->num_sections; ++i)
962 new_offsets->offsets[i] = slide;
963
964 return objfile_relocate1 (objfile, new_offsets);
965 }
966
967 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
968 SEPARATE_DEBUG_OBJFILEs. */
969
970 void
971 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
972 {
973 struct objfile *debug_objfile;
974 int changed = 0;
975
976 changed |= objfile_rebase1 (objfile, slide);
977
978 for (debug_objfile = objfile->separate_debug_objfile;
979 debug_objfile;
980 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
981 changed |= objfile_rebase1 (debug_objfile, slide);
982
983 /* Relocate breakpoints as necessary, after things are relocated. */
984 if (changed)
985 breakpoint_re_set ();
986 }
987 \f
988 /* Return non-zero if OBJFILE has partial symbols. */
989
990 int
991 objfile_has_partial_symbols (struct objfile *objfile)
992 {
993 if (!objfile->sf)
994 return 0;
995
996 /* If we have not read psymbols, but we have a function capable of reading
997 them, then that is an indication that they are in fact available. Without
998 this function the symbols may have been already read in but they also may
999 not be present in this objfile. */
1000 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1001 && objfile->sf->sym_read_psymbols != NULL)
1002 return 1;
1003
1004 return objfile->sf->qf->has_symbols (objfile);
1005 }
1006
1007 /* Return non-zero if OBJFILE has full symbols. */
1008
1009 int
1010 objfile_has_full_symbols (struct objfile *objfile)
1011 {
1012 return objfile->compunit_symtabs != NULL;
1013 }
1014
1015 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1016 or through a separate debug file. */
1017
1018 int
1019 objfile_has_symbols (struct objfile *objfile)
1020 {
1021 struct objfile *o;
1022
1023 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1024 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1025 return 1;
1026 return 0;
1027 }
1028
1029
1030 /* Many places in gdb want to test just to see if we have any partial
1031 symbols available. This function returns zero if none are currently
1032 available, nonzero otherwise. */
1033
1034 int
1035 have_partial_symbols (void)
1036 {
1037 struct objfile *ofp;
1038
1039 ALL_OBJFILES (ofp)
1040 {
1041 if (objfile_has_partial_symbols (ofp))
1042 return 1;
1043 }
1044 return 0;
1045 }
1046
1047 /* Many places in gdb want to test just to see if we have any full
1048 symbols available. This function returns zero if none are currently
1049 available, nonzero otherwise. */
1050
1051 int
1052 have_full_symbols (void)
1053 {
1054 struct objfile *ofp;
1055
1056 ALL_OBJFILES (ofp)
1057 {
1058 if (objfile_has_full_symbols (ofp))
1059 return 1;
1060 }
1061 return 0;
1062 }
1063
1064
1065 /* This operations deletes all objfile entries that represent solibs that
1066 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1067 command. */
1068
1069 void
1070 objfile_purge_solibs (void)
1071 {
1072 struct objfile *objf;
1073 struct objfile *temp;
1074
1075 ALL_OBJFILES_SAFE (objf, temp)
1076 {
1077 /* We assume that the solib package has been purged already, or will
1078 be soon. */
1079
1080 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1081 delete objf;
1082 }
1083 }
1084
1085
1086 /* Many places in gdb want to test just to see if we have any minimal
1087 symbols available. This function returns zero if none are currently
1088 available, nonzero otherwise. */
1089
1090 int
1091 have_minimal_symbols (void)
1092 {
1093 struct objfile *ofp;
1094
1095 ALL_OBJFILES (ofp)
1096 {
1097 if (ofp->per_bfd->minimal_symbol_count > 0)
1098 {
1099 return 1;
1100 }
1101 }
1102 return 0;
1103 }
1104
1105 /* Qsort comparison function. */
1106
1107 static int
1108 qsort_cmp (const void *a, const void *b)
1109 {
1110 const struct obj_section *sect1 = *(const struct obj_section **) a;
1111 const struct obj_section *sect2 = *(const struct obj_section **) b;
1112 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1113 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1114
1115 if (sect1_addr < sect2_addr)
1116 return -1;
1117 else if (sect1_addr > sect2_addr)
1118 return 1;
1119 else
1120 {
1121 /* Sections are at the same address. This could happen if
1122 A) we have an objfile and a separate debuginfo.
1123 B) we are confused, and have added sections without proper relocation,
1124 or something like that. */
1125
1126 const struct objfile *const objfile1 = sect1->objfile;
1127 const struct objfile *const objfile2 = sect2->objfile;
1128
1129 if (objfile1->separate_debug_objfile == objfile2
1130 || objfile2->separate_debug_objfile == objfile1)
1131 {
1132 /* Case A. The ordering doesn't matter: separate debuginfo files
1133 will be filtered out later. */
1134
1135 return 0;
1136 }
1137
1138 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1139 triage. This section could be slow (since we iterate over all
1140 objfiles in each call to qsort_cmp), but this shouldn't happen
1141 very often (GDB is already in a confused state; one hopes this
1142 doesn't happen at all). If you discover that significant time is
1143 spent in the loops below, do 'set complaints 100' and examine the
1144 resulting complaints. */
1145
1146 if (objfile1 == objfile2)
1147 {
1148 /* Both sections came from the same objfile. We are really confused.
