Convert quick_symbol_functions to use methods
[deliverable/binutils-gdb.git] / gdb / objfiles.h
1 /* Definitions for symbol file management in GDB.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22
23 #include "hashtab.h"
24 #include "gdb_obstack.h" /* For obstack internals. */
25 #include "objfile-flags.h"
26 #include "symfile.h"
27 #include "progspace.h"
28 #include "registry.h"
29 #include "gdb_bfd.h"
30 #include "psymtab.h"
31 #include <atomic>
32 #include <bitset>
33 #include <vector>
34 #include "gdbsupport/next-iterator.h"
35 #include "gdbsupport/safe-iterator.h"
36 #include "bcache.h"
37 #include "gdbarch.h"
38 #include "gdbsupport/refcounted-object.h"
39 #include "jit.h"
40 #include "quick-symbol.h"
41
42 struct htab;
43 struct objfile_data;
44 struct partial_symbol;
45
46 /* This structure maintains information on a per-objfile basis about the
47 "entry point" of the objfile, and the scope within which the entry point
48 exists. It is possible that gdb will see more than one objfile that is
49 executable, each with its own entry point.
50
51 For example, for dynamically linked executables in SVR4, the dynamic linker
52 code is contained within the shared C library, which is actually executable
53 and is run by the kernel first when an exec is done of a user executable
54 that is dynamically linked. The dynamic linker within the shared C library
55 then maps in the various program segments in the user executable and jumps
56 to the user executable's recorded entry point, as if the call had been made
57 directly by the kernel.
58
59 The traditional gdb method of using this info was to use the
60 recorded entry point to set the entry-file's lowpc and highpc from
61 the debugging information, where these values are the starting
62 address (inclusive) and ending address (exclusive) of the
63 instruction space in the executable which correspond to the
64 "startup file", i.e. crt0.o in most cases. This file is assumed to
65 be a startup file and frames with pc's inside it are treated as
66 nonexistent. Setting these variables is necessary so that
67 backtraces do not fly off the bottom of the stack.
68
69 NOTE: cagney/2003-09-09: It turns out that this "traditional"
70 method doesn't work. Corinna writes: ``It turns out that the call
71 to test for "inside entry file" destroys a meaningful backtrace
72 under some conditions. E.g. the backtrace tests in the asm-source
73 testcase are broken for some targets. In this test the functions
74 are all implemented as part of one file and the testcase is not
75 necessarily linked with a start file (depending on the target).
76 What happens is, that the first frame is printed normally and
77 following frames are treated as being inside the entry file then.
78 This way, only the #0 frame is printed in the backtrace output.''
79 Ref "frame.c" "NOTE: vinschen/2003-04-01".
80
81 Gdb also supports an alternate method to avoid running off the bottom
82 of the stack.
83
84 There are two frames that are "special", the frame for the function
85 containing the process entry point, since it has no predecessor frame,
86 and the frame for the function containing the user code entry point
87 (the main() function), since all the predecessor frames are for the
88 process startup code. Since we have no guarantee that the linked
89 in startup modules have any debugging information that gdb can use,
90 we need to avoid following frame pointers back into frames that might
91 have been built in the startup code, as we might get hopelessly
92 confused. However, we almost always have debugging information
93 available for main().
94
95 These variables are used to save the range of PC values which are
96 valid within the main() function and within the function containing
97 the process entry point. If we always consider the frame for
98 main() as the outermost frame when debugging user code, and the
99 frame for the process entry point function as the outermost frame
100 when debugging startup code, then all we have to do is have
101 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
102 current PC is within the range specified by these variables. In
103 essence, we set "ceilings" in the frame chain beyond which we will
104 not proceed when following the frame chain back up the stack.
