* objfiles.c (objfile_relocate): Do not relocate the same
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53
54 /* Prototypes for local functions */
55
56 static void objfile_alloc_data (struct objfile *objfile);
57 static void objfile_free_data (struct objfile *objfile);
58
59 /* Externally visible variables that are owned by this module.
60 See declarations in objfile.h for more info. */
61
62 struct objfile *object_files; /* Linked list of all objfiles */
63 struct objfile *current_objfile; /* For symbol file being read in */
64 struct objfile *symfile_objfile; /* Main symbol table loaded from */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 /* Locate all mappable sections of a BFD file.
68 objfile_p_char is a char * to get it through
69 bfd_map_over_sections; we cast it back to its proper type. */
70
71 /* Called via bfd_map_over_sections to build up the section table that
72 the objfile references. The objfile contains pointers to the start
73 of the table (objfile->sections) and to the first location after
74 the end of the table (objfile->sections_end). */
75
76 static void
77 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
78 void *objfile_p_char)
79 {
80 struct objfile *objfile = (struct objfile *) objfile_p_char;
81 struct obj_section section;
82 flagword aflag;
83
84 aflag = bfd_get_section_flags (abfd, asect);
85
86 if (!(aflag & SEC_ALLOC))
87 return;
88
89 if (0 == bfd_section_size (abfd, asect))
90 return;
91 section.objfile = objfile;
92 section.the_bfd_section = asect;
93 section.ovly_mapped = 0;
94 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
95 objfile->sections_end
96 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
97 }
98
99 /* Builds a section table for OBJFILE.
100 Returns 0 if OK, 1 on error (in which case bfd_error contains the
101 error).
102
103 Note that while we are building the table, which goes into the
104 psymbol obstack, we hijack the sections_end pointer to instead hold
105 a count of the number of sections. When bfd_map_over_sections
106 returns, this count is used to compute the pointer to the end of
107 the sections table, which then overwrites the count.
108
109 Also note that the OFFSET and OVLY_MAPPED in each table entry
110 are initialized to zero.
111
112 Also note that if anything else writes to the psymbol obstack while
113 we are building the table, we're pretty much hosed. */
114
115 int
116 build_objfile_section_table (struct objfile *objfile)
117 {
118 /* objfile->sections can be already set when reading a mapped symbol
119 file. I believe that we do need to rebuild the section table in
120 this case (we rebuild other things derived from the bfd), but we
121 can't free the old one (it's in the objfile_obstack). So we just
122 waste some memory. */
123
124 objfile->sections_end = 0;
125 bfd_map_over_sections (objfile->obfd,
126 add_to_objfile_sections, (void *) objfile);
127 objfile->sections = obstack_finish (&objfile->objfile_obstack);
128 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
129 return (0);
130 }
131
132 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
133 allocate a new objfile struct, fill it in as best we can, link it
134 into the list of all known objfiles, and return a pointer to the
135 new objfile struct.
