Move psymtab statistics printing to psymtab.c
[deliverable/binutils-gdb.git] / gdb / objfiles.h
1 /* Definitions for symbol file management in GDB.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22
23 #include "hashtab.h"
24 #include "gdb_obstack.h" /* For obstack internals. */
25 #include "objfile-flags.h"
26 #include "symfile.h"
27 #include "progspace.h"
28 #include "registry.h"
29 #include "gdb_bfd.h"
30 #include "psymtab.h"
31 #include <atomic>
32 #include <bitset>
33 #include <vector>
34 #include "gdbsupport/next-iterator.h"
35 #include "gdbsupport/safe-iterator.h"
36 #include "bcache.h"
37 #include "gdbarch.h"
38 #include "gdbsupport/refcounted-object.h"
39 #include "jit.h"
40 #include "quick-symbol.h"
41
42 struct htab;
43 struct objfile_data;
44 struct partial_symbol;
45
46 /* This structure maintains information on a per-objfile basis about the
47 "entry point" of the objfile, and the scope within which the entry point
48 exists. It is possible that gdb will see more than one objfile that is
49 executable, each with its own entry point.
50
51 For example, for dynamically linked executables in SVR4, the dynamic linker
52 code is contained within the shared C library, which is actually executable
53 and is run by the kernel first when an exec is done of a user executable
54 that is dynamically linked. The dynamic linker within the shared C library
55 then maps in the various program segments in the user executable and jumps
56 to the user executable's recorded entry point, as if the call had been made
57 directly by the kernel.
58
59 The traditional gdb method of using this info was to use the
60 recorded entry point to set the entry-file's lowpc and highpc from
61 the debugging information, where these values are the starting
62 address (inclusive) and ending address (exclusive) of the
63 instruction space in the executable which correspond to the
64 "startup file", i.e. crt0.o in most cases. This file is assumed to
65 be a startup file and frames with pc's inside it are treated as
66 nonexistent. Setting these variables is necessary so that
67 backtraces do not fly off the bottom of the stack.
68
69 NOTE: cagney/2003-09-09: It turns out that this "traditional"
70 method doesn't work. Corinna writes: ``It turns out that the call
71 to test for "inside entry file" destroys a meaningful backtrace
72 under some conditions. E.g. the backtrace tests in the asm-source
73 testcase are broken for some targets. In this test the functions
74 are all implemented as part of one file and the testcase is not
75 necessarily linked with a start file (depending on the target).
76 What happens is, that the first frame is printed normally and
77 following frames are treated as being inside the entry file then.
78 This way, only the #0 frame is printed in the backtrace output.''
79 Ref "frame.c" "NOTE: vinschen/2003-04-01".
80
81 Gdb also supports an alternate method to avoid running off the bottom
82 of the stack.
83
84 There are two frames that are "special", the frame for the function
85 containing the process entry point, since it has no predecessor frame,
86 and the frame for the function containing the user code entry point
87 (the main() function), since all the predecessor frames are for the
88 process startup code. Since we have no guarantee that the linked
89 in startup modules have any debugging information that gdb can use,
90 we need to avoid following frame pointers back into frames that might
91 have been built in the startup code, as we might get hopelessly
92 confused. However, we almost always have debugging information
93 available for main().
94
95 These variables are used to save the range of PC values which are
96 valid within the main() function and within the function containing
97 the process entry point. If we always consider the frame for
98 main() as the outermost frame when debugging user code, and the
99 frame for the process entry point function as the outermost frame
100 when debugging startup code, then all we have to do is have
101 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
102 current PC is within the range specified by these variables. In
103 essence, we set "ceilings" in the frame chain beyond which we will
104 not proceed when following the frame chain back up the stack.