105
106 A nice side effect is that we can still debug startup code without
107 running off the end of the frame chain, assuming that we have usable
108 debugging information in the startup modules, and if we choose to not
109 use the block at main, or can't find it for some reason, everything
110 still works as before. And if we have no startup code debugging
111 information but we do have usable information for main(), backtraces
112 from user code don't go wandering off into the startup code. */
113
114 struct entry_info
115 {
116 /* The unrelocated value we should use for this objfile entry point. */
117 CORE_ADDR entry_point;
118
119 /* The index of the section in which the entry point appears. */
120 int the_bfd_section_index;
121
122 /* Set to 1 iff ENTRY_POINT contains a valid value. */
123 unsigned entry_point_p : 1;
124
125 /* Set to 1 iff this object was initialized. */
126 unsigned initialized : 1;
127 };
128
129 /* Sections in an objfile. The section offsets are stored in the
130 OBJFILE. */
131
132 struct obj_section
133 {
134 /* BFD section pointer */
135 struct bfd_section *the_bfd_section;
136
137 /* Objfile this section is part of. */
138 struct objfile *objfile;
139
140 /* True if this "overlay section" is mapped into an "overlay region". */
141 int ovly_mapped;
142 };
143
144 /* Relocation offset applied to S. */
145 #define obj_section_offset(s) \
146 (((s)->objfile->section_offsets)[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
147
148 /* The memory address of section S (vma + offset). */
149 #define obj_section_addr(s) \
150 (bfd_section_vma (s->the_bfd_section) \
151 + obj_section_offset (s))
152
153 /* The one-passed-the-end memory address of section S
154 (vma + size + offset). */
155 #define obj_section_endaddr(s) \
156 (bfd_section_vma (s->the_bfd_section) \
157 + bfd_section_size ((s)->the_bfd_section) \
158 + obj_section_offset (s))
159
160 #define ALL_OBJFILE_OSECTIONS(objfile, osect) \
161 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
162 if (osect->the_bfd_section == NULL) \
163 { \
164 /* Nothing. */ \
165 } \
166 else
167
168 #define SECT_OFF_DATA(objfile) \
169 ((objfile->sect_index_data == -1) \
170 ? (internal_error (__FILE__, __LINE__, \
171 _("sect_index_data not initialized")), -1) \
172 : objfile->sect_index_data)
173
174 #define SECT_OFF_RODATA(objfile) \
175 ((objfile->sect_index_rodata == -1) \
176 ? (internal_error (__FILE__, __LINE__, \
177 _("sect_index_rodata not initialized")), -1) \
178 : objfile->sect_index_rodata)
179
180 #define SECT_OFF_TEXT(objfile) \
181 ((objfile->sect_index_text == -1) \
182 ? (internal_error (__FILE__, __LINE__, \
183 _("sect_index_text not initialized")), -1) \
184 : objfile->sect_index_text)
185
186 /* Sometimes the .bss section is missing from the objfile, so we don't
187 want to die here. Let the users of SECT_OFF_BSS deal with an
188 uninitialized section index. */
189 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
190
191 /* The "objstats" structure provides a place for gdb to record some
192 interesting information about its internal state at runtime, on a
193 per objfile basis, such as information about the number of symbols
194 read, size of string table (if any), etc. */
195
196 struct objstats
197 {
198 /* Number of full symbols read. */
199 int n_syms = 0;
200
201 /* Number of ".stabs" read (if applicable). */
202 int n_stabs = 0;
203
204 /* Number of types. */
205 int n_types = 0;
206
207 /* Size of stringtable, (if applicable). */
208 int sz_strtab = 0;
209 };
210
211 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
212 #define OBJSTATS struct objstats stats
213 extern void print_objfile_statistics (void);
214 extern void print_symbol_bcache_statistics (void);
215
216 /* Number of entries in the minimal symbol hash table. */
217 #define MINIMAL_SYMBOL_HASH_SIZE 2039
218
219 /* An iterator for minimal symbols. */
220
221 struct minimal_symbol_iterator
222 {
223 typedef minimal_symbol_iterator self_type;
224 typedef struct minimal_symbol *value_type;
225 typedef struct minimal_symbol *&reference;
226 typedef struct minimal_symbol **pointer;
227 typedef std::forward_iterator_tag iterator_category;
228 typedef int difference_type;
229
230 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
231 : m_msym (msym)
232 {
233 }
234
235 value_type operator* () const
236 {
237 return m_msym;
238 }
239
240 bool operator== (const self_type &other) const
241 {
242 return m_msym == other.m_msym;
243 }
244
245 bool operator!= (const self_type &other) const
246 {
247 return m_msym != other.m_msym;
248 }
249
250 self_type &operator++ ()
251 {
252 ++m_msym;
253 return *this;
254 }
255
256 private:
257 struct minimal_symbol *m_msym;
258 };
259