136
137 The FLAGS word contains various bits (OBJF_*) that can be taken as
138 requests for specific operations. Other bits like OBJF_SHARED are
139 simply copied through to the new objfile flags member. */
140
141 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
142 by jv-lang.c, to create an artificial objfile used to hold
143 information about dynamically-loaded Java classes. Unfortunately,
144 that branch of this function doesn't get tested very frequently, so
145 it's prone to breakage. (E.g. at one time the name was set to NULL
146 in that situation, which broke a loop over all names in the dynamic
147 library loader.) If you change this function, please try to leave
148 things in a consistent state even if abfd is NULL. */
149
150 struct objfile *
151 allocate_objfile (bfd *abfd, int flags)
152 {
153 struct objfile *objfile = NULL;
154 struct objfile *last_one = NULL;
155
156 /* If we don't support mapped symbol files, didn't ask for the file to be
157 mapped, or failed to open the mapped file for some reason, then revert
158 back to an unmapped objfile. */
159
160 if (objfile == NULL)
161 {
162 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
163 memset (objfile, 0, sizeof (struct objfile));
164 objfile->psymbol_cache = bcache_xmalloc ();
165 objfile->macro_cache = bcache_xmalloc ();
166 /* We could use obstack_specify_allocation here instead, but
167 gdb_obstack.h specifies the alloc/dealloc functions. */
168 obstack_init (&objfile->objfile_obstack);
169 terminate_minimal_symbol_table (objfile);
170 }
171
172 objfile_alloc_data (objfile);
173
174 /* Update the per-objfile information that comes from the bfd, ensuring
175 that any data that is reference is saved in the per-objfile data
176 region. */
177
178 objfile->obfd = abfd;
179 if (objfile->name != NULL)
180 {
181 xfree (objfile->name);
182 }
183 if (abfd != NULL)
184 {
185 /* Look up the gdbarch associated with the BFD. */
186 objfile->gdbarch = gdbarch_from_bfd (abfd);
187
188 objfile->name = xstrdup (bfd_get_filename (abfd));
189 objfile->mtime = bfd_get_mtime (abfd);
190
191 /* Build section table. */
192
193 if (build_objfile_section_table (objfile))
194 {
195 error (_("Can't find the file sections in `%s': %s"),
196 objfile->name, bfd_errmsg (bfd_get_error ()));
197 }
198 }
199 else
200 {
201 objfile->name = xstrdup ("<<anonymous objfile>>");
202 }
203
204 /* Initialize the section indexes for this objfile, so that we can
205 later detect if they are used w/o being properly assigned to. */
206
207 objfile->sect_index_text = -1;
208 objfile->sect_index_data = -1;
209 objfile->sect_index_bss = -1;
210 objfile->sect_index_rodata = -1;
211
212 /* We don't yet have a C++-specific namespace symtab. */
213
214 objfile->cp_namespace_symtab = NULL;
215
216 /* Add this file onto the tail of the linked list of other such files. */
217
218 objfile->next = NULL;
219 if (object_files == NULL)
220 object_files = objfile;
221 else
222 {
223 for (last_one = object_files;
224 last_one->next;
225 last_one = last_one->next);
226 last_one->next = objfile;
227 }
228
229 /* Save passed in flag bits. */
230 objfile->flags |= flags;
231
232 return (objfile);
233 }
234
235 /* Retrieve the gdbarch associated with OBJFILE. */
236 struct gdbarch *
237 get_objfile_arch (struct objfile *objfile)
238 {
239 return objfile->gdbarch;
240 }
241
242 /* Initialize entry point information for this objfile. */
243
244 void
245 init_entry_point_info (struct objfile *objfile)
246 {
247 /* Save startup file's range of PC addresses to help blockframe.c
248 decide where the bottom of the stack is. */
249
250 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
251 {
252 /* Executable file -- record its entry point so we'll recognize
253 the startup file because it contains the entry point. */
254 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
255 }
256 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
257 && bfd_get_start_address (objfile->obfd) != 0)
258 /* Some shared libraries may have entry points set and be
259 runnable. There's no clear way to indicate this, so just check
260 for values other than zero. */
261 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
262 else
263 {
264 /* Examination of non-executable.o files. Short-circuit this stuff. */
265 objfile->ei.entry_point = INVALID_ENTRY_POINT;
266 }
267 }
268
269 /* Get current entry point address. */
270
271 CORE_ADDR
272 entry_point_address (void)
273 {
274 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
275 }
276
277 /* Create the terminating entry of OBJFILE's minimal symbol table.
278 If OBJFILE->msymbols is zero, allocate a single entry from
279 OBJFILE->objfile_obstack; otherwise, just initialize
280 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
281 void
282 terminate_minimal_symbol_table (struct objfile *objfile)
283 {
284 if (! objfile->msymbols)
285 objfile->msymbols = ((struct minimal_symbol *)
286 obstack_alloc (&objfile->objfile_obstack,
287 sizeof (objfile->msymbols[0])));
288
289 {
290 struct minimal_symbol *m
291 = &objfile->msymbols[objfile->minimal_symbol_count];
292
293 memset (m, 0, sizeof (*m));
294 /* Don't rely on these enumeration values being 0's. */
295 MSYMBOL_TYPE (m) = mst_unknown;
296 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
297 }
298 }
299
300
301 /* Put one object file before a specified on in the global list.