105
106 A nice side effect is that we can still debug startup code without
107 running off the end of the frame chain, assuming that we have usable
108 debugging information in the startup modules, and if we choose to not
109 use the block at main, or can't find it for some reason, everything
110 still works as before. And if we have no startup code debugging
111 information but we do have usable information for main(), backtraces
112 from user code don't go wandering off into the startup code. */
113
114 struct entry_info
115 {
116 /* The unrelocated value we should use for this objfile entry point. */
117 CORE_ADDR entry_point;
118
119 /* The index of the section in which the entry point appears. */
120 int the_bfd_section_index;
121
122 /* Set to 1 iff ENTRY_POINT contains a valid value. */
123 unsigned entry_point_p : 1;
124
125 /* Set to 1 iff this object was initialized. */
126 unsigned initialized : 1;
127 };
128
129 /* Sections in an objfile. The section offsets are stored in the
130 OBJFILE. */
131
132 struct obj_section
133 {
134 /* BFD section pointer */
135 struct bfd_section *the_bfd_section;
136
137 /* Objfile this section is part of. */
138 struct objfile *objfile;
139
140 /* True if this "overlay section" is mapped into an "overlay region". */
141 int ovly_mapped;
142 };
143
144 /* Relocation offset applied to S. */
145 #define obj_section_offset(s) \
146 (((s)->objfile->section_offsets)[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
147
148 /* The memory address of section S (vma + offset). */
149 #define obj_section_addr(s) \
150 (bfd_section_vma (s->the_bfd_section) \
151 + obj_section_offset (s))
152
153 /* The one-passed-the-end memory address of section S
154 (vma + size + offset). */
155 #define obj_section_endaddr(s) \
156 (bfd_section_vma (s->the_bfd_section) \
157 + bfd_section_size ((s)->the_bfd_section) \
158 + obj_section_offset (s))
159
160 #define ALL_OBJFILE_OSECTIONS(objfile, osect) \
161 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
162 if (osect->the_bfd_section == NULL) \
163 { \
164 /* Nothing. */ \
165 } \
166 else
167
168 #define SECT_OFF_DATA(objfile) \
169 ((objfile->sect_index_data == -1) \
170 ? (internal_error (__FILE__, __LINE__, \
171 _("sect_index_data not initialized")), -1) \
172 : objfile->sect_index_data)
173
174 #define SECT_OFF_RODATA(objfile) \
175 ((objfile->sect_index_rodata == -1) \
176 ? (internal_error (__FILE__, __LINE__, \
177 _("sect_index_rodata not initialized")), -1) \
178 : objfile->sect_index_rodata)
179
180 #define SECT_OFF_TEXT(objfile) \
181 ((objfile->sect_index_text == -1) \
182 ? (internal_error (__FILE__, __LINE__, \
183 _("sect_index_text not initialized")), -1) \
184 : objfile->sect_index_text)
185
186 /* Sometimes the .bss section is missing from the objfile, so we don't
187 want to die here. Let the users of SECT_OFF_BSS deal with an
188 uninitialized section index. */
189 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
190
191 /* The "objstats" structure provides a place for gdb to record some
192 interesting information about its internal state at runtime, on a
193 per objfile basis, such as information about the number of symbols
194 read, size of string table (if any), etc. */
195
196 struct objstats
197 {
198 /* Number of full symbols read. */
199 int n_syms = 0;
200
201 /* Number of ".stabs" read (if applicable). */
202 int n_stabs = 0;
203
204 /* Number of types. */
205 int n_types = 0;
206
207 /* Size of stringtable, (if applicable). */
208 int sz_strtab = 0;
209 };
210
211 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
212 #define OBJSTATS struct objstats stats
213 extern void print_objfile_statistics (void);
214
215 /* Number of entries in the minimal symbol hash table. */
216 #define MINIMAL_SYMBOL_HASH_SIZE 2039
217
218 /* An iterator for minimal symbols. */
219
220 struct minimal_symbol_iterator
221 {
222 typedef minimal_symbol_iterator self_type;
223 typedef struct minimal_symbol *value_type;
224 typedef struct minimal_symbol *&reference;
225 typedef struct minimal_symbol **pointer;
226 typedef std::forward_iterator_tag iterator_category;
227 typedef int difference_type;
228
229 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
230 : m_msym (msym)
231 {
232 }
233
234 value_type operator* () const
235 {
236 return m_msym;
237 }
238
239 bool operator== (const self_type &other) const
240 {
241 return m_msym == other.m_msym;
242 }
243
244 bool operator!= (const self_type &other) const
245 {
246 return m_msym != other.m_msym;
247 }
248
249 self_type &operator++ ()
250 {
251 ++m_msym;
252 return *this;
253 }
254
255 private:
256 struct minimal_symbol *m_msym;
257 };
258
259 /* Some objfile data is hung off the BFD. This enables sharing of the