260 /* Some objfile data is hung off the BFD. This enables sharing of the
261 data across all objfiles using the BFD. The data is stored in an
262 instance of this structure, and associated with the BFD using the
263 registry system. */
264
265 struct objfile_per_bfd_storage
266 {
267 objfile_per_bfd_storage ()
268 : minsyms_read (false)
269 {}
270
271 ~objfile_per_bfd_storage ();
272
273 /* The storage has an obstack of its own. */
274
275 auto_obstack storage_obstack;
276
277 /* String cache. */
278
279 gdb::bcache string_cache;
280
281 /* The gdbarch associated with the BFD. Note that this gdbarch is
282 determined solely from BFD information, without looking at target
283 information. The gdbarch determined from a running target may
284 differ from this e.g. with respect to register types and names. */
285
286 struct gdbarch *gdbarch = NULL;
287
288 /* Hash table for mapping symbol names to demangled names. Each
289 entry in the hash table is a demangled_name_entry struct, storing the
290 language and two consecutive strings, both null-terminated; the first one
291 is a mangled or linkage name, and the second is the demangled name or just
292 a zero byte if the name doesn't demangle. */
293
294 htab_up demangled_names_hash;
295
296 /* The per-objfile information about the entry point, the scope (file/func)
297 containing the entry point, and the scope of the user's main() func. */
298
299 entry_info ei {};
300
301 /* The name and language of any "main" found in this objfile. The
302 name can be NULL, which means that the information was not
303 recorded. */
304
305 const char *name_of_main = NULL;
306 enum language language_of_main = language_unknown;
307
308 /* Each file contains a pointer to an array of minimal symbols for all
309 global symbols that are defined within the file. The array is
310 terminated by a "null symbol", one that has a NULL pointer for the
311 name and a zero value for the address. This makes it easy to walk
312 through the array when passed a pointer to somewhere in the middle
313 of it. There is also a count of the number of symbols, which does
314 not include the terminating null symbol. */
315
316 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
317 int minimal_symbol_count = 0;
318
319 /* The number of minimal symbols read, before any minimal symbol
320 de-duplication is applied. Note in particular that this has only
321 a passing relationship with the actual size of the table above;
322 use minimal_symbol_count if you need the true size. */
323
324 int n_minsyms = 0;
325
326 /* This is true if minimal symbols have already been read. Symbol
327 readers can use this to bypass minimal symbol reading. Also, the
328 minimal symbol table management code in minsyms.c uses this to
329 suppress new minimal symbols. You might think that MSYMBOLS or
330 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
331 for multiple readers to install minimal symbols into a given
332 per-BFD. */
333
334 bool minsyms_read : 1;
335
336 /* This is a hash table used to index the minimal symbols by (mangled)
337 name. */
338
339 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
340
341 /* This hash table is used to index the minimal symbols by their
342 demangled names. Uses a language-specific hash function via
343 search_name_hash. */
344
345 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
346
347 /* All the different languages of symbols found in the demangled
348 hash table. */
349 std::bitset<nr_languages> demangled_hash_languages;
350 };
351
352 /* An iterator that first returns a parent objfile, and then each
353 separate debug objfile. */
354
355 class separate_debug_iterator
356 {
357 public:
358
359 explicit separate_debug_iterator (struct objfile *objfile)
360 : m_objfile (objfile),
361 m_parent (objfile)
362 {
363 }
364
365 bool operator!= (const separate_debug_iterator &other)
366 {
367 return m_objfile != other.m_objfile;
368 }
369
370 separate_debug_iterator &operator++ ();
371
372 struct objfile *operator* ()
373 {
374 return m_objfile;
375 }
376
377 private:
378
379 struct objfile *m_objfile;
380 struct objfile *m_parent;
381 };
382
383 /* A range adapter wrapping separate_debug_iterator. */
384
385 class separate_debug_range
386 {
387 public:
388
389 explicit separate_debug_range (struct objfile *objfile)
390 : m_objfile (objfile)
391 {
392 }
393
394 separate_debug_iterator begin ()
395 {
396 return separate_debug_iterator (m_objfile);
397 }
398
399 separate_debug_iterator end ()
400 {
401 return separate_debug_iterator (nullptr);
402 }
403
404 private:
405
406 struct objfile *m_objfile;
407 };
408
409 /* Master structure for keeping track of each file from which
410 gdb reads symbols. There are several ways these get allocated: 1.