1149 Sort on sequence order of sections within the objfile. */
1150
1151 const struct obj_section *osect;
1152
1153 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1154 if (osect == sect1)
1155 return -1;
1156 else if (osect == sect2)
1157 return 1;
1158
1159 /* We should have found one of the sections before getting here. */
1160 gdb_assert_not_reached ("section not found");
1161 }
1162 else
1163 {
1164 /* Sort on sequence number of the objfile in the chain. */
1165
1166 const struct objfile *objfile;
1167
1168 ALL_OBJFILES (objfile)
1169 if (objfile == objfile1)
1170 return -1;
1171 else if (objfile == objfile2)
1172 return 1;
1173
1174 /* We should have found one of the objfiles before getting here. */
1175 gdb_assert_not_reached ("objfile not found");
1176 }
1177 }
1178
1179 /* Unreachable. */
1180 gdb_assert_not_reached ("unexpected code path");
1181 return 0;
1182 }
1183
1184 /* Select "better" obj_section to keep. We prefer the one that came from
1185 the real object, rather than the one from separate debuginfo.
1186 Most of the time the two sections are exactly identical, but with
1187 prelinking the .rel.dyn section in the real object may have different
1188 size. */
1189
1190 static struct obj_section *
1191 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1192 {
1193 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1194 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1195 || (b->objfile->separate_debug_objfile == a->objfile));
1196 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1197 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1198
1199 if (a->objfile->separate_debug_objfile != NULL)
1200 return a;
1201 return b;
1202 }
1203
1204 /* Return 1 if SECTION should be inserted into the section map.
1205 We want to insert only non-overlay and non-TLS section. */
1206
1207 static int
1208 insert_section_p (const struct bfd *abfd,
1209 const struct bfd_section *section)
1210 {
1211 const bfd_vma lma = bfd_section_lma (abfd, section);
1212
1213 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1214 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1215 /* This is an overlay section. IN_MEMORY check is needed to avoid
1216 discarding sections from the "system supplied DSO" (aka vdso)
1217 on some Linux systems (e.g. Fedora 11). */
1218 return 0;
1219 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1220 /* This is a TLS section. */
1221 return 0;
1222
1223 return 1;
1224 }
1225
1226 /* Filter out overlapping sections where one section came from the real
1227 objfile, and the other from a separate debuginfo file.
1228 Return the size of table after redundant sections have been eliminated. */
1229
1230 static int
1231 filter_debuginfo_sections (struct obj_section **map, int map_size)
1232 {
1233 int i, j;
1234
1235 for (i = 0, j = 0; i < map_size - 1; i++)
1236 {
1237 struct obj_section *const sect1 = map[i];
1238 struct obj_section *const sect2 = map[i + 1];
1239 const struct objfile *const objfile1 = sect1->objfile;
1240 const struct objfile *const objfile2 = sect2->objfile;
1241 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1242 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1243
1244 if (sect1_addr == sect2_addr
1245 && (objfile1->separate_debug_objfile == objfile2
1246 || objfile2->separate_debug_objfile == objfile1))
1247 {
1248 map[j++] = preferred_obj_section (sect1, sect2);
1249 ++i;
1250 }
1251 else
1252 map[j++] = sect1;
1253 }
1254
1255 if (i < map_size)
1256 {
1257 gdb_assert (i == map_size - 1);
1258 map[j++] = map[i];
1259 }
1260
1261 /* The map should not have shrunk to less than half the original size. */
1262 gdb_assert (map_size / 2 <= j);
1263
1264 return j;
1265 }
1266
1267 /* Filter out overlapping sections, issuing a warning if any are found.