260 data across all objfiles using the BFD. The data is stored in an
261 instance of this structure, and associated with the BFD using the
262 registry system. */
263
264 struct objfile_per_bfd_storage
265 {
266 objfile_per_bfd_storage ()
267 : minsyms_read (false)
268 {}
269
270 ~objfile_per_bfd_storage ();
271
272 /* The storage has an obstack of its own. */
273
274 auto_obstack storage_obstack;
275
276 /* String cache. */
277
278 gdb::bcache string_cache;
279
280 /* The gdbarch associated with the BFD. Note that this gdbarch is
281 determined solely from BFD information, without looking at target
282 information. The gdbarch determined from a running target may
283 differ from this e.g. with respect to register types and names. */
284
285 struct gdbarch *gdbarch = NULL;
286
287 /* Hash table for mapping symbol names to demangled names. Each
288 entry in the hash table is a demangled_name_entry struct, storing the
289 language and two consecutive strings, both null-terminated; the first one
290 is a mangled or linkage name, and the second is the demangled name or just
291 a zero byte if the name doesn't demangle. */
292
293 htab_up demangled_names_hash;
294
295 /* The per-objfile information about the entry point, the scope (file/func)
296 containing the entry point, and the scope of the user's main() func. */
297
298 entry_info ei {};
299
300 /* The name and language of any "main" found in this objfile. The
301 name can be NULL, which means that the information was not
302 recorded. */
303
304 const char *name_of_main = NULL;
305 enum language language_of_main = language_unknown;
306
307 /* Each file contains a pointer to an array of minimal symbols for all
308 global symbols that are defined within the file. The array is
309 terminated by a "null symbol", one that has a NULL pointer for the
310 name and a zero value for the address. This makes it easy to walk
311 through the array when passed a pointer to somewhere in the middle
312 of it. There is also a count of the number of symbols, which does
313 not include the terminating null symbol. */
314
315 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
316 int minimal_symbol_count = 0;
317
318 /* The number of minimal symbols read, before any minimal symbol
319 de-duplication is applied. Note in particular that this has only
320 a passing relationship with the actual size of the table above;
321 use minimal_symbol_count if you need the true size. */
322
323 int n_minsyms = 0;
324
325 /* This is true if minimal symbols have already been read. Symbol
326 readers can use this to bypass minimal symbol reading. Also, the
327 minimal symbol table management code in minsyms.c uses this to
328 suppress new minimal symbols. You might think that MSYMBOLS or
329 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
330 for multiple readers to install minimal symbols into a given
331 per-BFD. */
332
333 bool minsyms_read : 1;
334
335 /* This is a hash table used to index the minimal symbols by (mangled)
336 name. */
337
338 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
339
340 /* This hash table is used to index the minimal symbols by their
341 demangled names. Uses a language-specific hash function via
342 search_name_hash. */
343
344 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
345
346 /* All the different languages of symbols found in the demangled
347 hash table. */
348 std::bitset<nr_languages> demangled_hash_languages;
349 };
350
351 /* An iterator that first returns a parent objfile, and then each
352 separate debug objfile. */
353
354 class separate_debug_iterator
355 {
356 public:
357
358 explicit separate_debug_iterator (struct objfile *objfile)
359 : m_objfile (objfile),
360 m_parent (objfile)
361 {
362 }
363
364 bool operator!= (const separate_debug_iterator &other)
365 {
366 return m_objfile != other.m_objfile;
367 }
368
369 separate_debug_iterator &operator++ ();
370
371 struct objfile *operator* ()
372 {
373 return m_objfile;
374 }
375
376 private:
377
378 struct objfile *m_objfile;
379 struct objfile *m_parent;
380 };
381
382 /* A range adapter wrapping separate_debug_iterator. */
383
384 class separate_debug_range
385 {
386 public:
387
388 explicit separate_debug_range (struct objfile *objfile)
389 : m_objfile (objfile)
390 {
391 }
392
393 separate_debug_iterator begin ()
394 {
395 return separate_debug_iterator (m_objfile);
396 }
397
398 separate_debug_iterator end ()
399 {
400 return separate_debug_iterator (nullptr);
401 }
402
403 private:
404
405 struct objfile *m_objfile;
406 };
407
408 /* Master structure for keeping track of each file from which
409 gdb reads symbols. There are several ways these get allocated: 1.