411 The main symbol file, symfile_objfile, set by the symbol-file command,
412 2. Additional symbol files added by the add-symbol-file command,
413 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
414 for modules that were loaded when GDB attached to a remote system
415 (see remote-vx.c).
416
417 GDB typically reads symbols twice -- first an initial scan which just
418 reads "partial symbols"; these are partial information for the
419 static/global symbols in a symbol file. When later looking up
420 symbols, lookup_symbol is used to check if we only have a partial
421 symbol and if so, read and expand the full compunit. */
422
423 struct objfile
424 {
425 private:
426
427 /* The only way to create an objfile is to call objfile::make. */
428 objfile (bfd *, const char *, objfile_flags);
429
430 public:
431
432 /* Normally you should not call delete. Instead, call 'unlink' to
433 remove it from the program space's list. In some cases, you may
434 need to hold a reference to an objfile that is independent of its
435 existence on the program space's list; for this case, the
436 destructor must be public so that shared_ptr can reference
437 it. */
438 ~objfile ();
439
440 /* Create an objfile. */
441 static objfile *make (bfd *bfd_, const char *name_, objfile_flags flags_,
442 objfile *parent = nullptr);
443
444 /* Remove an objfile from the current program space, and free
445 it. */
446 void unlink ();
447
448 DISABLE_COPY_AND_ASSIGN (objfile);
449
450 /* A range adapter that makes it possible to iterate over all
451 psymtabs in one objfile. */
452
453 psymtab_storage::partial_symtab_range psymtabs ()
454 {
455 return partial_symtabs->range ();
456 }
457
458 /* Reset the storage for the partial symbol tables. */
459
460 void reset_psymtabs ()
461 {
462 psymbol_map.clear ();
463 partial_symtabs.reset (new psymtab_storage ());
464 }
465
466 typedef next_adapter<struct compunit_symtab> compunits_range;
467
468 /* A range adapter that makes it possible to iterate over all
469 compunits in one objfile. */
470
471 compunits_range compunits ()
472 {
473 return compunits_range (compunit_symtabs);
474 }
475
476 /* A range adapter that makes it possible to iterate over all
477 minimal symbols of an objfile. */
478
479 class msymbols_range
480 {
481 public:
482
483 explicit msymbols_range (struct objfile *objfile)
484 : m_objfile (objfile)
485 {
486 }
487
488 minimal_symbol_iterator begin () const
489 {
490 return minimal_symbol_iterator (m_objfile->per_bfd->msymbols.get ());
491 }
492
493 minimal_symbol_iterator end () const
494 {
495 return minimal_symbol_iterator
496 (m_objfile->per_bfd->msymbols.get ()
497 + m_objfile->per_bfd->minimal_symbol_count);
498 }
499
500 private:
501
502 struct objfile *m_objfile;
503 };
504
505 /* Return a range adapter for iterating over all minimal
506 symbols. */
507
508 msymbols_range msymbols ()
509 {
510 return msymbols_range (this);
511 }
512
513 /* Return a range adapter for iterating over all the separate debug
514 objfiles of this objfile. */
515
516 separate_debug_range separate_debug_objfiles ()
517 {
518 return separate_debug_range (this);
519 }
520
521 CORE_ADDR text_section_offset () const
522 {
523 return section_offsets[SECT_OFF_TEXT (this)];
524 }
525
526 CORE_ADDR data_section_offset () const
527 {
528 return section_offsets[SECT_OFF_DATA (this)];
529 }
530
531 /* Intern STRING and return the unique copy. The copy has the same
532 lifetime as the per-BFD object. */
533 const char *intern (const char *str)
534 {
535 return (const char *) per_bfd->string_cache.insert (str, strlen (str) + 1);
536 }
537
538 /* Intern STRING and return the unique copy. The copy has the same
539 lifetime as the per-BFD object. */
540 const char *intern (const std::string &str)
541 {
542 return (const char *) per_bfd->string_cache.insert (str.c_str (),
543 str.size () + 1);
544 }
545
546 /* Retrieve the gdbarch associated with this objfile. */
547 struct gdbarch *arch () const
548 {
549 return per_bfd->gdbarch;
550 }
551
552 /* Return true if OBJFILE has partial symbols. */
553
554 bool has_partial_symbols ();
555
556 /* See quick_symbol_functions. */
557 struct symtab *find_last_source_symtab ();
558
559 /* See quick_symbol_functions. */