1268 Overlapping sections could really be overlay sections which we didn't
1269 classify as such in insert_section_p, or we could be dealing with a
1270 corrupt binary. */
1271
1272 static int
1273 filter_overlapping_sections (struct obj_section **map, int map_size)
1274 {
1275 int i, j;
1276
1277 for (i = 0, j = 0; i < map_size - 1; )
1278 {
1279 int k;
1280
1281 map[j++] = map[i];
1282 for (k = i + 1; k < map_size; k++)
1283 {
1284 struct obj_section *const sect1 = map[i];
1285 struct obj_section *const sect2 = map[k];
1286 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1287 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1288 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1289
1290 gdb_assert (sect1_addr <= sect2_addr);
1291
1292 if (sect1_endaddr <= sect2_addr)
1293 break;
1294 else
1295 {
1296 /* We have an overlap. Report it. */
1297
1298 struct objfile *const objf1 = sect1->objfile;
1299 struct objfile *const objf2 = sect2->objfile;
1300
1301 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1302 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1303
1304 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1305
1306 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1307
1308 complaint (&symfile_complaints,
1309 _("unexpected overlap between:\n"
1310 " (A) section `%s' from `%s' [%s, %s)\n"
1311 " (B) section `%s' from `%s' [%s, %s).\n"
1312 "Will ignore section B"),
1313 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1314 paddress (gdbarch, sect1_addr),
1315 paddress (gdbarch, sect1_endaddr),
1316 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1317 paddress (gdbarch, sect2_addr),
1318 paddress (gdbarch, sect2_endaddr));
1319 }
1320 }
1321 i = k;
1322 }
1323
1324 if (i < map_size)
1325 {
1326 gdb_assert (i == map_size - 1);
1327 map[j++] = map[i];
1328 }
1329
1330 return j;
1331 }
1332
1333
1334 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1335 TLS, overlay and overlapping sections. */
1336
1337 static void
1338 update_section_map (struct program_space *pspace,
1339 struct obj_section ***pmap, int *pmap_size)
1340 {
1341 struct objfile_pspace_info *pspace_info;
1342 int alloc_size, map_size, i;
1343 struct obj_section *s, **map;
1344 struct objfile *objfile;
1345
1346 pspace_info = get_objfile_pspace_data (pspace);
1347 gdb_assert (pspace_info->section_map_dirty != 0
1348 || pspace_info->new_objfiles_available != 0);
1349
1350 map = *pmap;
1351 xfree (map);
1352
1353 alloc_size = 0;
1354 ALL_PSPACE_OBJFILES (pspace, objfile)
1355 ALL_OBJFILE_OSECTIONS (objfile, s)
1356 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1357 alloc_size += 1;
1358
1359 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1360 if (alloc_size == 0)
1361 {
1362 *pmap = NULL;
1363 *pmap_size = 0;
1364 return;
1365 }
1366
1367 map = XNEWVEC (struct obj_section *, alloc_size);
1368
1369 i = 0;
1370 ALL_PSPACE_OBJFILES (pspace, objfile)
1371 ALL_OBJFILE_OSECTIONS (objfile, s)
1372 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1373 map[i++] = s;
1374
1375 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1376 map_size = filter_debuginfo_sections(map, alloc_size);
1377 map_size = filter_overlapping_sections(map, map_size);
1378
1379 if (map_size < alloc_size)
1380 /* Some sections were eliminated. Trim excess space. */
1381 map = XRESIZEVEC (struct obj_section *, map, map_size);
1382 else
1383 gdb_assert (alloc_size == map_size);
1384
1385 *pmap = map;
1386 *pmap_size = map_size;
1387 }
1388
1389 /* Bsearch comparison function. */
1390
1391 static int
1392 bsearch_cmp (const void *key, const void *elt)
1393 {
1394 const CORE_ADDR pc = *(CORE_ADDR *) key;
1395 const struct obj_section *section = *(const struct obj_section **) elt;
1396
1397 if (pc < obj_section_addr (section))
1398 return -1;
1399 if (pc < obj_section_endaddr (section))
1400 return 0;
1401 return 1;
1402 }
1403
1404 /* Returns a section whose range includes PC or NULL if none found. */
1405
1406 struct obj_section *
1407 find_pc_section (CORE_ADDR pc)
1408 {
1409 struct objfile_pspace_info *pspace_info;
1410 struct obj_section *s, **sp;
1411
1412 /* Check for mapped overlay section first. */
1413 s = find_pc_mapped_section (pc);
1414 if (s)
1415 return s;
1416
1417 pspace_info = get_objfile_pspace_data (current_program_space);
1418 if (pspace_info->section_map_dirty
1419 || (pspace_info->new_objfiles_available
1420 && !pspace_info->inhibit_updates))
1421 {
1422 update_section_map (current_program_space,
1423 &pspace_info->sections,
1424 &pspace_info->num_sections);
1425
1426 /* Don't need updates to section map until objfiles are added,