410 The main symbol file, symfile_objfile, set by the symbol-file command,
411 2. Additional symbol files added by the add-symbol-file command,
412 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
413 for modules that were loaded when GDB attached to a remote system
414 (see remote-vx.c).
415
416 GDB typically reads symbols twice -- first an initial scan which just
417 reads "partial symbols"; these are partial information for the
418 static/global symbols in a symbol file. When later looking up
419 symbols, lookup_symbol is used to check if we only have a partial
420 symbol and if so, read and expand the full compunit. */
421
422 struct objfile
423 {
424 private:
425
426 /* The only way to create an objfile is to call objfile::make. */
427 objfile (bfd *, const char *, objfile_flags);
428
429 public:
430
431 /* Normally you should not call delete. Instead, call 'unlink' to
432 remove it from the program space's list. In some cases, you may
433 need to hold a reference to an objfile that is independent of its
434 existence on the program space's list; for this case, the
435 destructor must be public so that shared_ptr can reference
436 it. */
437 ~objfile ();
438
439 /* Create an objfile. */
440 static objfile *make (bfd *bfd_, const char *name_, objfile_flags flags_,
441 objfile *parent = nullptr);
442
443 /* Remove an objfile from the current program space, and free
444 it. */
445 void unlink ();
446
447 DISABLE_COPY_AND_ASSIGN (objfile);
448
449 /* A range adapter that makes it possible to iterate over all
450 psymtabs in one objfile. */
451
452 psymtab_storage::partial_symtab_range psymtabs ()
453 {
454 return partial_symtabs->range ();
455 }
456
457 /* Reset the storage for the partial symbol tables. */
458
459 void reset_psymtabs ()
460 {
461 partial_symtabs.reset (new psymtab_storage ());
462 }
463
464 typedef next_adapter<struct compunit_symtab> compunits_range;
465
466 /* A range adapter that makes it possible to iterate over all
467 compunits in one objfile. */
468
469 compunits_range compunits ()
470 {
471 return compunits_range (compunit_symtabs);
472 }
473
474 /* A range adapter that makes it possible to iterate over all
475 minimal symbols of an objfile. */
476
477 class msymbols_range
478 {
479 public:
480
481 explicit msymbols_range (struct objfile *objfile)
482 : m_objfile (objfile)
483 {
484 }
485
486 minimal_symbol_iterator begin () const
487 {
488 return minimal_symbol_iterator (m_objfile->per_bfd->msymbols.get ());
489 }
490
491 minimal_symbol_iterator end () const
492 {
493 return minimal_symbol_iterator
494 (m_objfile->per_bfd->msymbols.get ()
495 + m_objfile->per_bfd->minimal_symbol_count);
496 }
497
498 private:
499
500 struct objfile *m_objfile;
501 };
502
503 /* Return a range adapter for iterating over all minimal
504 symbols. */
505
506 msymbols_range msymbols ()
507 {
508 return msymbols_range (this);
509 }
510
511 /* Return a range adapter for iterating over all the separate debug
512 objfiles of this objfile. */
513
514 separate_debug_range separate_debug_objfiles ()
515 {
516 return separate_debug_range (this);
517 }
518
519 CORE_ADDR text_section_offset () const
520 {
521 return section_offsets[SECT_OFF_TEXT (this)];
522 }
523
524 CORE_ADDR data_section_offset () const
525 {
526 return section_offsets[SECT_OFF_DATA (this)];
527 }
528
529 /* Intern STRING and return the unique copy. The copy has the same
530 lifetime as the per-BFD object. */
531 const char *intern (const char *str)
532 {
533 return (const char *) per_bfd->string_cache.insert (str, strlen (str) + 1);
534 }
535
536 /* Intern STRING and return the unique copy. The copy has the same
537 lifetime as the per-BFD object. */
538 const char *intern (const std::string &str)
539 {
540 return (const char *) per_bfd->string_cache.insert (str.c_str (),
541 str.size () + 1);
542 }
543
544 /* Retrieve the gdbarch associated with this objfile. */
545 struct gdbarch *arch () const
546 {
547 return per_bfd->gdbarch;
548 }
549
550 /* Return true if OBJFILE has partial symbols. */
551
552 bool has_partial_symbols ();
553
554 /* See quick_symbol_functions. */