560 void forget_cached_source_info ();
561
562 /* See quick_symbol_functions. */
563 bool map_symtabs_matching_filename
564 (const char *name, const char *real_path,
565 gdb::function_view<bool (symtab *)> callback);
566
567 /* See quick_symbol_functions. */
568 struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
569 domain_enum domain);
570
571 /* See quick_symbol_functions. */
572 void print_stats ();
573
574 /* See quick_symbol_functions. */
575 void dump ();
576
577 /* See quick_symbol_functions. */
578 void expand_symtabs_for_function (const char *func_name);
579
580 /* See quick_symbol_functions. */
581 void expand_all_symtabs ();
582
583 /* See quick_symbol_functions. */
584 void expand_symtabs_with_fullname (const char *fullname);
585
586 /* See quick_symbol_functions. */
587 void map_matching_symbols
588 (const lookup_name_info &name, domain_enum domain,
589 int global,
590 gdb::function_view<symbol_found_callback_ftype> callback,
591 symbol_compare_ftype *ordered_compare);
592
593 /* See quick_symbol_functions. */
594 void expand_symtabs_matching
595 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
596 const lookup_name_info *lookup_name,
597 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
598 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
599 enum search_domain kind);
600
601 /* See quick_symbol_functions. */
602 struct compunit_symtab *find_pc_sect_compunit_symtab
603 (struct bound_minimal_symbol msymbol,
604 CORE_ADDR pc,
605 struct obj_section *section,
606 int warn_if_readin);
607
608 /* See quick_symbol_functions. */
609 void map_symbol_filenames (symbol_filename_ftype *fun, void *data,
610 int need_fullname);
611
612 /* See quick_symbol_functions. */
613 struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
614
615 /* See quick_symbol_functions. */
616 enum language lookup_global_symbol_language (const char *name,
617 domain_enum domain,
618 bool *symbol_found_p);
619
620
621 /* The object file's original name as specified by the user,
622 made absolute, and tilde-expanded. However, it is not canonicalized
623 (i.e., it has not been passed through gdb_realpath).
624 This pointer is never NULL. This does not have to be freed; it is
625 guaranteed to have a lifetime at least as long as the objfile. */
626
627 const char *original_name = nullptr;
628
629 CORE_ADDR addr_low = 0;
630
631 /* Some flag bits for this objfile. */
632
633 objfile_flags flags;
634
635 /* The program space associated with this objfile. */
636
637 struct program_space *pspace;
638
639 /* List of compunits.
640 These are used to do symbol lookups and file/line-number lookups. */
641
642 struct compunit_symtab *compunit_symtabs = nullptr;
643
644 /* The partial symbol tables. */
645
646 std::shared_ptr<psymtab_storage> partial_symtabs;
647
648 /* The object file's BFD. Can be null if the objfile contains only
649 minimal symbols, e.g. the run time common symbols for SunOS4. */
650
651 bfd *obfd;
652
653 /* The per-BFD data. Note that this is treated specially if OBFD
654 is NULL. */
655
656 struct objfile_per_bfd_storage *per_bfd = nullptr;
657
658 /* The modification timestamp of the object file, as of the last time
659 we read its symbols. */
660
661 long mtime = 0;
662
663 /* Obstack to hold objects that should be freed when we load a new symbol
664 table from this object file. */
665
666 struct obstack objfile_obstack {};
667
668 /* Map symbol addresses to the partial symtab that defines the
669 object at that address. */
670
671 std::vector<std::pair<CORE_ADDR, partial_symtab *>> psymbol_map;
672
673 /* Structure which keeps track of functions that manipulate objfile's
674 of the same type as this objfile. I.e. the function to read partial
675 symbols for example. Note that this structure is in statically
676 allocated memory, and is shared by all objfiles that use the
677 object module reader of this type. */
678
679 const struct sym_fns *sf = nullptr;
680
681 /* The "quick" (aka partial) symbol functions for this symbol
682 reader. */
683 quick_symbol_functions_up qf;
684
685 /* Per objfile data-pointers required by other GDB modules. */
686
687 REGISTRY_FIELDS {};
688
689 /* Set of relocation offsets to apply to each section.