1427 removed or relocated. */
1428 pspace_info->new_objfiles_available = 0;
1429 pspace_info->section_map_dirty = 0;
1430 }
1431
1432 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1433 bsearch be non-NULL. */
1434 if (pspace_info->sections == NULL)
1435 {
1436 gdb_assert (pspace_info->num_sections == 0);
1437 return NULL;
1438 }
1439
1440 sp = (struct obj_section **) bsearch (&pc,
1441 pspace_info->sections,
1442 pspace_info->num_sections,
1443 sizeof (*pspace_info->sections),
1444 bsearch_cmp);
1445 if (sp != NULL)
1446 return *sp;
1447 return NULL;
1448 }
1449
1450
1451 /* Return non-zero if PC is in a section called NAME. */
1452
1453 int
1454 pc_in_section (CORE_ADDR pc, const char *name)
1455 {
1456 struct obj_section *s;
1457 int retval = 0;
1458
1459 s = find_pc_section (pc);
1460
1461 retval = (s != NULL
1462 && s->the_bfd_section->name != NULL
1463 && strcmp (s->the_bfd_section->name, name) == 0);
1464 return (retval);
1465 }
1466 \f
1467
1468 /* Set section_map_dirty so section map will be rebuilt next time it
1469 is used. Called by reread_symbols. */
1470
1471 void
1472 objfiles_changed (void)
1473 {
1474 /* Rebuild section map next time we need it. */
1475 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1476 }
1477
1478 /* See comments in objfiles.h. */
1479
1480 void
1481 inhibit_section_map_updates (struct program_space *pspace)
1482 {
1483 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1484 }
1485
1486 /* See comments in objfiles.h. */
1487
1488 void
1489 resume_section_map_updates (struct program_space *pspace)
1490 {
1491 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1492 }
1493
1494 /* See comments in objfiles.h. */
1495
1496 void
1497 resume_section_map_updates_cleanup (void *arg)
1498 {
1499 resume_section_map_updates ((struct program_space *) arg);
1500 }
1501
1502 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1503 otherwise. */
1504
1505 int
1506 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1507 {
1508 struct obj_section *osect;
1509
1510 if (objfile == NULL)
1511 return 0;
1512
1513 ALL_OBJFILE_OSECTIONS (objfile, osect)
1514 {
1515 if (section_is_overlay (osect) && !section_is_mapped (osect))
1516 continue;
1517
1518 if (obj_section_addr (osect) <= addr
1519 && addr < obj_section_endaddr (osect))
1520 return 1;
1521 }
1522 return 0;
1523 }
1524
1525 int
1526 shared_objfile_contains_address_p (struct program_space *pspace,
1527 CORE_ADDR address)
1528 {
1529 struct objfile *objfile;
1530
1531 ALL_PSPACE_OBJFILES (pspace, objfile)
1532 {
1533 if ((objfile->flags & OBJF_SHARED) != 0
1534 && is_addr_in_objfile (address, objfile))
1535 return 1;
1536 }
1537
1538 return 0;
1539 }
1540
1541 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1542 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1543 searching the objfiles in the order they are stored internally,
1544 ignoring CURRENT_OBJFILE.
1545
1546 On most platorms, it should be close enough to doing the best
1547 we can without some knowledge specific to the architecture. */
1548
1549 void
1550 default_iterate_over_objfiles_in_search_order
1551 (struct gdbarch *gdbarch,
1552 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1553 void *cb_data, struct objfile *current_objfile)
1554 {
1555 int stop = 0;
1556 struct objfile *objfile;
1557
1558 ALL_OBJFILES (objfile)
1559 {
1560 stop = cb (objfile, cb_data);
1561 if (stop)
1562 return;
1563 }
1564 }
1565
1566 /* See objfiles.h. */
1567
1568 const char *
1569 objfile_name (const struct objfile *objfile)
1570 {
1571 if (objfile->obfd != NULL)
1572 return bfd_get_filename (objfile->obfd);
1573
1574 return objfile->original_name;
1575 }
1576
1577 /* See objfiles.h. */
1578
1579 const char *
1580 objfile_filename (const struct objfile *objfile)
1581 {
1582 if (objfile->obfd != NULL)
1583 return bfd_get_filename (objfile->obfd);
1584
1585 return NULL;
1586 }
1587
1588 /* See objfiles.h. */
1589
1590 const char *
1591 objfile_debug_name (const struct objfile *objfile)
1592 {
1593 return lbasename (objfile->original_name);
1594 }
1595
1596 /* See objfiles.h. */
1597
1598 const char *
1599 objfile_flavour_name (struct objfile *objfile)
1600 {
1601 if (objfile->obfd != NULL)
1602 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1603 return NULL;
1604 }
1605
1606 void
1607 _initialize_objfiles (void)
1608 {
1609 objfiles_pspace_data
1610 = register_program_space_data_with_cleanup (NULL,
1611 objfiles_pspace_data_cleanup);
1612
1613 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1614 objfile_bfd_data_free);
1615 }
This page took 0.062893 seconds and 5 git commands to generate.