555 struct symtab *find_last_source_symtab ();
556
557 /* See quick_symbol_functions. */
558 void forget_cached_source_info ();
559
560 /* See quick_symbol_functions. */
561 bool map_symtabs_matching_filename
562 (const char *name, const char *real_path,
563 gdb::function_view<bool (symtab *)> callback);
564
565 /* See quick_symbol_functions. */
566 struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
567 domain_enum domain);
568
569 /* See quick_symbol_functions. */
570 void print_stats (bool print_bcache);
571
572 /* See quick_symbol_functions. */
573 void dump ();
574
575 /* See quick_symbol_functions. */
576 void expand_symtabs_for_function (const char *func_name);
577
578 /* See quick_symbol_functions. */
579 void expand_all_symtabs ();
580
581 /* See quick_symbol_functions. */
582 void expand_symtabs_with_fullname (const char *fullname);
583
584 /* See quick_symbol_functions. */
585 void map_matching_symbols
586 (const lookup_name_info &name, domain_enum domain,
587 int global,
588 gdb::function_view<symbol_found_callback_ftype> callback,
589 symbol_compare_ftype *ordered_compare);
590
591 /* See quick_symbol_functions. */
592 void expand_symtabs_matching
593 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
594 const lookup_name_info *lookup_name,
595 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
596 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
597 enum search_domain kind);
598
599 /* See quick_symbol_functions. */
600 struct compunit_symtab *find_pc_sect_compunit_symtab
601 (struct bound_minimal_symbol msymbol,
602 CORE_ADDR pc,
603 struct obj_section *section,
604 int warn_if_readin);
605
606 /* See quick_symbol_functions. */
607 void map_symbol_filenames (symbol_filename_ftype *fun, void *data,
608 int need_fullname);
609
610 /* See quick_symbol_functions. */
611 struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
612
613 /* See quick_symbol_functions. */
614 enum language lookup_global_symbol_language (const char *name,
615 domain_enum domain,
616 bool *symbol_found_p);
617
618
619 /* The object file's original name as specified by the user,
620 made absolute, and tilde-expanded. However, it is not canonicalized
621 (i.e., it has not been passed through gdb_realpath).
622 This pointer is never NULL. This does not have to be freed; it is
623 guaranteed to have a lifetime at least as long as the objfile. */
624
625 const char *original_name = nullptr;
626
627 CORE_ADDR addr_low = 0;
628
629 /* Some flag bits for this objfile. */
630
631 objfile_flags flags;
632
633 /* The program space associated with this objfile. */
634
635 struct program_space *pspace;
636
637 /* List of compunits.
638 These are used to do symbol lookups and file/line-number lookups. */
639
640 struct compunit_symtab *compunit_symtabs = nullptr;
641
642 /* The partial symbol tables. */
643
644 std::shared_ptr<psymtab_storage> partial_symtabs;
645
646 /* The object file's BFD. Can be null if the objfile contains only
647 minimal symbols, e.g. the run time common symbols for SunOS4. */
648
649 bfd *obfd;
650
651 /* The per-BFD data. Note that this is treated specially if OBFD
652 is NULL. */
653
654 struct objfile_per_bfd_storage *per_bfd = nullptr;
655
656 /* The modification timestamp of the object file, as of the last time
657 we read its symbols. */
658
659 long mtime = 0;
660
661 /* Obstack to hold objects that should be freed when we load a new symbol
662 table from this object file. */
663
664 struct obstack objfile_obstack {};
665
666 /* Structure which keeps track of functions that manipulate objfile's
667 of the same type as this objfile. I.e. the function to read partial
668 symbols for example. Note that this structure is in statically
669 allocated memory, and is shared by all objfiles that use the
670 object module reader of this type. */
671
672 const struct sym_fns *sf = nullptr;
673
674 /* The "quick" (aka partial) symbol functions for this symbol
675 reader. */
676 quick_symbol_functions_up qf;
677
678 /* Per objfile data-pointers required by other GDB modules. */
679
680 REGISTRY_FIELDS {};
681
682 /* Set of relocation offsets to apply to each section.