302 This can be used to make sure an object file is destroyed before
303 another when using ALL_OBJFILES_SAFE to free all objfiles. */
304 void
305 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
306 {
307 struct objfile **objp;
308
309 unlink_objfile (objfile);
310
311 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
312 {
313 if (*objp == before_this)
314 {
315 objfile->next = *objp;
316 *objp = objfile;
317 return;
318 }
319 }
320
321 internal_error (__FILE__, __LINE__,
322 _("put_objfile_before: before objfile not in list"));
323 }
324
325 /* Put OBJFILE at the front of the list. */
326
327 void
328 objfile_to_front (struct objfile *objfile)
329 {
330 struct objfile **objp;
331 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
332 {
333 if (*objp == objfile)
334 {
335 /* Unhook it from where it is. */
336 *objp = objfile->next;
337 /* Put it in the front. */
338 objfile->next = object_files;
339 object_files = objfile;
340 break;
341 }
342 }
343 }
344
345 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
346 list.
347
348 It is not a bug, or error, to call this function if OBJFILE is not known
349 to be in the current list. This is done in the case of mapped objfiles,
350 for example, just to ensure that the mapped objfile doesn't appear twice
351 in the list. Since the list is threaded, linking in a mapped objfile
352 twice would create a circular list.
353
354 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
355 unlinking it, just to ensure that we have completely severed any linkages
356 between the OBJFILE and the list. */
357
358 void
359 unlink_objfile (struct objfile *objfile)
360 {
361 struct objfile **objpp;
362
363 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
364 {
365 if (*objpp == objfile)
366 {
367 *objpp = (*objpp)->next;
368 objfile->next = NULL;
369 return;
370 }
371 }
372
373 internal_error (__FILE__, __LINE__,
374 _("unlink_objfile: objfile already unlinked"));
375 }
376
377
378 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
379 that as much as possible is allocated on the objfile_obstack
380 so that the memory can be efficiently freed.
381
382 Things which we do NOT free because they are not in malloc'd memory
383 or not in memory specific to the objfile include:
384
385 objfile -> sf
386
387 FIXME: If the objfile is using reusable symbol information (via mmalloc),
388 then we need to take into account the fact that more than one process
389 may be using the symbol information at the same time (when mmalloc is
390 extended to support cooperative locking). When more than one process
391 is using the mapped symbol info, we need to be more careful about when
392 we free objects in the reusable area. */
393
394 void
395 free_objfile (struct objfile *objfile)
396 {
397 if (objfile->separate_debug_objfile)
398 {
399 free_objfile (objfile->separate_debug_objfile);
400 }
401
402 if (objfile->separate_debug_objfile_backlink)
403 {
404 /* We freed the separate debug file, make sure the base objfile
405 doesn't reference it. */
406 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
407 }
408
409 /* Remove any references to this objfile in the global value
410 lists. */
411 preserve_values (objfile);
412
413 /* First do any symbol file specific actions required when we are
414 finished with a particular symbol file. Note that if the objfile
415 is using reusable symbol information (via mmalloc) then each of
416 these routines is responsible for doing the correct thing, either
417 freeing things which are valid only during this particular gdb
418 execution, or leaving them to be reused during the next one. */
419
420 if (objfile->sf != NULL)
421 {
422 (*objfile->sf->sym_finish) (objfile);
423 }
424
425 /* Discard any data modules have associated with the objfile. */
426 objfile_free_data (objfile);
427
428 /* We always close the bfd, unless the OBJF_KEEPBFD flag is set. */
429
430 if (objfile->obfd != NULL && !(objfile->flags & OBJF_KEEPBFD))
431 {
432 char *name = bfd_get_filename (objfile->obfd);
433 if (!bfd_close (objfile->obfd))
434 warning (_("cannot close \"%s\": %s"),
435 name, bfd_errmsg (bfd_get_error ()));
436 xfree (name);
437 }
438
439 /* Remove it from the chain of all objfiles. */
440
441 unlink_objfile (objfile);
442
443 /* If we are going to free the runtime common objfile, mark it
444 as unallocated. */
445
446 if (objfile == rt_common_objfile)
447 rt_common_objfile = NULL;
448
449 /* Before the symbol table code was redone to make it easier to
450 selectively load and remove information particular to a specific
451 linkage unit, gdb used to do these things whenever the monolithic
452 symbol table was blown away. How much still needs to be done
453 is unknown, but we play it safe for now and keep each action until
454 it is shown to be no longer needed. */
455
456 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
457 for example), so we need to call this here. */
458 clear_pc_function_cache ();
459
460 /* Clear globals which might have pointed into a removed objfile.