690 The table is indexed by the_bfd_section->index, thus it is generally
691 as large as the number of sections in the binary.
692
693 These offsets indicate that all symbols (including partial and
694 minimal symbols) which have been read have been relocated by this
695 much. Symbols which are yet to be read need to be relocated by it. */
696
697 ::section_offsets section_offsets;
698
699 /* Indexes in the section_offsets array. These are initialized by the
700 *_symfile_offsets() family of functions (som_symfile_offsets,
701 xcoff_symfile_offsets, default_symfile_offsets). In theory they
702 should correspond to the section indexes used by bfd for the
703 current objfile. The exception to this for the time being is the
704 SOM version.
705
706 These are initialized to -1 so that we can later detect if they
707 are used w/o being properly assigned to. */
708
709 int sect_index_text = -1;
710 int sect_index_data = -1;
711 int sect_index_bss = -1;
712 int sect_index_rodata = -1;
713
714 /* These pointers are used to locate the section table, which
715 among other things, is used to map pc addresses into sections.
716 SECTIONS points to the first entry in the table, and
717 SECTIONS_END points to the first location past the last entry
718 in the table. The table is stored on the objfile_obstack. The
719 sections are indexed by the BFD section index; but the
720 structure data is only valid for certain sections
721 (e.g. non-empty, SEC_ALLOC). */
722
723 struct obj_section *sections = nullptr;
724 struct obj_section *sections_end = nullptr;
725
726 /* GDB allows to have debug symbols in separate object files. This is
727 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
728 Although this is a tree structure, GDB only support one level
729 (ie a separate debug for a separate debug is not supported). Note that
730 separate debug object are in the main chain and therefore will be
731 visited by objfiles & co iterators. Separate debug objfile always
732 has a non-nul separate_debug_objfile_backlink. */
733
734 /* Link to the first separate debug object, if any. */
735
736 struct objfile *separate_debug_objfile = nullptr;
737
738 /* If this is a separate debug object, this is used as a link to the
739 actual executable objfile. */
740
741 struct objfile *separate_debug_objfile_backlink = nullptr;
742
743 /* If this is a separate debug object, this is a link to the next one
744 for the same executable objfile. */
745
746 struct objfile *separate_debug_objfile_link = nullptr;
747
748 /* Place to stash various statistics about this objfile. */
749
750 OBJSTATS;
751
752 /* A linked list of symbols created when reading template types or
753 function templates. These symbols are not stored in any symbol
754 table, so we have to keep them here to relocate them
755 properly. */
756
757 struct symbol *template_symbols = nullptr;
758
759 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
760 block *) that have one.
761
762 In the context of nested functions (available in Pascal, Ada and GNU C,
763 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
764 for a function is a way to get the frame corresponding to the enclosing
765 function.
766
767 Very few blocks have a static link, so it's more memory efficient to
768 store these here rather than in struct block. Static links must be
769 allocated on the objfile's obstack. */
770 htab_up static_links;
771
772 /* JIT-related data for this objfile, if the objfile is a JITer;
773 that is, it produces JITed objfiles. */
774 std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
775
776 /* JIT-related data for this objfile, if the objfile is JITed;
777 that is, it was produced by a JITer. */
778 std::unique_ptr<jited_objfile_data> jited_data = nullptr;
779
780 /* A flag that is set to true if the JIT interface symbols are not
781 found in this objfile, so that we can skip the symbol lookup the
782 next time. If an objfile does not have the symbols, it will
783 never have them. */
784 bool skip_jit_symbol_lookup = false;
785 };
786
787 /* A deleter for objfile. */
788
789 struct objfile_deleter
790 {
791 void operator() (objfile *ptr) const
792 {
793 ptr->unlink ();
794 }
795 };
796
797 /* A unique pointer that holds an objfile. */
798
799 typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
800
801 /* Declarations for functions defined in objfiles.c */
802