683 The table is indexed by the_bfd_section->index, thus it is generally
684 as large as the number of sections in the binary.
685
686 These offsets indicate that all symbols (including partial and
687 minimal symbols) which have been read have been relocated by this
688 much. Symbols which are yet to be read need to be relocated by it. */
689
690 ::section_offsets section_offsets;
691
692 /* Indexes in the section_offsets array. These are initialized by the
693 *_symfile_offsets() family of functions (som_symfile_offsets,
694 xcoff_symfile_offsets, default_symfile_offsets). In theory they
695 should correspond to the section indexes used by bfd for the
696 current objfile. The exception to this for the time being is the
697 SOM version.
698
699 These are initialized to -1 so that we can later detect if they
700 are used w/o being properly assigned to. */
701
702 int sect_index_text = -1;
703 int sect_index_data = -1;
704 int sect_index_bss = -1;
705 int sect_index_rodata = -1;
706
707 /* These pointers are used to locate the section table, which
708 among other things, is used to map pc addresses into sections.
709 SECTIONS points to the first entry in the table, and
710 SECTIONS_END points to the first location past the last entry
711 in the table. The table is stored on the objfile_obstack. The
712 sections are indexed by the BFD section index; but the
713 structure data is only valid for certain sections
714 (e.g. non-empty, SEC_ALLOC). */
715
716 struct obj_section *sections = nullptr;
717 struct obj_section *sections_end = nullptr;
718
719 /* GDB allows to have debug symbols in separate object files. This is
720 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
721 Although this is a tree structure, GDB only support one level
722 (ie a separate debug for a separate debug is not supported). Note that
723 separate debug object are in the main chain and therefore will be
724 visited by objfiles & co iterators. Separate debug objfile always
725 has a non-nul separate_debug_objfile_backlink. */
726
727 /* Link to the first separate debug object, if any. */
728
729 struct objfile *separate_debug_objfile = nullptr;
730
731 /* If this is a separate debug object, this is used as a link to the
732 actual executable objfile. */
733
734 struct objfile *separate_debug_objfile_backlink = nullptr;
735
736 /* If this is a separate debug object, this is a link to the next one
737 for the same executable objfile. */
738
739 struct objfile *separate_debug_objfile_link = nullptr;
740
741 /* Place to stash various statistics about this objfile. */
742
743 OBJSTATS;
744
745 /* A linked list of symbols created when reading template types or
746 function templates. These symbols are not stored in any symbol
747 table, so we have to keep them here to relocate them
748 properly. */
749
750 struct symbol *template_symbols = nullptr;
751
752 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
753 block *) that have one.
754
755 In the context of nested functions (available in Pascal, Ada and GNU C,
756 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
757 for a function is a way to get the frame corresponding to the enclosing
758 function.
759
760 Very few blocks have a static link, so it's more memory efficient to
761 store these here rather than in struct block. Static links must be
762 allocated on the objfile's obstack. */
763 htab_up static_links;
764
765 /* JIT-related data for this objfile, if the objfile is a JITer;
766 that is, it produces JITed objfiles. */
767 std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
768
769 /* JIT-related data for this objfile, if the objfile is JITed;
770 that is, it was produced by a JITer. */
771 std::unique_ptr<jited_objfile_data> jited_data = nullptr;
772
773 /* A flag that is set to true if the JIT interface symbols are not
774 found in this objfile, so that we can skip the symbol lookup the
775 next time. If an objfile does not have the symbols, it will
776 never have them. */
777 bool skip_jit_symbol_lookup = false;
778 };
779
780 /* A deleter for objfile. */
781
782 struct objfile_deleter
783 {
784 void operator() (objfile *ptr) const
785 {
786 ptr->unlink ();
787 }
788 };
789
790 /* A unique pointer that holds an objfile. */
791
792 typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
793
794 /* Declarations for functions defined in objfiles.c */
795