461 FIXME: It's not clear which of these are supposed to persist
462 between expressions and which ought to be reset each time. */
463 expression_context_block = NULL;
464 innermost_block = NULL;
465
466 /* Check to see if the current_source_symtab belongs to this objfile,
467 and if so, call clear_current_source_symtab_and_line. */
468
469 {
470 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
471 struct symtab *s;
472
473 ALL_OBJFILE_SYMTABS (objfile, s)
474 {
475 if (s == cursal.symtab)
476 clear_current_source_symtab_and_line ();
477 }
478 }
479
480 /* The last thing we do is free the objfile struct itself. */
481
482 if (objfile->name != NULL)
483 {
484 xfree (objfile->name);
485 }
486 if (objfile->global_psymbols.list)
487 xfree (objfile->global_psymbols.list);
488 if (objfile->static_psymbols.list)
489 xfree (objfile->static_psymbols.list);
490 /* Free the obstacks for non-reusable objfiles */
491 bcache_xfree (objfile->psymbol_cache);
492 bcache_xfree (objfile->macro_cache);
493 if (objfile->demangled_names_hash)
494 htab_delete (objfile->demangled_names_hash);
495 obstack_free (&objfile->objfile_obstack, 0);
496 xfree (objfile);
497 objfile = NULL;
498 }
499
500 static void
501 do_free_objfile_cleanup (void *obj)
502 {
503 free_objfile (obj);
504 }
505
506 struct cleanup *
507 make_cleanup_free_objfile (struct objfile *obj)
508 {
509 return make_cleanup (do_free_objfile_cleanup, obj);
510 }
511
512 /* Free all the object files at once and clean up their users. */
513
514 void
515 free_all_objfiles (void)
516 {
517 struct objfile *objfile, *temp;
518
519 ALL_OBJFILES_SAFE (objfile, temp)
520 {
521 free_objfile (objfile);
522 }
523 clear_symtab_users ();
524 }
525 \f
526 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
527 entries in new_offsets. */
528 void
529 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
530 {
531 struct obj_section *s;
532 struct section_offsets *delta =
533 ((struct section_offsets *)
534 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
535
536 {
537 int i;
538 int something_changed = 0;
539 for (i = 0; i < objfile->num_sections; ++i)
540 {
541 delta->offsets[i] =
542 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
543 if (ANOFFSET (delta, i) != 0)
544 something_changed = 1;
545 }
546 if (!something_changed)
547 return;
548 }
549
550 /* OK, get all the symtabs. */
551 {
552 struct symtab *s;
553
554 ALL_OBJFILE_SYMTABS (objfile, s)
555 {
556 struct linetable *l;
557 struct blockvector *bv;
558 int i;
559
560 /* First the line table. */
561 l = LINETABLE (s);
562 if (l)
563 {
564 for (i = 0; i < l->nitems; ++i)
565 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
566 }
567
568 /* Don't relocate a shared blockvector more than once. */
569 if (!s->primary)
570 continue;
571
572 bv = BLOCKVECTOR (s);
573 if (BLOCKVECTOR_MAP (bv))
574 addrmap_relocate (BLOCKVECTOR_MAP (bv),
575 ANOFFSET (delta, s->block_line_section));
576
577 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
578 {
579 struct block *b;
580 struct symbol *sym;
581 struct dict_iterator iter;
582
583 b = BLOCKVECTOR_BLOCK (bv, i);
584 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
585 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
586
587 ALL_BLOCK_SYMBOLS (b, iter, sym)
588 {
589 fixup_symbol_section (sym, objfile);
590
591 /* The RS6000 code from which this was taken skipped
592 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
593 But I'm leaving out that test, on the theory that