803 extern int entry_point_address_query (CORE_ADDR *entry_p);
804
805 extern CORE_ADDR entry_point_address (void);
806
807 extern void build_objfile_section_table (struct objfile *);
808
809 extern void free_objfile_separate_debug (struct objfile *);
810
811 extern void objfile_relocate (struct objfile *, const section_offsets &);
812 extern void objfile_rebase (struct objfile *, CORE_ADDR);
813
814 extern int objfile_has_full_symbols (struct objfile *objfile);
815
816 extern int objfile_has_symbols (struct objfile *objfile);
817
818 extern int have_partial_symbols (void);
819
820 extern int have_full_symbols (void);
821
822 extern void objfile_set_sym_fns (struct objfile *objfile,
823 const struct sym_fns *sf);
824
825 extern void objfiles_changed (void);
826
827 /* Return true if ADDR maps into one of the sections of OBJFILE and false
828 otherwise. */
829
830 extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
831
832 /* Return true if ADDRESS maps into one of the sections of a
833 OBJF_SHARED objfile of PSPACE and false otherwise. */
834
835 extern bool shared_objfile_contains_address_p (struct program_space *pspace,
836 CORE_ADDR address);
837
838 /* This operation deletes all objfile entries that represent solibs that
839 weren't explicitly loaded by the user, via e.g., the add-symbol-file
840 command. */
841
842 extern void objfile_purge_solibs (void);
843
844 /* Functions for dealing with the minimal symbol table, really a misc
845 address<->symbol mapping for things we don't have debug symbols for. */
846
847 extern int have_minimal_symbols (void);
848
849 extern struct obj_section *find_pc_section (CORE_ADDR pc);
850
851 /* Return non-zero if PC is in a section called NAME. */
852 extern int pc_in_section (CORE_ADDR, const char *);
853
854 /* Return non-zero if PC is in a SVR4-style procedure linkage table
855 section. */
856
857 static inline int
858 in_plt_section (CORE_ADDR pc)
859 {
860 return (pc_in_section (pc, ".plt")
861 || pc_in_section (pc, ".plt.sec"));
862 }
863
864 /* Keep a registry of per-objfile data-pointers required by other GDB
865 modules. */
866 DECLARE_REGISTRY(objfile);
867
868 /* In normal use, the section map will be rebuilt by find_pc_section
869 if objfiles have been added, removed or relocated since it was last
870 called. Calling inhibit_section_map_updates will inhibit this
871 behavior until the returned scoped_restore object is destroyed. If
872 you call inhibit_section_map_updates you must ensure that every
873 call to find_pc_section in the inhibited region relates to a
874 section that is already in the section map and has not since been
875 removed or relocated. */
876 extern scoped_restore_tmpl<int> inhibit_section_map_updates
877 (struct program_space *pspace);
878
879 extern void default_iterate_over_objfiles_in_search_order
880 (struct gdbarch *gdbarch,
881 iterate_over_objfiles_in_search_order_cb_ftype *cb,
882 void *cb_data, struct objfile *current_objfile);
883
884 /* Reset the per-BFD storage area on OBJ. */
885
886 void set_objfile_per_bfd (struct objfile *obj);
887
888 /* Return canonical name for OBJFILE.
889 This is the real file name if the file has been opened.
890 Otherwise it is the original name supplied by the user. */
891
892 const char *objfile_name (const struct objfile *objfile);
893
894 /* Return the (real) file name of OBJFILE if the file has been opened,
895 otherwise return NULL. */
896
897 const char *objfile_filename (const struct objfile *objfile);
898
899 /* Return the name to print for OBJFILE in debugging messages. */
900
901 extern const char *objfile_debug_name (const struct objfile *objfile);
902
903 /* Return the name of the file format of OBJFILE if the file has been opened,
904 otherwise return NULL. */
905
906 const char *objfile_flavour_name (struct objfile *objfile);
907
908 /* Set the objfile's notion of the "main" name and language. */
909
910 extern void set_objfile_main_name (struct objfile *objfile,
911 const char *name, enum language lang);
912
913 extern void objfile_register_static_link
914 (struct objfile *objfile,
915 const struct block *block,
916 const struct dynamic_prop *static_link);
917
918 extern const struct dynamic_prop *objfile_lookup_static_link
919 (struct objfile *objfile, const struct block *block);
920
921 #endif /* !defined (OBJFILES_H) */
This page took 0.047595 seconds and 5 git commands to generate.