796 extern int entry_point_address_query (CORE_ADDR *entry_p);
797
798 extern CORE_ADDR entry_point_address (void);
799
800 extern void build_objfile_section_table (struct objfile *);
801
802 extern void free_objfile_separate_debug (struct objfile *);
803
804 extern void objfile_relocate (struct objfile *, const section_offsets &);
805 extern void objfile_rebase (struct objfile *, CORE_ADDR);
806
807 extern int objfile_has_full_symbols (struct objfile *objfile);
808
809 extern int objfile_has_symbols (struct objfile *objfile);
810
811 extern int have_partial_symbols (void);
812
813 extern int have_full_symbols (void);
814
815 extern void objfile_set_sym_fns (struct objfile *objfile,
816 const struct sym_fns *sf);
817
818 extern void objfiles_changed (void);
819
820 /* Return true if ADDR maps into one of the sections of OBJFILE and false
821 otherwise. */
822
823 extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
824
825 /* Return true if ADDRESS maps into one of the sections of a
826 OBJF_SHARED objfile of PSPACE and false otherwise. */
827
828 extern bool shared_objfile_contains_address_p (struct program_space *pspace,
829 CORE_ADDR address);
830
831 /* This operation deletes all objfile entries that represent solibs that
832 weren't explicitly loaded by the user, via e.g., the add-symbol-file
833 command. */
834
835 extern void objfile_purge_solibs (void);
836
837 /* Functions for dealing with the minimal symbol table, really a misc
838 address<->symbol mapping for things we don't have debug symbols for. */
839
840 extern int have_minimal_symbols (void);
841
842 extern struct obj_section *find_pc_section (CORE_ADDR pc);
843
844 /* Return non-zero if PC is in a section called NAME. */
845 extern int pc_in_section (CORE_ADDR, const char *);
846
847 /* Return non-zero if PC is in a SVR4-style procedure linkage table
848 section. */
849
850 static inline int
851 in_plt_section (CORE_ADDR pc)
852 {
853 return (pc_in_section (pc, ".plt")
854 || pc_in_section (pc, ".plt.sec"));
855 }
856
857 /* Keep a registry of per-objfile data-pointers required by other GDB
858 modules. */
859 DECLARE_REGISTRY(objfile);
860
861 /* In normal use, the section map will be rebuilt by find_pc_section
862 if objfiles have been added, removed or relocated since it was last
863 called. Calling inhibit_section_map_updates will inhibit this
864 behavior until the returned scoped_restore object is destroyed. If
865 you call inhibit_section_map_updates you must ensure that every
866 call to find_pc_section in the inhibited region relates to a
867 section that is already in the section map and has not since been
868 removed or relocated. */
869 extern scoped_restore_tmpl<int> inhibit_section_map_updates
870 (struct program_space *pspace);
871
872 extern void default_iterate_over_objfiles_in_search_order
873 (struct gdbarch *gdbarch,
874 iterate_over_objfiles_in_search_order_cb_ftype *cb,
875 void *cb_data, struct objfile *current_objfile);
876
877 /* Reset the per-BFD storage area on OBJ. */
878
879 void set_objfile_per_bfd (struct objfile *obj);
880
881 /* Return canonical name for OBJFILE.
882 This is the real file name if the file has been opened.
883 Otherwise it is the original name supplied by the user. */
884
885 const char *objfile_name (const struct objfile *objfile);
886
887 /* Return the (real) file name of OBJFILE if the file has been opened,
888 otherwise return NULL. */
889
890 const char *objfile_filename (const struct objfile *objfile);
891
892 /* Return the name to print for OBJFILE in debugging messages. */
893
894 extern const char *objfile_debug_name (const struct objfile *objfile);
895
896 /* Return the name of the file format of OBJFILE if the file has been opened,
897 otherwise return NULL. */
898
899 const char *objfile_flavour_name (struct objfile *objfile);
900
901 /* Set the objfile's notion of the "main" name and language. */
902
903 extern void set_objfile_main_name (struct objfile *objfile,
904 const char *name, enum language lang);
905
906 extern void objfile_register_static_link
907 (struct objfile *objfile,
908 const struct block *block,
909 const struct dynamic_prop *static_link);
910
911 extern const struct dynamic_prop *objfile_lookup_static_link
912 (struct objfile *objfile, const struct block *block);
913
914 #endif /* !defined (OBJFILES_H) */
This page took 0.047327 seconds and 5 git commands to generate.