594 they can't possibly pass the tests below. */
595 if ((SYMBOL_CLASS (sym) == LOC_LABEL
596 || SYMBOL_CLASS (sym) == LOC_STATIC)
597 && SYMBOL_SECTION (sym) >= 0)
598 {
599 SYMBOL_VALUE_ADDRESS (sym) +=
600 ANOFFSET (delta, SYMBOL_SECTION (sym));
601 }
602 }
603 }
604 }
605 }
606
607 {
608 struct partial_symtab *p;
609
610 ALL_OBJFILE_PSYMTABS (objfile, p)
611 {
612 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
613 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
614 }
615 }
616
617 {
618 struct partial_symbol **psym;
619
620 for (psym = objfile->global_psymbols.list;
621 psym < objfile->global_psymbols.next;
622 psym++)
623 {
624 fixup_psymbol_section (*psym, objfile);
625 if (SYMBOL_SECTION (*psym) >= 0)
626 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
627 SYMBOL_SECTION (*psym));
628 }
629 for (psym = objfile->static_psymbols.list;
630 psym < objfile->static_psymbols.next;
631 psym++)
632 {
633 fixup_psymbol_section (*psym, objfile);
634 if (SYMBOL_SECTION (*psym) >= 0)
635 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
636 SYMBOL_SECTION (*psym));
637 }
638 }
639
640 {
641 struct minimal_symbol *msym;
642 ALL_OBJFILE_MSYMBOLS (objfile, msym)
643 if (SYMBOL_SECTION (msym) >= 0)
644 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
645 }
646 /* Relocating different sections by different amounts may cause the symbols
647 to be out of order. */
648 msymbols_sort (objfile);
649
650 {
651 int i;
652 for (i = 0; i < objfile->num_sections; ++i)
653 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
654 }
655
656 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
657 {
658 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
659 only as a fallback. */
660 struct obj_section *s;
661 s = find_pc_section (objfile->ei.entry_point);
662 if (s)
663 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
664 else
665 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
666 }
667
668 /* Update the table in exec_ops, used to read memory. */
669 ALL_OBJFILE_OSECTIONS (objfile, s)
670 {
671 int idx = s->the_bfd_section->index;
672
673 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
674 obj_section_addr (s));
675 }
676
677 /* Relocate breakpoints as necessary, after things are relocated. */
678 breakpoint_re_set ();
679 }
680 \f
681 /* Many places in gdb want to test just to see if we have any partial
682 symbols available. This function returns zero if none are currently
683 available, nonzero otherwise. */
684
685 int
686 have_partial_symbols (void)
687 {
688 struct objfile *ofp;
689
690 ALL_OBJFILES (ofp)
691 {
692 if (ofp->psymtabs != NULL)
693 {
694 return 1;
695 }
696 }
697 return 0;
698 }
699
700 /* Many places in gdb want to test just to see if we have any full
701 symbols available. This function returns zero if none are currently
702 available, nonzero otherwise. */
703
704 int
705 have_full_symbols (void)
706 {
707 struct objfile *ofp;
708
709 ALL_OBJFILES (ofp)
710 {
711 if (ofp->symtabs != NULL)
712 {
713 return 1;
714 }
715 }
716 return 0;
717 }
718
719
720 /* This operations deletes all objfile entries that represent solibs that
721 weren't explicitly loaded by the user, via e.g., the add-symbol-file
722 command.
723 */
724 void
725 objfile_purge_solibs (void)
726 {
727 struct objfile *objf;
728 struct objfile *temp;
729
730 ALL_OBJFILES_SAFE (objf, temp)
731 {
732 /* We assume that the solib package has been purged already, or will
733 be soon.
734 */
735 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
736 free_objfile (objf);
737 }
738 }
739
740
741 /* Many places in gdb want to test just to see if we have any minimal
742 symbols available. This function returns zero if none are currently
743 available, nonzero otherwise. */
744
745 int
746 have_minimal_symbols (void)
747 {
748 struct objfile *ofp;
749
750 ALL_OBJFILES (ofp)
751 {
752 if (ofp->minimal_symbol_count > 0)
753 {
754 return 1;
755 }
756 }
757 return 0;
758 }
759
760 /* Returns a section whose range includes PC or NULL if none found. */
761
762 struct obj_section *
763 find_pc_section (CORE_ADDR pc)
764 {
765 struct obj_section *s;
766 struct objfile *objfile;
767
768 /* Check for mapped overlay section first. */
769 s = find_pc_mapped_section (pc);
770 if (s)
771 return s;
772
773 ALL_OBJSECTIONS (objfile, s)
774 if (obj_section_addr (s) <= pc && pc < obj_section_endaddr (s))
775 return s;
776
777 return NULL;
778 }
779
780
781 /* In SVR4, we recognize a trampoline by it's section name.
782 That is, if the pc is in a section named ".plt" then we are in
783 a trampoline. */
784
785 int
786 in_plt_section (CORE_ADDR pc, char *name)
787 {
788 struct obj_section *s;
789 int retval = 0;
790
791 s = find_pc_section (pc);
792
793 retval = (s != NULL
794 && s->the_bfd_section->name != NULL
795 && strcmp (s->the_bfd_section->name, ".plt") == 0);
796 return (retval);
797 }
798 \f
799
800 /* Keep a registry of per-objfile data-pointers required by other GDB
801 modules. */
802
803 struct objfile_data
804 {
805 unsigned index;
806 void (*cleanup) (struct objfile *, void *);
807 };
808
809 struct objfile_data_registration
810 {
811 struct objfile_data *data;
812 struct objfile_data_registration *next;
813 };
814
815 struct objfile_data_registry
816 {
817 struct objfile_data_registration *registrations;
818 unsigned num_registrations;
819 };
820
821 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
822
823 const struct objfile_data *
824 register_objfile_data_with_cleanup (void (*cleanup) (struct objfile *, void *))
825 {
826 struct objfile_data_registration **curr;
827
828 /* Append new registration. */
829 for (curr = &objfile_data_registry.registrations;
830 *curr != NULL; curr = &(*curr)->next);
831
832 *curr = XMALLOC (struct objfile_data_registration);
833 (*curr)->next = NULL;
834 (*curr)->data = XMALLOC (struct objfile_data);
835 (*curr)->data->index = objfile_data_registry.num_registrations++;
836 (*curr)->data->cleanup = cleanup;
837
838 return (*curr)->data;
839 }
840
841 const struct objfile_data *
842 register_objfile_data (void)
843 {
844 return register_objfile_data_with_cleanup (NULL);
845 }
846
847 static void
848 objfile_alloc_data (struct objfile *objfile)
849 {
850 gdb_assert (objfile->data == NULL);
851 objfile->num_data = objfile_data_registry.num_registrations;
852 objfile->data = XCALLOC (objfile->num_data, void *);
853 }
854
855 static void
856 objfile_free_data (struct objfile *objfile)
857 {
858 gdb_assert (objfile->data != NULL);
859 clear_objfile_data (objfile);
860 xfree (objfile->data);
861 objfile->data = NULL;
862 }
863
864 void
865 clear_objfile_data (struct objfile *objfile)
866 {
867 struct objfile_data_registration *registration;
868 int i;
869
870 gdb_assert (objfile->data != NULL);
871
872 for (registration = objfile_data_registry.registrations, i = 0;
873 i < objfile->num_data;
874 registration = registration->next, i++)
875 if (objfile->data[i] != NULL && registration->data->cleanup)
876 registration->data->cleanup (objfile, objfile->data[i]);
877
878 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
879 }
880
881 void
882 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
883 void *value)
884 {
885 gdb_assert (data->index < objfile->num_data);
886 objfile->data[data->index] = value;
887 }
888
889 void *
890 objfile_data (struct objfile *objfile, const struct objfile_data *data)
891 {
892 gdb_assert (data->index < objfile->num_data);
893 return objfile->data[data->index];
894 }
This page took 0.046696 seconds and 5 git commands to generate.